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1. Let ABC be a triangle whose inscribed circle touches AB and AC at D and E,
respectively. Let X and Y be the points of intersection of the bisectors of the angles
∠ACB and ∠ABC with the line DE and let Z be the midpoint of BC. Prove that
the triangle XY Z is equilateral if and only if A is 60o.

2. Find all primes p such that p2 − p + 1 is a perfect cube.

3. Let a, b, c be positive real numbers. Prove the inequality:
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When does the equality hold?

4. Let n ≥ 2 be integer. Let S be a subset of {1, 2, . . . , n} such that S neither contains
two elements one of which divides the other nor contains two elements which are
co-prime. What is the maximal number of elements of such a set S?
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