Balkan Mathematical Olympiad
 May, 2005

BMO 2005

1. Let $A B C$ be a triangle whose inscribed circle touches $A B$ and $A C$ at D and E, respectively. Let X and Y be the points of intersection of the bisectors of the angles $\angle A C B$ and $\angle A B C$ with the line $D E$ and let Z be the midpoint of $B C$. Prove that the triangle $X Y Z$ is equilateral if and only if A is 60°.
2. Find all primes p such that $p^{2}-p+1$ is a perfect cube.
3. Let a, b, c be positive real numbers. Prove the inequality:

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a} \geq a+b+c+\frac{4(a-b)^{2}}{a+b+c}
$$

When does the equality hold?
4. Let $n \geq 2$ be integer. Let S be a subset of $\{1,2, \ldots, n\}$ such that S neither contains two elements one of which divides the other nor contains two elements which are co-prime. What is the maximal number of elements of such a set S ?

