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Abstract

To any co-oriented curve (front) in the two-dimensional sphereS2 we associate a rigid body
motion together with an instantaneous axis of rotation. We prove that the pair of (antipodal)
curves on the sphere determined by the instantaneous axis of rotation coincide with the envelope of
the great circles normal to the original co-oriented curve (this envelope is called thecausticof the
curve). The cusps of the caustic correspond to the points of the co-oriented curve for which the
instantaneous axis of rotation is stationary. These results are stated and proved in the setting of
Legendrian curves and contact geometry.
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1. Introduction and results

A co-oriented wave front on the sphereS
2 together with the family of all its equidistant

fronts can be considered as wave front propagating eternally on the sphere. To this wave front
propagation, we associate a rigid body motion whose instantaneous axis of rotation describes
a curve on the sphere which coincides with the caustic of the system of propagating fronts.

Here,R3 denotes the three-dimensional Euclidean space with the standard orientation.
Moreover,S2 denotes the two-dimensional sphere of radius 1 inR

3. Consider a base{e1, e2}
of the tangent space ofS

2 at a pointQ. Letn be the outward unit normal vector to the sphere
atQ. The base{e1, e2} is said to bepositiveif the base{e1, e2,n} of the tangent space of
R

3 atQ is positive.
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To formulate our results we start considering afront in the two-dimensional sphereS2

as a co-oriented curve having as possible singularities double points or semi-cubical cusps.
The precise definition of front, which includes a more general class of co-oriented curves,
will be given inSection 2, in the general setting of contact geometry.

With every point of a frontγ : s �→ γ (s) ∈ S
2 on the two-dimensional sphereS2 of

radius 1 inR
3 we will associate a trihedral. Theco-orienting normalc(s) is a unit vector

tangent toS2 and orthogonal toγ at γ (s). Theunit tangentvectorb at a point ofγ is a
unit vector tangent toγ chosen so that the orientation of the sphere, given byb(s) and the
co-orienting normalc(s), is positive. The spherical curveγ defines by itself at each of its
points a unit vectora(s) = γ (s). So to each point of a co-oriented curve onS

2 we associate
the trihedrala(s),b(s), c(s), that we call thenatural trihedral. The end point of the vector
b, describes a curve on the sphere that we call (following[3]) thederivative curveof the
front.

These definitions apply not only to smoothly immersed curves, but also to wave fronts,
having cusps.

With the parameters considered as the time, the motion of the natural trihedral is a rigid
body motion about the origin, this motion has an instantaneous axis of rotation. Of course,
the angular velocityω1 of the rigid motion around this axis depends on the parameterization
of the front. In addition, the instantaneous axis of rotation (which, as we will see, always lies
in the plane, spanned bya andc) has also an instantaneous angular velocityω2 around the
origin of the plane(a, c). This angular velocityω2 also depends on the parameterization.

It is noteworthy to remark thatthe quotientKn = ω2/ω1 of these two angular velocities
does not depend on the parameterization. This quotient is the geodesic curvature of the
derivative curve of the front.

Theorem 1. If γ is a spherical curve having geodesic curvatureκ, then the instantaneous
axis of rotation of the natural trihedrala,b, c at the time s is determined by the vector

r = κ√
1 + κ2

a + 1√
1 + κ2

c = sinθ · a + cosθ · c,

whereθ is the angle fromc to r. Moreover, if the parameter s is the arc length, then the
angular velocity of the rigid motion is equal toω = √

1 + κ2.

The unit vectorr = sinθ · a + cosθ · c and the spherical curveR described by it are
called, respectively, therotation vectorand therotation indicatrixof the spherical curveγ .
That is, the rotation indicatrix and its antipodal curve are the curves described on the sphere
by the instantaneous axis of rotation of the natural trihedral.

Note that when the spherical curveγ has a cusp, i.e. when cosθ = 0, the rotation vector
is well-defined and is equal toa.

LetΓ be a co-oriented front on an oriented sphereS
2 of radius 1. The great circles of the

sphere, orthogonal to the front, are called itsrays. The rays are oriented by the co-orientation
of the front. The envelope of the system of rays of a co-oriented front� is a curve with two
connected components which is called theevoluteor causticof that front.
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Remark. If the front is parameterized then the two components of the caustic are also
parameterized. The monodromy is trivial.

On moving each point of the front along the ray by a distancet we obtain a new frontΓt
called thet-equidistantof the front.

Theorem 2. The rotation indicatrixR of a front and its antipodal curve−R are the two
components of the evolute of that front.

A smooth parameterization of the fronts by arc length is not convenient because such a
parameterization is not possible at the cusps. It is known[3,5] that the derivative curve of
a front has no cusp. So, given a frontΓ , we propose to parameterize its derivativeΓ ′ by
arc length. This parameterization ofΓ ′ induces a parameterization of the frontΓ , which
we call theinduced parameterization.

Theorem 3. Given a spherical co-oriented curve(front), the natural trihedral of all its
equidistants, parameterized with the induced parameterization, define the same rigid body
motion. The angular velocity around the instantaneous axis of rotation is 1.

The Maslov indexµ of an oriented and co-oriented front, defined in[2], is equal to the
algebraic number of cusps of the front. A semi-cubical cusp is said to bepositiveif the
cords that join points of the branch approaching the cusp to points of the branch leaving it
co-orient the front positively in a neighborhood of the cusp.

Definition. A rotation vertexof a front on the sphereS2 is a point where the first derivative
of the rotation indicatrix vanishes (i.e. it corresponds to a cusp of the rotation indicatrix if
the point is a generic rotation vertex).

Remark. In other words, the rotation vertices of a front are the points for which the instan-
taneous axis of rotation (of the associated rigid motion) is stationary.

Theorem 4. The rigid motion associated to a closed co-oriented front with Maslov index
µ = 0 has at least two rotation vertices. For each even numberµ = 0, there exist fronts
with Maslov indexµ and having no rotation vertex(seeFig. 1).

Fig. 1. Two fronts with Maslov indexµ ≡ 0 and without rotation vertices.
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When a point moves along a curve in the Euclidean spaceR
3, its Frenet trihedral(t,n,b),

attached to a fixed point, defines a rigid motion whose instantaneous axis of rotation is
determined by the Darboux vector:d̃ = τ t + kb, wherek andτ are the curvature and the
torsion of the curve, respectively. Of course, the angular velocityω1 about this axis depends
on the parameterization.

Additionally, the instantaneous axis of rotation (which always lies in the rectifying plane,
determined byt andb) has also an instantaneous angular velocityω2 around the origin in
the rectifying plane. This angular velocityω2 also depends on the parameterization.

The end points of the vectors of the Frenet trihedralt,n,b and of the normalized Darboux
vectord = d̃/

√
k2 + τ2 describe four curvesT,N,B,D, on the unit sphereS2 ⊂ R

3, called
thetangent, normal, binormalandDarboux indicatricesof γ , respectively.

Our results imply thatthe quotientKn = ω2/ω1 of the angular velocitiesω2 andω1 does
not depend on the parameterization. This quotient is the geodesic curvature of the normal
indicatrix.

Generically the Darboux indicatrix may have semi-cubical cusps, corresponding to the
points at which the line of the instantaneous axis of rotation is stationary. These points are
calledDarboux vertices[9,10].

A point of a curveγ in R
3, is calledtwisting if the tangent indicatrix ofγ , considered a

spatial curve, has a flattening (point of torsion 0) at the corresponding point. The geometric
meaning of the twistings was studied in[9,10], where it was shown that twistings play an
important role in the bifurcations of flattenings of curves and thatthe twistings correspond
one-to-one to the Darboux vertices.

To try to answer Aicardi’s[1] question about the geometric meaning of the flattenings of
the normal indicatrix of a curveγ ⊂ R

3, we apply our results to the case when the front is
the tangent indicatrix of the curveγ .

Theorem 5. The flattenings of the normal indicatrix of a curve inR
3 correspond to points

where the quotientKn = ω2/ω1 of the angular velocitiesω1 andω2 of this rigid motion is
critical.

Remark. Other evident interpretation: the flattenings of the normal indicatrix correspond
to the cusps of the second caustic, i.e. the caustic of the caustic.

In Section 2, we recall some facts of contact geometry. Then, inSection 3, our results
are reformulated and proved in the general setting of contact geometry, of the Legendrian
curves and their fronts.

2. The manifold of contact elements, Legendrian submanifolds and their fronts

We recall from[3] some basics of the general theory of contact geometry, Legendrian
submanifolds and their fronts. Here, we will only consider a particular class of contact
manifolds which will be defined below: the manifold of co-oriented contact elements of a
given submanifoldBn.
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A linear hyperplaneRn−1 of a tangent space to ann-dimensional smooth manifoldBn

is said to be acontact elementof Bn. A co-orientation of a contact element is the choice of
one of the two halves into which it divides the tangent space. A co-orientation of a contact
element of a Riemannian manifold is determined by a choice of a direction on the line
normal to it.

The set of all co-oriented contact elements on a givenn-dimensional manifoldBn is
fibered overBn, and the fiber over a point ofBn is the spherized cotangent space ofBn at
that point, called thepoint of contact. Thus the set of all the co-oriented contact elements
of Bn form the bundle spaceE2n−1 of a smooth fibration

π : ST∗Bn → Bn

with fiberS
n−1. It is called thespherized cotangent bundle ST∗Bn of Bn.

This bundleE2n−1 is equipped with a natural ‘tautological’ field of tangent hyperplanes.
The hyperplane of the tautological field at a pointp of E2n−1 is the inverse image by
π∗ of the hyperplane in the space tangent toBn, which is represented by the pointp of
the manifoldE2n−1. The tautological field of hyperplanes onE2n−1 is called thenatural
contact structureof the manifold of contact elements onBn.

Remark. This natural contact structure can also be defined by the followingskatingrule.
The velocity vector of a motion of a contact element belongs to the hyperplane of the contact
structure if the velocity of the point of contact belongs to the contact element.

Example (see[3]). The manifold of co-oriented contact elements of the two-dimensional
sphereS2 is the projective spaceRP 3 = S

3/± 1. The natural contact structure ofST∗
S

2 �
S

3/ ± 1 is obtained in[3] from the field of planes orthogonal to the fibers of the Hopf
bundleS

3 → S
2, under the projectionS3 → S

3/ ± 1. More precisely, given an imaginary
quaternionu of length 1, multiplication of all the quaternions byu on theright supply a
complex structure, which depends onu, to the space of quaternionsR

4. For each quaternion
q the operator of multiplication on theleftbyq in the space of quaternionsR

4 isu-complex.
Consider the Hopf bundle corresponding to an imaginary quaternionu of length 1

πu : S
3 → S

2
u � CP 1

associating with each non-null point of theu-complex line passing through 0, the direction
of that line. The fiber of this principalS1-bundle is the circle{z ·eut : t ∈ R/(2πZ)}, where
z ∈ S

3 is a point of the fiber. On the sphereS
3 of quaternions of length 1, there is a fieldu,

tangent to the fibers of the bundleπu

u(z) = z · u =
(

d

dt

)∣∣∣∣
t=0

(z · eut).

The field of planes onS3 orthogonal to the vectors of the fieldu providesS3 with a contact
structure called theu-structure. A submanifold of a contact manifoldE2n−1 is said to be
integral if its tangent space at every point belongs to the contact hyperplane.

Definition. A Legendre submanifoldof a contact manifold is an integral submanifold of
maximal dimension: equal ton − 1 for a (2n − 1)-dimensional manifold. In particular, a
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Legendrian curveof a three-dimensional manifoldE3 equipped with a contact structure
is an immersed curve inE3, whose tangent at each point lies in the plane of the contact
structure.

Example. Each co-oriented curveγ immersed in a surfaceB2 determines a Legendrian
curve in the manifoldE3 = ST∗B2 of co-oriented contact elements ofB2. This Legendrian
curve consists of the corresponding co-oriented contact elements onB2, tangent toγ . A
point ofB2 also determines a Legendrian curve inE3. This curve consists of the co-oriented
contact elements ofB2 applied at the point (i.e., it is a fiber of the spherized cotangent
bundle).

Definition. The front of a Legendrian curveL : S
1 → E3 of the manifold of co-oriented

contact elements of a surfaceB2 is the projectionπ ◦L(S1) ⊂ B2 of this Legendrian curve
to the surfaceB2.

The co-oriented contact elements forming the original Legendrian curve determine a
co-orientation of that front. In the sequel, we will consider the manifoldST∗

S
2 of co-oriented

contact elements of the two-dimensional sphere, its Legendrian curves and their fronts.
In Section 1, we associated a trihedral to each point of a co-oriented curve. After the

introduction of the manifoldST∗
S

2, we will associate to each co-oriented contact element
of the oriented unit sphere itsnatural trihedrala,b, c in the following way: The point of
contact onS2 defines a unit vectora; we denote byc the co-orienting unit normal vector; the
unit vectorb tangent to the contact element is chosen so that the pairb, c orients positively
the sphere.

Thus, we associate anatural trihedral to a front on the sphere by choosing the natural
trihedrals of the co-oriented contact elements tangent to the front. In fact, we are associating
a trihedral to each point of the corresponding Legendrian curve.

3. The dual, the derivative and the caustic of a spherical front

With every co-oriented curve on the two-dimensional sphereS
2 of radius 1 Arnol’d[3]

associated three other curves:

Definition (Arnol’d [3]). The curvedual to a given co-oriented curve on the sphere is the
curve obtained from the original curve by moving a distanceπ/2 along the normals on the
side determined by the co-orientation.

This definition applies not only to smoothly immersed curves, but also to wave fronts,
having cusps (of semi-cubical type or, in general, of typexa = ya+1).

The dual curve itself is naturally co-oriented and is a wave front equidistant from the
original one (lying at a distanceπ/2 from it).

The cusps of the original front correspond to points of spherical inflection on the dual
front, while the points of spherical inflection on the original one correspond to cusps on
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the dual. The second dual of a front is antipodal to the original one, while the fourth dual
coincides with the original one.

Definition (Arnol’d [3]). Thederivativeof a co-oriented curve on the oriented standard
sphereS2 is the curve obtained by moving each point a distanceπ/2 along the great circle
tangent to the original curve at that point. The direction of motion along the tangent is chosen
so that the orientation of the sphere, given by the direction of the co-orienting normal and
the direction of the tangent, is positive.

This definition applies not only to smoothly immersed curves, but also to wave fronts.
The end points of the unit vectorsa,b andc of the natural trihedral associated to the

co-oriented contact elements of a front, describe three curvesΓ , Γ ′ andΓ ∗, respectively,
on the sphere. Of course, the curveΓ coincides with the original front. Comparing the
definitions of the dual and the derivative of a co-oriented front, it is evident that the curve
Γ ′ is the derivative of the front and the curveΓ ∗ is the dual of the frontΓ . In particular,
Γ ∗ is an equidistant ofΓ .

Theorem A (Arnol’d [3]). The derivative of a wave front coincides with the derivative of
any of its equidistants and is a smoothly immersed curve onS

2 even if the original wave
front has generic singularities.

The derivative of a closed wave front is not an arbitrary immersed curve, but it satisfies
a topological condition of quantization. In particular, the results of[3] imply the following
theorem of Jacobi[6] (see also[4]):

Jacobi’s theorem. If the derivative of a smoothly immersed closed curve has no point of
self-intersection, then it divides the sphere into two parts of equal area.

Remark. A parameterization of a Legendrian curve determines a parameterization of its
front and also determines a parameterization of its natural trihedral (even when the front
degenerates into a point). ByTheorem A, the derivative of a family of equidistant fronts
is smooth and can be parameterized by arc length. This parameterization of the derivative
induces a parameterization on each Legendrian curve of the family and hence on its natural
trihedral. Such parameterization on the Legendrian curve, on its front and on its natural
trihedral, will be called theinduced parameterization. The parameter will be called the
natural parameter.

Letσ be the arc length parameter of the derivativeΓ ′ of a frontΓ on the sphere. With the
induced parameterization the natural equations (NEs) of the front (or of its natural trihedral)
become

da
dσ

= cosθ · b,
db
dσ

= − cosθ · a + sinθ · c,
dc
dσ

= − sinθ · b,

and the rotation vector is

r = sinθ · a + cosθ · c,
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whereθ = θ(σ ) is the angle measured fromc to r. Note that these NEs are well-defined
even when the front degenerates into a point.

Remark (Arnol’d [3]). An equidistant is orthogonal to the rays emanating from the orig-
inal front. An equidistant co-oriented by these rays is the front of a Legendrian curve,
diffeomorphic and contactomorphic to the original one.

Two Legendrian curves are calledequidistantif their fronts are equidistant. We reformu-
lateTheorem 3of Section 1into a more general form:

Theorem 3′. LetLt be a family of equidistant Legendrian curves. The rigid motion asso-
ciated toLt with the induced parameterization does not depend on the value of t and has
angular velocity 1.

A singular pointof a front is a critical value of the projection of the corresponding
Legendrian curve. The singular points of generic fronts are semi-cubical cusps.

Consider the family of equidistants of a given co-oriented front on the standard sphere.
Even if the original front is not singular, some of its equidistants will have singular points.

Definition (Arnol’d [3]). Thecausticof a family of fronts equidistant from one another is
the curve formed by their singular points.

Remark. Any smooth curve in the space of trihedrals defines a rigid motion together with
its associated instantaneous axis of rotation. The Legendrian curves ofST∗

S
2 define spe-

cial curves in the space of trihedrals.Theorems 2 and 3′ assert that given a parameterized
Legendrian curve, all its “equidistant” Legendrian curves define the same rigid body mo-
tion and the rotation indicatrix of this motion coincides with the caustic of the system of
“equidistant” Legendrian curves.

Remark. The caustic of a system of equidistant fronts has other characterizations: (1) It is
formed by their centers of curvature; (2) It is the envelope of their rays (in fact it suffices
to start with a front of the system to get all the rays); (3) If the front is considered as a
spatial curve, then the caustic of the previous definition coincides with the caustic of the
(Lagrangian) Gauß map associated to the curve.

Theorem B (Arnol’d [3]). The derivative of a front is dual to its caustic.

4. The Proofs

Proof of Theorem 1. We will first obtain the NEs of a smooth spherical curve. At the
points in whichγ ⊂ S

2 is smooth we can parameterize it locally by arc lengthl so that
dγ /dl = b, i.e.a′ = b, where derivation with respect tol is denoted by a prime, d/dl = ′.
With these conditions we have〈b,b′〉 = 0. Thusa′′ = b′ = αa + βc, whereα andβ are
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two smooth functions of the parameterl. The geodesic curvatureκ of γ is the component
of a′′ orthogonal toa. Thusβ = κ.

By definition, we always havec = a × b. Thus

c′ = a × b′ + a′ × b = a × (αa + κc) = −κb.

Usingb = c×a, we obtain in a similar way thatb′ = −a+κc. Thus the NEs of a smoothly
immersed spherical curve parameterized by arc length and with geodesic curvatureκ are

a′ = b, b′ = −a + κc, c′ = −κb.

The instantaneous axis of rotation of the natural trihedrona,b, c must be orthogonal to the
vectorsa′,b′, c′. It is evident that the unit vector

r = κ√
1 + κ2

a + 1√
1 + κ2

c

satisfies this condition.
The vectorb is orthogonal to the instantaneous axis of rotation and is unitary. So the

norm of the vectorb′ = −a + κc gives the angular velocity. That is, the angular velocity is
ω = √

1 + κ2. �

Proof of Theorem 2. For each contact element of a frontΓ , the oriented great circle normal
to it (i.e. its ray) is contained in the plane normal to the vectorb. So the ray is contained in
the plane spanned byc anda. The rotation vectorr = sinθ · a + cosθ · c, also lies in this
plane. Moreover, the derivative of the rotation vector with respect to the parameterσ is

r′ = θ ′ cosθ · a − θ ′ sinθ · c = −θ ′ · b′,

which also lies in the plane(c, a). Thus the ray of the front is tangent to the rotation indicatrix
R. This means that the rotation indicatrixR and its antipodal curve−R form the evolute of
the front and, byTheorem A, they also form the evolute of all fronts equidistant toΓ . �

Proof of Theorem 3′. First, all fronts of the family of equidistant Legendrian curves have
the same caustic, i.e. the same rotation indicatrix. This means that the rigid motions associ-
ated to this fronts have the same instantaneous axis of rotation. The vectorb is unitary and
is orthogonal to the instantaneous axis of rotation. So, the derivative ofb with respect to the
natural parameterσ is the angular velocity of the rigid motion. From the NEs corresponding
to the induced parameterization we have that

db
dσ

= − cosθ · a + sinθ · c.

So, the angular velocity is( cos2θ + sin2θ)1/2 = 1. �

Proof of Theorem 4. For the points at which the front is smooth, i.e. the front is locally
the tangent indicatrix of some curve in the Euclidean 3-space. Therefore, at the rotation
vertices of the front the radius of the osculating circle is critical, or equivalently the front—
considered as a space curve—has a flattening.
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A front having Maslov indexµ = 0 has the same number of positive and negative cusps.
If this number is 0, then the front is a smooth immersed curve in the sphere. Thus it has at
least two flattenings, i.e. it has at least two rotation vertices. If the number of cusps is not 0,
then there are at least two arcs of the front joining consecutive cusps of different sign. The
following lemma is easy to prove.

Lemma 1. Between two consecutive cusps of different sign of an oriented and co-oriented
front in the sphere there is an odd number(at least1) of points at which the radius of the
osculating circle is critical.

By Lemma 1, at each one of these arcs there is an odd number of rotation vertices.

Another proof. Theoriented lengthof a generic caustic is the alternating sum of the lengths
of its segments between successive cusps.

Theorem C (Arnol’d [3]). The oriented length of the caustic of a system of closed equidis-
tant fronts on the standard Riemannian two-dimensional sphere is equal toµπ , whereµ is
the Maslov index of any front of the family.

Theorem Cimplies that forµ = 0 the caustic has oriented length equal to 0. If the caustic
is not a point, then it has at least two cusps, i.e. it has at least two rotation vertices. If the
caustic is a point, then all points of the front are rotation vertices.

To construct a front with Maslov indexµ = 2k > 0 and having no rotation vertex it
suffices to design a front with exactly 2k cusps all of them positives and such that the geodesic
curvature between any two consecutive cusps is monotone. To satisfy this condition, the
front must have only one spherical inflection between each pair of consecutive cusps. In
Fig. 1 we have examples of such kind of fronts forµ = 2 and 6. In[3], Arnol’d gives a
way to construct fronts with Maslov indexµ = 2k whose caustic is a parallel of latitude of
the sphere of radius 1 traversedp times (at a distanceθ < π/2 from the North pole along
meridians).

5. Remarks on perestroikas of Legendrian curves

Orthonormal-oriented frames inR3 (trihedrals) form the contact three-dimensional man-
ifold ST∗

S
2 of co-oriented contact elements on the sphere. The tangent vector to a curve in

this space of frames belongs to the contact plane if the derivative of the first vector (or the
derivative of the third vector) of the frame is linearly dependent on the second vector.

The curve swept by the Frenet frame associated with a space curve is Legendrian. The
frontsΓ andΓ ∨ of this Legendre curve under two natural Legendre projections given by
the first and the third vectors of the frame are the tangent and the binormal indicatrices,
respectively. The tangent and the binormal indicatrices are equidistant fronts (one of each
other) on the sphere. (It is also possible to fix the standard contact structure inST∗

S
2, and

to consider the Legendrian curve formed by the contact elements tangent to the tangent
indicatrix co-oriented by the binormal vector. Using the results of[3], one proves that there
is a Legendrian projection of this Legendrian curve onto the binormal indicatrix).
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Fig. 2. Cusp transition of the tangent indicatrix.

Fig. 3. Perestroika of the caustics (by the Gauß map) of curves inR
3 in a generic one-parameter family during an

inflection perestroika. This caustic consists of±B the binormal indicatrix.

The Darboux indicatrix is a caustic: it is formed by the singular points of all equidistant
fronts to the tangent indicatrix (or to the binormal indicatrix). A point of an immersed
curve in the Euclidean spaceR3 is called aninflectionof the curve if the first and second
derivatives of the curve at that point are linearly dependent (at an inflection the curvature
vanishes).

A generic curve has no inflection. However, for generic one-parameter families of curves
in R

3 (we look upon the parameter as the time), at isolated parameter values, two events
(calledperestroikas) may occur at which the number of flattenings changes: a biflattening or
an inflection of the curve. At the moment of a biflattening or inflection, two close flattenings
of the curve are born or killed; in each of these perestroikas, twistings play an important
role.

It is interesting to note that under the inflection bifurcation described in[9,10], the Leg-
endre curve associated with the Frenet frame experience global topological bifurcations.
This kind of non-local bifurcations have never been studied before in singularity theory.

As a consequence, the tangent indicatrix, the binormal indicatrix, their caustic (i.e. the
Darboux indicatrix) and the normal indicatrix experience global topological bifurcations
(seeFigs. 2–5).

Remark. However, we must say that Shcherbak[8] has studied the perestroikas of the front
and of the tangent developable of a curve in the spaceRP 3: the front is a surface—in the
dual space—which is formed by all the planes tangent to the curve; the tangent developable
is the surface formed by the points of all the tangent lines to the curve. Shcherbak has
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Fig. 4. Darboux indicatrix during an inflection perestroika.

proved that at an inflection perestroika the cuspidal edge of the front and the cuspidal
edge of the tangent developable both experiment a global perestroika. However, he has not
studied if there is (or not) a perestroika of the corresponding Legendrian manifolds. In[7],
Mond has studied—independently and with other methods—the bifurcation of the tangent
developable of a curve inRP 3 at an inflection perestroika.

Usually, in the study if Legendrian singularities one considers one-parameter families
of smooth Legendrian submanifolds which depends smoothly on the parameter; in partic-
ular, all the Legendrian submanifolds of the family are diffeomorphic (one to each other).
One considers a Legendrian projection and studies the bifurcations of the corresponding
one-parameter families fronts. However, in the study of generic one-parameter families of
curves in the Euclidean 3-space one can obtain in a natural way a one-parameter family
of Legendrian curves having a perestroika. Note that the Legendrian curve inST∗

S
2 asso-

ciated to a curve in the Euclidean 3-space is singular (seeFig. 6). This explains why the
‘non-standard’ perestroikas of caustics (Fig. 4) and fronts (Figs. 2 and 3) in one-parameter
families appear in this situation. The normal indicatrix of a closed curve in the Euclidean
3-space is an (exact) Lagrangian curve of the sphere with the standard symplectic struc-
ture. In an inflection perestroika, these Lagrangian curves (i.e. the normal indicatrices) also
experiment a global perestroika (Fig. 5).

Consider the Frenet frame of a curve in the Euclidean 3-space. The front given by the first
vector of the frame (i.e. the tangent indicatrix) may have spherical inflections generically,
but generically it has no cusp. The front given by the third vector (i.e. the binormal indicatrix)
may have cusps generically, but generically it has no spherical inflection.

Fig. 5. Perestroika of the family of normal indicatrices of a generic one-parameter family of curves inR
3 having

an inflection perestroika.
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Fig. 6. The three standard projections of the Legendrian curve associated to the tangent indicatrix of a space curve.
The lettersT, B andN denote the tangent, normal and binormal indicatrix, respectively.

One can impose the condition that the Legendrian curve in the space of orthonormal
frames is smooth and smoothly depends on parameters. Then the non-local bifurcation de-
scribed above is not possible in this case. Instead, both fronts (given by the first and the
third vectors of the frame) may have cusps generically and may have spherical inflections
generically.
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