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If capacitors are initially charged before placing them in series, charge becomes trapped on the

electrically isolated internal plates. The effect of this “trapped charge” on the final charge and

voltage distributions in series capacitor networks provides instructors with a new class of engaging

capacitor problems not currently addressed in introductory physics textbooks. We present formulae

for the final charges on two series capacitors connected to a battery in terms of initial charge

values. Various special cases are also considered. Results are verified experimentally using dc

voltage and RC time constant measurements. Practical considerations for experimental design are

discussed. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4916888]

I. INTRODUCTION

“How do the charges on two unequal capacitors (C1>C2)
connected in parallel to a battery compare to the charges on
the capacitors when they are instead connected in series to
the battery?” This question1 is routinely posed in various
forms to introductory physics classes to illustrate the conclu-
sion that charges on dissimilar capacitors connected in series
must be equal. The following excerpt from Serway2 (modi-
fied slightly to utilize our Fig. 1) is typical of textbook
explanations:

The top plate of C1 and the bottom plate of C2 are
connected to the terminals of a battery. The two
inner plates are connected to each other and to
nothing else; hence, they form an isolated system
that is initially uncharged and must continue to
have zero net charge. To analyze this combination,
let’s first consider the uncharged capacitors and
then follow what happens immediately after a
battery is connected to the circuit. When the
battery is connected, electrons are transferred out
of the top plate of C1 and into the bottom plate of
C2. As this negative charge accumulates on the
bottom plate of C2, an equivalent amount of
negative charge is forced off the top plate of C2,
and this top plate therefore has an excess positive
charge. The negative charge leaving the top plate
of C2 causes negative charge to accumulate on the

bottom plate of C1. As a result, both bottom plates
end up with a charge of �Q and both top plates
end up with a charge ofþQ. Therefore, the
charges on capacitors connected in series are the
same: Q1¼Q2¼Q.

When this question was posed to our class recently, a stu-
dent asked an interesting question that we never considered:
“Are the capacitors connected in parallel to the battery to be
discharged before they are subsequently connected in series
with the battery?” All of the introductory physics and electron-
ics textbooks we surveyed derive conclusions about charges for
series capacitors based on the assumption that the capacitors
connected in series are initially uncharged.1–16 But, if we allow
capacitors to possess nonzero initial charge before we place
them into a series combination, we discover an intriguing and
delightfully counterintuitive effect of the charge that becomes
trapped on the electrically isolated internal plates.

II. DERIVATION OF FINAL CAPACITOR CHARGES

To find the relative charges on capacitors in series with a
battery, we first consider the arbitrary situation illustrated in
Fig. 2(a), where, before hooking the capacitors in series, C1

and C2 are initially charged to Qinit
1 and Qinit

2 , respectively.
Even though the two inner plates are connected in Fig. 2(a),
no charge will flow between the capacitors until the circuit is
completed by the closing of the switch as in Fig. 2(b). Our
subsequent discussion is based on the initial polarities shown
in Fig. 2, where the negative plate of C1 is connected to the
positive plate of C2 before the switch is closed. We demon-
strate how our equations may be applied to situations with
different initial polarities in Sec. III D.

Note that the arrangements of charge depicted in Fig. 2,
where each capacitor possesses equal but opposite charges dis-
tributed uniformly along its internal faces, are idealized. Other
authors have investigated the effects of fringing, dielectrics,
and energy considerations on the actual charge distribution of
non-idealized series capacitors.17–20 Such considerations,
however, result in small deviations from the idealized condi-
tion and are tangential to the focus of this article.

Figure 2(b) illustrates the final distribution of charges Q1 and
Q2 after the switch is closed. Because the inner plates of C1 and
C2 are electrically isolated, the net charge trapped on these
plates before and after the switch is closed must remain constant

Qtrap ¼ Qinit
2 � Qinit

1 ¼ Q2 � Q1: (1)

Fig. 1. In the familiar textbook example, C1 and C2 are initially uncharged

when they are placed in series with a battery. Electrons on the bottom plate

of C1 must necessarily be pulled from the top plate of C2 because the inner

plates of the series combination are electrically isolated.
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We obtain a second independent equation by applying
Kirchhoff’s loop rule and the definition of capacitance
(Q¼CV) after the switch is closed, which yields

V � Q1

C1

� Q2

C2

¼ 0: (2)

Solving Eqs. (1) and (2) simultaneously, we obtain the final
charges on each capacitor in terms of the initial charges and
battery voltage (V) to be

Q1 ¼
C1C2

C1 þ C2

V � C1

C1 þ C2

Qinit
2 � Qinit

1

� �
(3)

and

Q2 ¼
C1C2

C1 þ C2

V þ C2

C1 þ C2

Qinit
2 � Qinit

1

� �
: (4)

Interestingly, we see that the charges on the series capaci-
tors are only equal if there is no trapped charge on the elec-
trically isolated internal plates (Qinit

2 � Qinit
1 ¼ 0). We can

thus conclude that the ubiquitous conclusion found in intro-
ductory physics textbooks that, “charges on capacitors
placed series must be equal,” is only valid when the capaci-
tors under consideration are initially uncharged or they have
equal initial charges. In the trivial case where the battery
voltage is equal to the initial combined voltage across the
two capacitors (V ¼ Vinit

1 þ Vinit
2 ), no charge will flow in the

circuit when the switch is closed and Eqs. (3) and (4) reduce
to Q1 ¼ Qinit

1 and Q2 ¼ Qinit
2 .

In the standard situation where the two capacitors are ini-
tially uncharged and placed in series with a battery, they
would each acquire a final charge Q ¼ ½C1C2=ðC1 þ C2Þ�V.
Thus, Eqs. (3) and (4) can be alternately written as

Q1 ¼ Q� C1

C1 þ C2

Qtrap (5)

and

Q2 ¼ Qþ C2

C1 þ C2

Qtrap: (6)

Next, we consider various special cases to gain conceptual
insight into the effect of trapped charge on the charge distri-
bution of series capacitors. Since voltages are easier to mea-
sure than stored charges, it will be convenient to rewrite Eqs.
(3) and (4) in terms of voltages as

V1 ¼
C2

C1 þ C2

V þ C1Vinit
1 � C2Vinit

2

C1 þ C2

(7)

and

V2 ¼
C1

C1 þ C2

V þ C2Vinit
2 � C1Vinit

1

C1 þ C2

: (8)

Interestingly, we see that the capacitor voltages depend on
the initial voltages of each capacitor that existed before they
were placed in the series circuit (in addition to C1, C2, and
V). In other words, the voltages on each capacitor in a series
combination with trapped charge retain a “memory” of the
initial capacitor voltages.

III. SPECIAL CASES

A. Capacitors with equal initial charges

The familiar result for initially uncharged capacitors is
confirmed by substituting Vinit

1 ¼ Vinit
2 ¼ 0 into Eqs. (7) and

(8) to find

V1 ¼
C2

C1þC2

V (9)

and

V2 ¼
C1

C1þC2

V: (10)

Here, we observe that for C1 6¼C2, the larger capacitor
ends up having the smaller voltage as is commonly taught in
introductory classes. Testing this result experimentally is not
as straightforward as one might imagine. In making measure-
ments to confirm our theoretical predictions for this study,
we sought to use typical capacitors that would be readily
available, and arbitrarily chose C1¼ 1.980 lF and
C2¼ 1.036 lF, as measured with a Wavetek capacitance me-
ter. All voltmeters have some input impedance (typically
1–10 MX) and if one naively attempts to measure the capaci-
tor voltages there results the situation depicted in Fig. 3(a).
The input impedance of the voltmeter in Fig. 3(a) acts as a
shunt resistor that allows negative charge to flow from the
junction between the negative plate of C2 and the battery to
the junction between the two capacitors, simultaneously

Fig. 2. Capacitors C1 and C2 possess arbitrary initial charges (a). Because

the switch is open, the battery voltage is not in general equal to the sum of

the initial capacitor voltages: V 6¼ Vinit
1 þ Vinit

2 . When the switch closes (b),

the capacitors are placed in series and charge flows in the circuit until the

combined capacitor voltages become equal to the battery voltage:

V ¼ V1 þ V2.
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draining C2 and charging C1. We find the RC time constant
in Fig. 3(a) for the discharging of C2 (and corresponding
charging of C1) to be 3.0 s using our lab voltmeter and the
capacitor values we selected. Consequently, if one uses such
capacitors and attempts to make voltage measurements using
the circuit depicted in Fig. 3(a) with a typical voltmeter, the
voltage V2 will be seen to decay with time. Similar results
would be observed using a Logger-Pro voltage probe, whose
input impedance is 10 MX.

An experimenter attempting to observe static voltages on
series capacitors must then choose to either drastically
increase the capacitor values or the input impedance of the
voltmeter. If we increase capacitance values by using expen-
sive 1-F capacitors, we increase the RC time constant of the
circuit depicted in Fig. 3(a) to a very stable s¼ 35 days.
However, we feel that using these extraordinary 1-F capaci-
tors might give students the impression that results are only
valid in extreme conditions. We prefer instead to increase
the voltmeter input impedance by buffering our voltmeter
with a JFET operational amplifier (op-amp) hooked up in a
“voltage follower” configuration as shown in Fig. 3(b).21

Using a Texas Instruments LF-356 op-amp, we effectively
increase the input impedance of our voltmeter to well over
1011 X, resulting in observed voltages that are completely
stable over the time required to make voltage measurements.

Figure 4 shows experimental observations of V1 using the
Qinit

1 ¼ Qinit
2 ¼ 0 initial condition compared to theoretical

predictions from Eq. (9) for various battery voltages. All
observed voltages were extremely reproducible and within
1% of theoretical predictions.

Equations (9) and (10) are also valid when the initial
charges on the capacitors are equal and non-zero: Qinit

1

¼ Qinit
2 6¼ 0. Using the definition of capacitance, the equal-

initial-charges condition requires that the initial capacitor
voltages obey the relation

Vinit
2 ¼ C1

C2

Vinit
1 : (11)

For each of the five battery voltages in used in Fig. 4, we ran
additional sets of trials to create identical nonzero charges on
the capacitors, first charging C1 to some arbitrary voltage,
and then charging C2 to the corresponding initial voltage
given by Eq. (11). In each case, the final capacitor voltages
after the switch was closed were equal (within 1%) to those
observed for our previous set of measurements for the ini-
tially uncharged capacitors. We can understand this by not-
ing that for each trial, the net charge that is trapped
(Qinit

2 � Qinit
1 ) on the isolated internal plates of C1 and C2

must be zero since the initial charges are equal. When the
switch is closed, the power supply simply removes or adds
the appropriate charges to the outer plates to bring the series
combination to the power supply voltage, and the zero net
charge on the inner plates rearranges itself accordingly. The
data points from our Qinit

1 ¼ Qinit
2 6¼ 0 measurements are not

plotted in Fig. 4 since they fall on top of the previous data
points from our trials with Qinit

1 ¼ Qinit
2 ¼ 0.

B. Capacitors initially charged to supply voltage

We now consider the case posed by the student’s question
that inspired this manuscript. When each capacitor is initially
charged to the battery voltage before placing the capacitors
in series (Vinit

1 ¼ Vinit
2 ¼ V), Eqs. (7) and (8) reduce to

V1 ¼
C1

C1þC2

V (12)

and

V2 ¼
C2

C1þC2

V: (13)

Interestingly, in this special case where each capacitor is
initially charged to the battery voltage, we see that the larger
capacitor experiences the larger voltage in the same way that
the larger resistor in a series combination of resistors experi-
ences the larger voltage in the familiar voltage divider equa-
tion for series resistors.22 Figure 4 shows experimental
observations of V1 compared to theoretical predictions from
Eq. (12) for various battery voltages.

Fig. 3. In (a), the input impedance of a typical voltmeter acts as a shunt re-

sistance causing the measurement of V2 to decay during measurement. In

(b), an operational amplifier buffers the voltmeter to allow for stable voltage

measurements. Note that care must be taken to make sure the capacitor vol-

tages being measured with the configuration in (b) do not exceed the 6 sup-

ply voltages of the op-amp.

Fig. 4. Experimental results for three special cases with initial conditions

described in the text are plotted against theoretical curves. Each data point

was obtained through the process portrayed in Fig. 2, whereby both capacitors

were charged to their respective initial voltages before the switch was closed.

Capacitance values for all trials were C1¼ 1.980 lF, and C2¼ 1.036 lF.
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C. C1 initially charged to battery voltage and C2 initially
uncharged

Another interesting case is when C1 is initially charged to
V and then connected in series with an initially uncharged C2

(Vinit
1 ¼ V and Vinit

2 ¼ 0). Substituting these values into Eqs.
(7) and (8), we obtain

V1 ¼ V (14)

and

V2 ¼ 0: (15)

In this case, no charge is transferred to C2 when the switch
in Fig. 2 is closed. Figure 4 shows experimental observations
of V1 compared to theoretical predictions from Eq. (14) for
various battery voltages.

D. Zero battery voltage

While none of the textbooks we surveyed1–16 considered
the problem of placing initially charged capacitors in series
with a battery, nearly all of these texts posed various exer-
cises challenging students to find the final voltage of two
capacitors that are initially charged and then connected to
one another without a battery. Figure 5 illustrates this exam-
ple with the common polarities of the capacitors joined by
the closing of two switches as the textbook problem is typi-
cally posed. The second switch in Fig. 5 is superfluous since
no charge will flow unless both switches are closed.

We may apply Eqs. (7) and (8) to this problem by making
two substitutions based on a comparison between Figs. 2 and
5. First we note that the battery in Fig. 2 has been replaced
by a wire in Fig. 5. We accommodate this feature in Fig. 5
by substituting V¼ 0 in Eqs. (7) and (8) since a wire can be
considered a battery of zero potential. We also note that
instead of connecting the negative plate of C1 to the positive
plate of C2, as in Fig. 2, the switch in Fig. 5 connects the
negative plate of C1 to the negative plate of C2. We accom-
modate this difference by adding a negative subscript to the
initial voltage on C2 to indicate that the polarity has been
reversed (Vinit

2� ¼ �Vinit
2 ) from that used in Fig. 2 and subse-

quent derivations. So, for example, if the initial voltage on
C2 in Fig. 5 was Vinit

2� ¼ þ20 V, we would substitute Vinit
2 ¼

�20 V in Eqs. (7) and (8). Making these substitutions, the so-
lution to the textbook problem is then

V1 ¼
C1Vinit

1 þ C2Vinit
2�

C1 þ C2

: (16)

and

V2 ¼ �V1: (17)

We can interpret the minus sign in Eq. (17) as a result of the
voltage measurement perspective in Fig. 2, where we place
the positive lead of an imaginary voltmeter at the junction
between the capacitors (at the negative plate of C1) when
measuring V2.

The most common solution to this problem requires noting
that the final capacitor voltages must be equal, since the
capacitors are effectively in parallel (V1 ¼ V2�), and that the
net charges on joined capacitor faces must be conserved.
This approach yields an identical result to Eqs. (16) and (17).

IV. THE OVERALL CAPACITANCE OF SERIES

CAPACITORS WITH TRAPPED CHARGE

Does the presence of trapped charge in series capacitors
influence the overall capacitance of the series combination?
In order to answer this question, we must first review how
the capacitance of series capacitors with no initial charge is
typically determined. In so doing, we will see why the usual
textbook definition of capacitance cannot be applied directly
to this situation.

Introductory physics texts introduce the concept of capaci-
tance by considering the electric potential difference that
results from placing charges þQ and �Q on opposing con-
ductors. This passage from Serway and Jewett23 is emblem-
atic of this approach: “The capacitance C of a capacitor is
defined as the ratio of the magnitude of the charge on either
conductor to the magnitude of the potential difference
between the conductors: C¼Q/DV.” Applying this approach
to a simple series combination of initially uncharged capaci-
tors C1 and C2, all introductory physics textbooks report the
capacitance of the series combination to be

Cseries ¼
C1C2

C1 þ C2

: (18)

However, if we attempt to apply the standard textbook
definition of capacitance to a series combination of initially
charged capacitors we are immediately faced with a diffi-
culty. Unlike initially uncharged conductors, the series com-
bination of capacitors with initial charge in Fig. 2(a) already
possesses unequal charges þQinit

1 and �Qinit
2 on the outer two

capacitor faces. We might attempt to simply redefine Q in
the traditional definition of capacitance as the magnitude of
additional charge that could be placed on each of the outer
two capacitor faces, however, a simple physical mechanism
for accomplishing this task is not immediately obvious.

Keeping in mind that the capacitance of an ordinary
parallel-plate capacitor is independent of charge and voltage,
we can write

dQ ¼ C dV; (19)

which means the definition of capacitance can be written in
differential form as

C ¼ dQ

dV
: (20)

It follows from Eq. (20) that we can think of capacitance as
the ratio of the change in charge on the capacitor to some

Fig. 5. The example of connecting two initially charged capacitors that is

found in most introductory university physics textbooks. The initial voltage

on C2 is labeled with a minus subscript to indicate that its polarity is

reversed from that in Fig. 2, where Vinit
2� ¼ �Vinit

2 .
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change in voltage that has been imposed on the capacitor.
For example, consider a parallel-plate capacitor that has
been charged to a voltage of 10 V. If we observe that the ca-
pacitor draws an additional charge of 6 lC when its voltage
is increased to 12 V, we can conclude that its capacitance is
C¼DQ/DV¼ 6 lC/2 V¼ 3 lF.

To apply Eq. (20) to a series combination of capacitors
with trapped charge, we begin by taking the differentials of
Eqs. (3) and (4) to get the change in charge for each capaci-
tor that would result from a change in battery voltage dV

dQ1 ¼ dQ2 ¼
C1C2

C1 þ C2

dV: (21)

Like a traditional series capacitor circuit with no trapped
charge, the only part of this change in charge that is recover-
able is that which resides on the outer plates of the series
combination. Thus, as in the traditional case of initially
uncharged series capacitors that experience a change in bat-
tery voltage, the change in recoverable charge dQ for the se-
ries combination is not the sum dQ1þ dQ2, but rather
dQ¼ dQ1¼ dQ2. We can then integrate Eq. (21) to find the
charge Q¼DQ1¼DQ2 that is transferred to the series com-
bination when the battery voltage is changed

Q ¼ C1C2

C1 þ C2

DV: (22)

With Eq. (22), we see now that the overall capacitance of
series capacitors with trapped charge is identical to that of
uncharged series capacitors given in Eq. (18). To test Eq.
(22) experimentally, we first imagine replacing the battery in
Fig. 2(a) with a variable dc power supply. This variable volt-
age acts as a battery whose voltage can be adjusted to any ar-
bitrary voltage. Before we close the switch in Fig. 2(a) we
adjust the variable voltage to initially be exactly equal to the
sum of initial capacitor voltages, that is, Vinit ¼ Vinit

12 ¼
Vinit

1 þ Vinit
2 . When we close the switch as in Fig. 2(b), no

current flows in the circuit and the initial capacitor voltages
remain unchanged. As we then change the battery voltage to
some new value, the individual capacitor charges at any time
can be found by adding the charge Q in Eq. (22) to the initial
charges:

Q1 ¼ Qinit
1 þ Q (23)

and

Q2 ¼ Qinit
2 þ Q: (24)

We can likewise rewrite these equations in terms of voltages
as

V1 ¼ Vinit
1 þ

C2

C1 þ C2

DV (25)

and

V2 ¼ Vinit
2 þ

C1

C1 þ C2

DV: (26)

In a typical laboratory situation, it would be very difficult
to match the initial power supply voltage (Vinit) exactly
to the sum of initial capacitor voltages (Vinit

12 ) as in the

experimental design described in the previous paragraph. It
is more convenient to start with our initial power supply volt-
age set to some arbitrary voltage that is not equal to Vinit

12 . If
we then start our experiment to validate Eqs. (25) and (26)
with Vinit 6¼ Vinit

12 as suggested, we see that when we first
attach the capacitors with trapped charge to our power sup-
ply, the capacitor voltages will quickly equilibrate to new
values, V01 and V02, given by Eqs. (7) and (8), just as if we had
closed a switch as in Fig. 2. The initial voltages on the
capacitors in Eqs. (25) and (26) for the typical laboratory sit-
uation then become Vinit

1 ¼ V01 and Vinit
2 ¼ V02. We may then

observe how the capacitor voltages change as we subse-
quently adjust the variable power supply voltage. We applied
this approach using initial conditions from Sec. III B with
Vinit

1 ¼ Vinit
2 ¼ V ¼ �10 V to obtain the data presented in

Fig. 6. Once the circuit was connected, the capacitor voltages
immediately equilibrated to new values, given by Eqs. (7)
and (8). The subsequent capacitor voltages plotted in Fig. 6
were measured continuously as the power supply voltage
was slowly ramped from �10 V to þ10 V. The theoretical
relationships plotted in Fig. 6 are found from Eqs. (25) and
(26) using the ordinary definition of change in battery volt-
age, DV ¼ Vfinal � Vinit.

Note that, in our above discussions, we have assumed that
the changes to power supply voltage are slow compared to
the time constant of the battery/capacitor circuit. Otherwise,
there would have been a time lag, as we discuss in Sec. V.

V. RC TIME CONSTANT WITH TRAPPED CHARGE

We see from Eq. (22) that series capacitors with trapped
charge yield the same recoverable charge as initially
uncharged capacitors when subjected to a change in battery
voltage. But, does the presence of trapped charge influence
the time it takes to discharge an RC circuit with series
capacitors? Consider the series RC circuit in Fig. 7. When
the switch in Fig. 7 is closed, charge will flow through R
until the combined voltage V12 across the capacitors is equal
to the battery voltage. This is analogous to the situation

Fig. 6. After charging each capacitor to �10 V, the capacitors were hooked

in series to a variable power supply whose voltage V was then slowly

ramped from �10 V to þ10 V. Capacitor voltages were measured continu-

ously as V was ramped. The theoretical curves were obtained from Eqs. (25)

and (26) with initial capacitor voltages obtained from Eqs. (7) and (8). Note

that while the starting voltages in this figure agree with Eqs. (12) and (13)

for the special condition Vinit
1 ¼ Vinit

2 ¼ V, this relationship does not continue

to hold as the battery voltage is ramped; this is because the capacitors are

not recharged to meet the special initial conditions before each voltage mea-

surement, as in the procedure used to obtain Fig. 4.
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portrayed in Fig. 2, only now the charging process is slowed
by the presence of a resistor.

As is usually done for RC circuits,24 we can write
Kirchhoff’s loop rule for the circuit in Fig. 7 when the switch
is closed as

V � R
dQ

dt
� Q1

C1

� Q2

C2

¼ 0: (27)

Substituting Eqs. (23) and (24) into Eq. (27), we eliminate
Q1 and Q2 and obtain the following differential equation for
the charge Q transferred to the series capacitor combination:

V � Vinit
12

� �
� R

dQ

dt
� 1

C1

þ 1

C2

� �
Q ¼ 0: (28)

Equation (28) is identical to the traditional equation
obtained for initially uncharged capacitors except for the
constant term Vinit

12 . As with an ordinary RC circuit, constant
terms in Eq. (28) will not impact the RC time constant
obtained from the solution. We conclude that the time con-
stant of an RC circuit with series capacitors containing
trapped charge is identical to that of a circuit with series
capacitors without trapped charge.

We tested the above result experimentally by placing our
series capacitor combination in the circuit shown in Fig. 7,
with R¼ 1.571 kX. We replaced the battery and switch with
a function generator set to create a 5 V peak-to-peak square
wave with a dc offset of þ5 V so that it provided a pulsed dc
waveform of sufficient period to measure the RC time con-
stant of the circuit with an oscilloscope. The output imped-
ance of our function generator (50 X) was sufficiently
smaller than R that we could safely disregard its influence in
our time constant measurement. A buffer amplifier was not
required for our oscilloscope in parallel with V12 because the
1-MX input impedance of the oscilloscope would not pro-
duce any noticeable discharging of the capacitors on the
short time scale of our measurement.

For our first RC time constant measurement, we used the
initial conditions described in Sec. III C with Vinit

1 ¼ þ10 V
and Vinit

2 ¼ 0. We measured a time constant s of 1.1 ms for
this series capacitor combination with trapped charge, which
corresponds to a total capacitance of C¼ s/R¼ 0.70 lF.
Given the inherent imprecision of making voltage measure-
ments from an oscilloscope display, this value is in acceptable
agreement with the ordinary series capacitance of 0.6801 lF
from Eq. (18). The capacitors were then discharged and we

measured an identical time constant of 1.1 ms for the initially
uncharged series capacitors, with no perceptible difference in
the oscilloscope trace. We then measured the time constant
for the initial conditions described in Sec. III B with
Vinit

1 ¼ Vinit
2 ¼ þ10 V. As with our previous measurements,

the time constant for this initial condition was also measured
to be 1.1 ms.

VI. CONCLUSIONS

Introductory physics textbooks demonstrate that charges
on series capacitors must be equal based on an assumption
that the capacitors are initially uncharged before placing
them in a circuit with a battery. Noting that the net charge on
the electrically isolated inner plates of a series capacitor
combination is constant, we applied Kirchhoff’s loop rule to
derive equations for the final voltages of two series capaci-
tors that each possessed initial charge. We then measured
voltages on one of the capacitors for three special initial
charge conditions and demonstrated good agreement with
our theoretical predications.

We also showed that when the overall voltage of a series
combination of capacitors with initial charge is changed, the
amount of charge that flows to (or from) the capacitors does
not depend on their initial charges. Therefore, the equivalent
capacitance (as defined by Ceq¼DQ/DV) for a series combi-
nation of capacitors with initial charge is the same as it
would be with no initial charge. This result was then tested
experimentally and shown to agree with this prediction.
Lastly, we showed that the RC time constant of a circuit with
two series capacitors does not depend on the initial charges
on the capacitors.

We have presented an analysis for the simplest case of
only two series capacitors. Instructors may apply our techni-
ques to formulate more advanced problems that utilize more
complex capacitor networks.

ACKNOWLEDGMENTS

The authors are grateful to William “Buzz” Delinger for
his thoughtful and careful reading of our final manuscript.

1This question was adapted from the question 13-14 sequence on page 801,

R. Serway and J. Jewett, Physics for Scientists and Engineers. 9th ed.

(Brooks/Cole, Pacific Grove, Ca., 2013), Chap. 26.
2See Ref. 1, p. 784.
3D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 10th ed.

(Wiley, New York, 2014), pp. 723–726.
4H. Young and R. Freedman, Sears and Zemansky’s University Physics
With Modern Physics Technology Update, 13th ed. (Pearson, San

Francisco, 2014), pp. 793–794.
5R. Knight, Physics for Scientists and Engineers: A Strategic Approach,

3rd ed. (Addison-Wesley, Boston, 2012), pp. 851–853.
6R. Wolfson, Essential University Physics, 2nd ed. (Addison-Wesley,

Boston, 2012), pp. 394–395.
7D. Giancoli, Physics for Scientists & Engineers With Modern Physics, 4th

ed. (Pearson, San Francisco, 2014), pp. 633–635.
8P. Fishbane, Physics for Scientists and Engineers, 3rd ed. (Prentice-Hall,

Upper Saddle River, NJ, 2005), pp. 721–723.
9P. Tipler and G. Mosca, Physics for Scientists and Engineers, 6th ed.

(W.H. Freeman, New York, 2007), pp. 812–817.
10J. Touger, Introductory Physics: Building Understanding (Wiley,

Hoboken, 2006), pp. 631–633.
11R. Weidner and M. Browne, Physics (Allyn and Bacon, Boston, 1985), pp.

565–566.

Fig. 7. Series capacitors with initial charges are connected in an RC circuit

with a battery. When the switch is closed, the combined capacitor voltage

V12 goes from Vinit
12 to V with the same time constant observed for capacitors

without initial charge.

626 Am. J. Phys., Vol. 83, No. 7, July 2015 M. C. James and J. R. Solheim 626

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.173.72.87 On: Wed, 24 Jun 2015 18:23:36



12D. Williams and J. Spangler, Physics for Science and Engineering (Van

Nostrand, New York, 1981), pp. 601–603.
13F. Bueche, Physics for Scientists and Engineers, 3rd ed. (McGraw-Hill,

New York, 1980), pp. 429–430.
14T. Floyd, Principles of Electric Circuits, 8th ed. (Merrill, Columbus,

2007), p. 480.
15J. Brophy, Basic Electronics for Scientists, 2nd ed. (McGraw-Hill, New

York, 1972), pp. 54–55.
16R. Simpson, Introductory Electronics for Scientists and Engineers, 2nd ed.

(Addison-Wesley, Boston, 1987), p. 64.
17G. Carlson and B. Illman, “Series capacitors and the inverse sum rule,”

Am. J. Phys. 70, 1122–1128 (2002).

18B. Illman and G. Carlson, “Equal plate charges on series capacitors?,”

Phys. Teach. 32, 77–80 (1994).
19K. Mita and M. Boufaida, “Ideal capacitor circuits and energy con-

servation,” Am. J. Phys. 67, 737–741 (1999).
20C. Efthimiou and R. Llewellyn, “Adding resistances and capacitances in

introductory electricity,” Phys. Teach. 43, 366–370 (2005).
21H. Kruglak and J. Dickinson, “Voltage follower for RC circuit

experiment,” Am. J. Phys. 41, 745 (1973).
22R. Brown, “Series and parallel resistors and capacitors,” Phys. Teach. 41,

483–485 (2003).
23See Ref. 1, p. 778.
24See, for example, Ref. 4, pp. 864–868.

627 Am. J. Phys., Vol. 83, No. 7, July 2015 M. C. James and J. R. Solheim 627

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.173.72.87 On: Wed, 24 Jun 2015 18:23:36

http://dx.doi.org/10.1119/1.1506170
http://dx.doi.org/10.1119/1.2343910
http://dx.doi.org/10.1119/1.19363
http://dx.doi.org/10.1119/1.2033524
http://dx.doi.org/10.1119/1.1987362
http://dx.doi.org/10.1119/1.1625209

