
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Table	of	Contents
Introduction

Cat,	Less,	Tail	and	Head

GNU	grep

GNU	sed

GNU	awk

Sorting	stuff

Restructure	text

File	attributes

Miscellaneous

1

Use	 	if	you	need	help,	have	suggestions,	etc

Command	Line	Text	Processing
Work	still	in	progress,	stay	tuned	:)

Chapters
Cat,	Less,	Tail	and	Head

cat,	less,	tail,	head,	Text	Editors
GNU	grep
GNU	sed
GNU	awk
Sorting	stuff

sort,	uniq,	comm,	shuf
Restructure	text

paste,	column,	pr,	fold
File	attributes

wc,	du,	df,	touch,	file
Miscellaneous

cut,	tr,	basename,	dirname,	xargs,	seq

Webinar	recordings
Am	new	to	video	recording	and	there	are	few	bumps.	But	I	hope	it	would	be	helpful

Using	the	sort	command
Using	uniq	and	comm

exercises
Check	out	exercises	on	github	to	test	yourself,	right	from	the	command	line	itself

As	of	now,	only		grep		exercises	has	been	added.	Stay	tuned	for	more

Introduction

2

https://gitter.im/learnbyexample/scripting_course
https://www.youtube.com/watch?v=qLfAwwb5vGs
https://www.youtube.com/watch?v=uAb2kxA2TyQ
https://github.com/learnbyexample/Command-line-text-processing/tree/master/exercises

Acknowledgements
unix.stackexchange	and	stackoverflow	-	for	getting	answers	to	pertinent	questions	as	well	as
sharpening	skills	by	understanding	and	answering	questions
Forums	like	Linux	users,	/r/commandline/,	/r/linux/,	devup	and	others	for	valuable	feedback
(especially	spotting	mistakes)	and	encouragement

License
This	work	is	licensed	under	a	Creative	Commons	Attribution-NonCommercial-ShareAlike	4.0
International	License

Introduction

3

https://unix.stackexchange.com/
https://stackoverflow.com/
https://www.linkedin.com/groups/65688
https://www.reddit.com/r/commandline/
https://www.reddit.com/r/linux/
http://devup.in/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Cat,	Less,	Tail	and	Head
Table	of	Contents

cat
Concatenate	files
Accepting	input	from	stdin
Squeeze	consecutive	empty	lines
Prefix	line	numbers
Viewing	special	characters
Writing	text	to	file
tac
Useless	use	of	cat
Further	Reading	for	cat

less
Navigation	commands
Further	Reading	for	less

tail
linewise	tail
characterwise	tail
multiple	file	input	for	tail
Further	Reading	for	tail

head
linewise	head
characterwise	head
multiple	file	input	for	head
combining	head	and	tail
Further	Reading	for	head

Text	Editors

cat

Cat,	Less,	Tail	and	Head

4

$	man	cat

CAT(1)																											User	Commands																										CAT(1)

NAME

							cat	-	concatenate	files	and	print	on	the	standard	output

SYNOPSIS

							cat	[OPTION]...	[FILE]...

DESCRIPTION

							Concatenate	FILE(s)	to	standard	output.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

For	below	examples,		marks_201*		files	contain	3	fields	delimited	by	TAB
To	avoid	formatting	issues,	TAB	has	been	converted	to	spaces	using		col	-x		while	pasting	the
output	here

Concatenate	files

One	or	more	files	can	be	given	as	input	and	hence	a	lot	of	times,		cat		is	used	to	quickly	see
contents	of	small	single	file	on	terminal
To	save	the	output	of	concatenation,	just	redirect	stdout

$	ls

marks_2015.txt		marks_2016.txt		marks_2017.txt

$	cat	marks_201*

Name				Maths			Science

foo					67						78

bar					87						85

Name				Maths			Science

foo					70						75

bar					85						88

Name				Maths			Science

foo					68						76

bar					90						90

$	#	save	stdout	to	a	file

$	cat	marks_201*	>	all_marks.txt

Cat,	Less,	Tail	and	Head

5

Accepting	input	from	stdin

$	#	combining	input	from	stdin	and	other	files

$	printf	'Name\tMaths\tScience	\nbaz\t56\t63\nbak\t71\t65\n'	|	cat	-	marks_2015.txt

Name				Maths			Science

baz					56						63

bak					71						65

Name				Maths			Science

foo					67						78

bar					87						85

$	#	-	can	be	placed	in	whatever	order	is	required

$	printf	'Name\tMaths\tScience	\nbaz\t56\t63\nbak\t71\t65\n'	|	cat	marks_2015.txt	-

Name				Maths			Science

foo					67						78

bar					87						85

Name				Maths			Science

baz					56						63

bak					71						65

Squeeze	consecutive	empty	lines

$	printf	'hello\n\n\nworld\n\nhave	a	nice	day\n'

hello

world

have	a	nice	day

$	printf	'hello\n\n\nworld\n\nhave	a	nice	day\n'	|	cat	-s

hello

world

have	a	nice	day

Prefix	line	numbers

Cat,	Less,	Tail	and	Head

6

$	#	number	all	lines

$	cat	-n	marks_201*

					1		Name				Maths			Science

					2		foo					67						78

					3		bar					87						85

					4		Name				Maths			Science

					5		foo					70						75

					6		bar					85						88

					7		Name				Maths			Science

					8		foo					68						76

					9		bar					90						90

$	#	number	only	non-empty	lines

$	printf	'hello\n\n\nworld\n\nhave	a	nice	day\n'	|	cat	-sb

					1				hello

					2				world

					3				have	a	nice	day

For	more	numbering	options,	check	out	the	command		nl	

$	whatis	nl

nl	(1)															-	number	lines	of	files

Viewing	special	characters

End	of	line	identified	by		$	
Useful	for	example	to	see	trailing	spaces

$	cat	-E	marks_2015.txt	

Name				Maths			Science	$

foo					67						78$

bar					87						85$

TAB	identified	by	 	̂ I	

$	cat	-T	marks_2015.txt	

Name^IMaths^IScience	

foo^I67^I78

bar^I87^I85

Cat,	Less,	Tail	and	Head

7

Non-printing	characters
See	Show	Non-Printing	Characters	for	more	detailed	info

$	#	NUL	character

$	printf	'foo\0bar\0baz\n'	|	cat	-v

foo^@bar^@baz

$	#	to	check	for	dos-style	line	endings

$	printf	'Hello	World!\r\n'	|	cat	-v

Hello	World!^M

$	printf	'Hello	World!\r\n'	|	dos2unix	|	cat	-v

Hello	World!

the		-A		option	is	equivalent	to		-vET	
the		-e		option	is	equivalent	to		-vE	
If		dos2unix		and		unix2dos		are	not	available,	see	How	to	convert	DOS/Windows	newline	(CRLF)
to	Unix	newline	(\n)

Writing	text	to	file

$	cat	>	sample.txt

This	is	an	example	of	adding	text	to	a	new	file	using	cat	command.

Press	Ctrl+d	on	a	newline	to	save	and	quit.

$	cat	sample.txt	

This	is	an	example	of	adding	text	to	a	new	file	using	cat	command.

Press	Ctrl+d	on	a	newline	to	save	and	quit.

See	also	how	to	use	heredoc
How	can	I	write	a	here	doc	to	a	file

See	also	difference	between	Ctrl+c	and	Ctrl+d	to	signal	end	of	stdin	input	in	bash

tac

Cat,	Less,	Tail	and	Head

8

http://docstore.mik.ua/orelly/unix/upt/ch25_07.htm
https://stackoverflow.com/questions/2613800/how-to-convert-dos-windows-newline-crlf-to-unix-newline-n-in-a-bash-script
http://mywiki.wooledge.org/HereDocument
https://stackoverflow.com/questions/2953081/how-can-i-write-a-here-doc-to-a-file-in-bash-script
https://unix.stackexchange.com/questions/16333/how-to-signal-the-end-of-stdin-input-in-bash

$	whatis	tac

tac	(1)														-	concatenate	and	print	files	in	reverse

$	seq	3	|	tac

3

2

1

$	tac	marks_2015.txt	

bar				87				85

foo				67				78

Name				Maths				Science

Useful	in	cases	where	logic	is	easier	to	write	when	working	on	reversed	file
Consider	this	made	up	log	file,	many	Warning	lines	but	need	to	extract	only	from	last	such	Warning
upto	Error	line

$	cat	report.log	

blah	blah

Warning:	something	went	wrong

more	blah

whatever

Warning:	something	else	went	wrong

some	text

some	more	text

Error:	something	seriously	went	wrong

blah	blah	blah

$	tac	report.log	|	sed	-n	'/Error:/,/Warning:/p'	|	tac

Warning:	something	else	went	wrong

some	text

some	more	text

Error:	something	seriously	went	wrong

Similarly,	if	characters	in	lines	have	to	be	reversed,	use	the		rev		command

$	whatis	rev

rev	(1)														-	reverse	lines	characterwise

Useless	use	of	cat

	cat		is	used	so	frequently	to	view	contents	of	a	file	that	somehow	users	think	other	commands

Cat,	Less,	Tail	and	Head

9

cannot	handle	file	input
UUOC#Useless_use_of_cat)
Useless	Use	of	Cat	Award

$	cat	report.log	|	grep	-E	'Warning|Error'

Warning:	something	went	wrong

Warning:	something	else	went	wrong

Error:	something	seriously	went	wrong

$	grep	-E	'Warning|Error'	report.log

Warning:	something	went	wrong

Warning:	something	else	went	wrong

Error:	something	seriously	went	wrong

Use	input	redirection	if	a	command	doesn't	accept	file	input

$	cat	marks_2015.txt	|	tr	'A-Z'	'a-z'

name				maths			science

foo					67						78

bar					87						85

$	tr	'A-Z'	'a-z'	<	marks_2015.txt

name				maths			science

foo					67						78

bar					87						85

However,		cat		should	definitely	be	used	where	concatenation	is	needed

$	grep	-c	'foo'	marks_201*

marks_2015.txt:1

marks_2016.txt:1

marks_2017.txt:1

$	#	concatenation	allows	to	get	overall	count	in	one-shot	in	this	case

$	cat	marks_201*	|	grep	-c	'foo'

3

Further	Reading	for	cat

cat	Q&A	on	unix	stackexchange
cat	Q&A	on	stackoverflow

Cat,	Less,	Tail	and	Head

10

https://en.wikipedia.org/wiki/Cat_(Unix
http://porkmail.org/era/unix/award.html
http://wiki.bash-hackers.org/howto/redirection_tutorial
https://unix.stackexchange.com/questions/tagged/cat?sort=votes&pageSize=15
https://stackoverflow.com/questions/tagged/cat?sort=votes&pageSize=15

less

$	whatis	less

less	(1)													-	opposite	of	more

$	#	By	default,	pager	is	used	to	display	the	man	pages

$	#	and	usually,	pager	is	linked	to	less	command

$	type	pager	less

pager	is	/usr/bin/pager

less	is	/usr/bin/less

$	realpath	/usr/bin/pager	

/bin/less

$	realpath	/usr/bin/less

/bin/less

$	diff	-s	/usr/bin/pager	/usr/bin/less

Files	/usr/bin/pager	and	/usr/bin/less	are	identical

	cat		command	is	NOT	suitable	for	viewing	contents	of	large	files	on	the	Terminal
	less		displays	contents	of	a	file,	automatically	fits	to	size	of	Terminal,	allows	scrolling	in	either
direction	and	other	options	for	effective	viewing
Usually,		man		command	uses		less		command	to	display	the	help	page
The	navigation	commands	are	similar	to		vi		editor

Navigation	commands

Commonly	used	commands	are	given	below,	press		h		for	summary	of	options

	g		go	to	start	of	file
	G		go	to	end	of	file
	q		quit
	/pattern		search	for	the	given	pattern	in	forward	direction
	?pattern		search	for	the	given	pattern	in	backward	direction
	n		go	to	next	pattern
	N		go	to	previous	pattern

Further	Reading	for	less

See		man	less		for	detailed	info	on	commands	and	options.	For	example:
	-s		option	to	squeeze	consecutive	blank	lines
	-N		option	to	prefix	line	number

Cat,	Less,	Tail	and	Head

11

	less		command	is	an	improved	version	of		more		command
differences	between	most,	more	and	less
less	Q&A	on	unix	stackexchange

tail

$	man	tail

TAIL(1)																										User	Commands																									TAIL(1)

NAME

							tail	-	output	the	last	part	of	files

SYNOPSIS

							tail	[OPTION]...	[FILE]...

DESCRIPTION

							Print		the		last		10		lines	of	each	FILE	to	standard	output.		With	more

							than	one	FILE,	precede	each	with	a	header	giving	the	file	name.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

linewise	tail

Consider	this	sample	file,	with	line	numbers	prefixed

Cat,	Less,	Tail	and	Head

12

https://unix.stackexchange.com/questions/604/isnt-less-just-more
https://unix.stackexchange.com/questions/81129/what-are-the-differences-between-most-more-and-less
https://unix.stackexchange.com/questions/tagged/less?sort=votes&pageSize=15

$	cat	sample.txt	

	1)	Hello	World!

	2)	

	3)	Good	day

	4)	How	do	you	do?

	5)	

	6)	Just	do	it

	7)	Believe	it!

	8)	

	9)	Today	is	sunny

10)	Not	a	bit	funny

11)	No	doubt	you	like	it	too

12)	

13)	Much	ado	about	nothing

14)	He	he	he

15)	Adios	amigo

default	behavior	-	display	last	10	lines

$	tail	sample.txt	

	6)	Just	do	it

	7)	Believe	it!

	8)	

	9)	Today	is	sunny

10)	Not	a	bit	funny

11)	No	doubt	you	like	it	too

12)	

13)	Much	ado	about	nothing

14)	He	he	he

15)	Adios	amigo

Use		-n		option	to	control	number	of	lines	to	filter

$	tail	-n3	sample.txt	

13)	Much	ado	about	nothing

14)	He	he	he

15)	Adios	amigo

$	#	some	versions	of	tail	allow	to	skip	explicit	n	character

$	tail	-5	sample.txt	

11)	No	doubt	you	like	it	too

12)	

13)	Much	ado	about	nothing

14)	He	he	he

15)	Adios	amigo

Cat,	Less,	Tail	and	Head

13

when	number	is	prefixed	with		+		sign,	all	lines	are	fetched	from	that	particular	line	number	to	end	of
file

$	tail	-n	+10	sample.txt	

10)	Not	a	bit	funny

11)	No	doubt	you	like	it	too

12)	

13)	Much	ado	about	nothing

14)	He	he	he

15)	Adios	amigo

$	seq	13	17	|	tail	-n	+3

15

16

17

characterwise	tail

Note	that	this	works	byte	wise	and	not	suitable	for	multi-byte	character	encodings

$	#	last	three	characters	including	the	newline	character

$	echo	'Hi	there!'	|	tail	-c3

e!

$	#	excluding	the	first	character

$	echo	'Hi	there!'	|	tail	-c	+2

i	there!

multiple	file	input	for	tail

Cat,	Less,	Tail	and	Head

14

$	tail	-n2	report.log	sample.txt	

==>	report.log	<==

Error:	something	seriously	went	wrong

blah	blah	blah

==>	sample.txt	<==

14)	He	he	he

15)	Adios	amigo

$	#	-q	option	to	avoid	filename	in	output

$	tail	-q	-n2	report.log	sample.txt	

Error:	something	seriously	went	wrong

blah	blah	blah

14)	He	he	he

15)	Adios	amigo

Further	Reading	for	tail

	tail	-f		and	related	options	are	beyond	the	scope	of	this	tutorial.	Below	links	might	be	useful
look	out	for	buffering
Piping	tail	-f	output	though	grep	twice
tail	and	less

tail	Q&A	on	unix	stackexchange
tail	Q&A	on	stackoverflow

head

Cat,	Less,	Tail	and	Head

15

http://mywiki.wooledge.org/BashFAQ/009
https://stackoverflow.com/questions/13858912/piping-tail-output-though-grep-twice
https://unix.stackexchange.com/questions/196168/does-less-have-a-feature-like-tail-follow-name-f
https://unix.stackexchange.com/questions/tagged/tail?sort=votes&pageSize=15
https://stackoverflow.com/questions/tagged/tail?sort=votes&pageSize=15

$	man	head

HEAD(1)																										User	Commands																									HEAD(1)

NAME

							head	-	output	the	first	part	of	files

SYNOPSIS

							head	[OPTION]...	[FILE]...

DESCRIPTION

							Print		the		first		10	lines	of	each	FILE	to	standard	output.		With	more

							than	one	FILE,	precede	each	with	a	header	giving	the	file	name.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

linewise	head

default	behavior	-	display	starting	10	lines

$	head	sample.txt	

	1)	Hello	World!

	2)	

	3)	Good	day

	4)	How	do	you	do?

	5)	

	6)	Just	do	it

	7)	Believe	it!

	8)	

	9)	Today	is	sunny

10)	Not	a	bit	funny

Use		-n		option	to	control	number	of	lines	to	filter

Cat,	Less,	Tail	and	Head

16

$	head	-n3	sample.txt	

	1)	Hello	World!

	2)	

	3)	Good	day

$	#	some	versions	of	head	allow	to	skip	explicit	n	character

$	head	-4	sample.txt	

	1)	Hello	World!

	2)	

	3)	Good	day

	4)	How	do	you	do?

when	number	is	prefixed	with		-		sign,	all	lines	are	fetched	except	those	many	lines	to	end	of	file

$	#	except	last	9	lines	of	file

$	head	-n	-9	sample.txt	

	1)	Hello	World!

	2)	

	3)	Good	day

	4)	How	do	you	do?

	5)	

	6)	Just	do	it

$	#	except	last	2	lines

$	seq	13	17	|	head	-n	-2

13

14

15

characterwise	head

Note	that	this	works	byte	wise	and	not	suitable	for	multi-byte	character	encodings

$	#	if	output	of	command	doesn't	end	with	newline,	prompt	will	be	on	same	line

$	#	to	highlight	working	of	command,	the	prompt	for	such	cases	is	not	shown	here

$	#	first	two	characters

$	echo	'Hi	there!'	|	head	-c2

Hi

$	#	excluding	last	four	characters

$	echo	'Hi	there!'	|	head	-c	-4

Hi	the

Cat,	Less,	Tail	and	Head

17

multiple	file	input	for	head

$	head	-n3	report.log	sample.txt	

==>	report.log	<==

blah	blah

Warning:	something	went	wrong

more	blah

==>	sample.txt	<==

	1)	Hello	World!

	2)	

	3)	Good	day

$	#	-q	option	to	avoid	filename	in	output

$	head	-q	-n3	report.log	sample.txt	

blah	blah

Warning:	something	went	wrong

more	blah

	1)	Hello	World!

	2)	

	3)	Good	day

combining	head	and	tail

Despite	involving	two	commands,	often	this	combination	is	faster	than	equivalent	sed/awk	versions

$	head	-n11	sample.txt	|	tail	-n3

	9)	Today	is	sunny

10)	Not	a	bit	funny

11)	No	doubt	you	like	it	too

$	tail	sample.txt	|	head	-n2

	6)	Just	do	it

	7)	Believe	it!

Further	Reading	for	head

head	Q&A	on	unix	stackexchange

Cat,	Less,	Tail	and	Head

18

https://unix.stackexchange.com/questions/tagged/head?sort=votes&pageSize=15

Text	Editors
For	editing	text	files,	the	following	applications	can	be	used.	Of	these,		gedit	,		nano	,		vi		and/or
	vim		are	available	in	most	distros	by	default

Easy	to	use

gedit
geany
nano

Powerful	text	editors

vim
vim	learning	resources	and	vim	reference	for	further	info

emacs
atom
sublime

Check	out	this	analysis	for	some	performance/feature	comparisons	of	various	text	editors

Cat,	Less,	Tail	and	Head

19

https://wiki.gnome.org/Apps/Gedit
http://www.geany.org/
http://nano-editor.org/
https://github.com/vim/vim
https://github.com/learnbyexample/scripting_course/blob/master/Vim_curated_resources.md
https://github.com/learnbyexample/vim_reference
https://www.gnu.org/software/emacs/
https://atom.io/
https://www.sublimetext.com/
https://github.com/jhallen/joes-sandbox/tree/master/editor-perf

GNU	grep
Table	of	Contents

Simple	string	search
Case	insensitive	search
Invert	matching	lines
Line	number,	count	and	limiting	output	lines
Multiple	search	strings
File	names	in	output
Match	whole	word	or	line
Colored	output
Get	only	matching	portion
Context	matching
Recursive	search

Basic	recursive	search
Exclude/Include	specific	files/directories
Recursive	search	with	bash	options
Recursive	search	using	find	command
Passing	file	names	to	other	commands

Search	strings	from	file
Options	for	scripting	purposes
Regular	Expressions	-	BRE/ERE

Line	Anchors
Word	Anchors
Alternation
The	dot	meta	character
Quantifiers
Character	classes
Grouping
Back	reference

Multiline	matching
Perl	Compatible	Regular	Expressions

Backslash	sequences
Non-greedy	matching
Lookarounds
Ignoring	specific	matches
Re-using	regular	expression	pattern

Gotchas	and	Tips
Regular	Expressions	Reference	(ERE)

Anchors

GNU	grep

20

Character	Quantifiers
Character	classes	and	backslash	sequences
Pattern	groups
Basic	vs	Extended	Regular	Expressions

Further	Reading

$	grep	-V	|	head	-1

grep	(GNU	grep)	2.25

$	man	grep

GREP(1)																					General	Commands	Manual																				GREP(1)

NAME

							grep,	egrep,	fgrep,	rgrep	-	print	lines	matching	a	pattern

SYNOPSIS

							grep	[OPTIONS]	PATTERN	[FILE...]

							grep	[OPTIONS]	[-e	PATTERN]...		[-f	FILE]...		[FILE...]

DESCRIPTION

							grep	searches	the	named	input	FILEs	for	lines	containing	a	match	to	the

							given	PATTERN.		If	no	files	are	specified,	or	if	the	file	“-”	is	given,

							grep		searches		standard		input.			By	default,	grep	prints	the	matching

							lines.

							In	addition,	the	variant	programs	egrep,	fgrep	and	rgrep	are		the		same

							as		grep	-E,		grep	-F,		and		grep	-r,	respectively.		These	variants	are

							deprecated,	but	are	provided	for	backward	compatibility.

...

Note	For	more	detailed	documentation	and	examples,	use		info	grep	

Simple	string	search
First	specify	the	search	pattern	(usually	enclosed	in	single	quotes)	and	then	the	file	input
More	than	one	file	can	be	specified	or	input	given	from	stdin

GNU	grep

21

$	cat	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

$	grep	'are'	poem.txt	

Roses	are	red,

Violets	are	blue,

And	so	are	you.

$	grep	'so	are'	poem.txt	

And	so	are	you.

If	search	string	contains	any	regular	expression	meta	characters	like	 	̂ $\.*[]		(covered	later),	use
the		-F		option	or		fgrep		if	available

$	echo	'int	a[5]'	|	grep	'a[5]'

$	echo	'int	a[5]'	|	grep	-F	'a[5]'

int	a[5]

$	echo	'int	a[5]'	|	fgrep	'a[5]'

int	a[5]

See	Gotchas	and	Tips	section	if	you	get	strange	issues

Case	insensitive	search

$	grep	-i	'rose'	poem.txt	

Roses	are	red,

$	grep	-i	'and'	poem.txt	

And	so	are	you.

Invert	matching	lines
Use	the		-v		option	to	get	lines	other	than	those	matching	the	search	string
Tip:	Look	out	for	other	opposite	pairs	like		-l	-L	,		-h	-H	,	opposites	in	regular	expression,	etc

GNU	grep

22

$	grep	-v	'are'	poem.txt	

Sugar	is	sweet,

$	#	example	for	input	from	stdin

$	seq	5	|	grep	-v	'3'

1

2

4

5

Line	number,	count	and	limiting	output	lines
Show	line	number	of	matching	lines

$	grep	-n	'sweet'	poem.txt	

3:Sugar	is	sweet,

Count	number	of	matching	lines

$	grep	-c	'are'	poem.txt	

3

Limit	number	of	matching	lines

$	grep	-m2	'are'	poem.txt	

Roses	are	red,

Violets	are	blue,

Multiple	search	strings
Match	any

$	#	search	blue	or	you

$	grep	-e	'blue'	-e	'you'	poem.txt	

Violets	are	blue,

And	so	are	you.

If	there	are	lot	of	search	strings,	use	a	file	input

GNU	grep

23

$	printf	'rose\nsugar\n'	>	search_strings.txt

$	cat	search_strings.txt	

rose

sugar

$	#	-f	option	accepts	file	input	with	search	terms	in	separate	lines

$	grep	-if	search_strings.txt	poem.txt	

Roses	are	red,

Sugar	is	sweet,

Match	all

$	#	match	line	containing	both	are	&	And

$	grep	'are'	poem.txt	|	grep	'And'

And	so	are	you.

File	names	in	output
	-l		to	get	files	matching	the	search
	-L		to	get	files	not	matching	the	search
	grep		skips	the	rest	of	file	once	a	match	is	found

$	grep	-l	'Rose'	poem.txt	

poem.txt

$	grep	-L	'are'	poem.txt	search_strings.txt	

search_strings.txt

Prefix	file	name	to	search	results
	-h		is	default	for	single	file	input,	no	file	name	prefix	in	output
	-H		is	default	for	multiple	file	input,	file	name	prefix	in	output

GNU	grep

24

$	grep	-h	'Rose'	poem.txt	

Roses	are	red,

$	grep	-H	'Rose'	poem.txt	

poem.txt:Roses	are	red,

$	#	-H	is	default	for	multiple	file	input

$	grep	-i	'sugar'	poem.txt	search_strings.txt	

poem.txt:Sugar	is	sweet,

search_strings.txt:sugar

$	grep	-ih	'sugar'	poem.txt	search_strings.txt	

Sugar	is	sweet,

sugar

Match	whole	word	or	line
Word	search	using		-w		option

word	constitutes	of	alphabets,	numbers	and	underscore	character
For	example,	this	helps	to	distinguish		par		from		spar	,		part	,	etc

$	printf	'par	value\nheir	apparent\n'	|	grep	'par'

par	value

heir	apparent

$	printf	'par	value\nheir	apparent\n'	|	grep	-w	'par'

par	value

$	printf	'scare\ncart\ncar\nmacaroni\n'	|	grep	-w	'car'

car

Another	useful	option	is		-x		to	match	only	complete	line,	not	anywhere	in	the	line

$	printf	'see	my	book	list\nmy	book\n'	|	grep	'my	book'

see	my	book	list

my	book

$	printf	'see	my	book	list\nmy	book\n'	|	grep	-x	'my	book'

my	book

$	printf	'scare\ncart\ncar\nmacaroni\n'	|	grep	-x	'car'

car

GNU	grep

25

Colored	output
Highlight	search	strings,	line	numbers,	file	name,	etc	in	different	colors

Depends	on	color	support	in	terminal	being	used
options	to		--color		are

	auto		when	output	is	redirected	(another	command,	file,	etc)	the	color	information	won't	be
passed
	always		when	output	is	redirected	(another	command,	file,	etc)	the	color	information	will	also
be	passed
	never		explicitly	specify	no	highlighting

$	grep	--color=auto	'blue'	poem.txt	

Violets	are	blue,

Sample	screenshot

Example	to	show	difference	between		auto		and		always	

$	grep	--color=auto	'blue'	poem.txt	>	saved_output.txt

$	cat	-v	saved_output.txt

Violets	are	blue,

$	grep	--color=always	'blue'	poem.txt	>	saved_output.txt

$	cat	-v	saved_output.txt

Violets	are	^[[01;31m^[[Kblue^[[m^[[K,

Get	only	matching	portion
The		-o		option	to	get	only	matched	portion	is	more	useful	with	regular	expressions
Comes	in	handy	if	overall	number	of	matches	is	required,	instead	of	only	line	wise

GNU	grep

26

$	grep	-o	'are'	poem.txt	

are

are

are

$	#	-c	only	gives	count	of	matching	lines

$	grep	-c	'e'	poem.txt	

4

$	grep	-co	'e'	poem.txt

4

$	#	so	need	another	command	to	get	count	of	all	matches

$	grep	-o	'e'	poem.txt	|	wc	-l

9

Context	matching
The		-A	,		-B		and		-C		options	are	useful	to	get	lines	after/before/around	matching	line
respectively

$	grep	-A1	'blue'	poem.txt	

Violets	are	blue,

Sugar	is	sweet,

$	grep	-B1	'blue'	poem.txt	

Roses	are	red,

Violets	are	blue,

$	grep	-C1	'blue'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

If	there	are	multiple	non-adjacent	matching	segments,	by	default		grep		adds	a	line		--		to
separate	them

$	seq	29	|	grep	-A1	'3'

3

4

--

13

14

--

23

24

GNU	grep

27

Use		--no-group-separator		option	if	the	separator	line	is	a	hindrance,	for	example	feeding	the
output	of		grep		to	another	program

$	seq	29	|	grep	--no-group-separator	-A1	'3'

3

4

13

14

23

24

Use		--group-separator		to	specify	an	alternate	separator

$	seq	29	|	grep	--group-separator='*****'	-A1	'3'

3

4

13

14

23

24

Recursive	search
First	let's	create	some	more	test	files

$	mkdir	-p	test_files/hidden_files

$	printf	'Red\nGreen\nBlue\nBlack\nWhite\n'	>	test_files/colors.txt	

$	printf	'Violet\nIndigo\nBlue\nGreen\nYellow\nOrange\nRed\n'	>	test_files/vibgyor.t

xt

$	printf	'#!/usr/bin/python3\n\nprint("Hello	World")\n'	>	test_files/hello.py

$	printf	'I	like	yellow\nWhat	about	you\n'	>	test_files/hidden_files/.fav_color.info

From		man	grep	

GNU	grep

28

							-r,	--recursive

														Read	all	files		under		each		directory,		recursively,		following

														symbolic		links	only	if	they	are	on	the	command	line.		Note	that

														if		no		file		operand		is		given,		grep		searches		the			working

														directory.		This	is	equivalent	to	the	-d	recurse	option.

							-R,	--dereference-recursive

														Read		all		files		under	each	directory,	recursively.		Follow	all

														symbolic	links,	unlike	-r.

Basic	recursive	search

Note	that		-H		option	automatically	activates	for	multiple	file	input

$	#	by	default,	current	working	directory	is	searched

$	grep	-r	'red'

poem.txt:Roses	are	red,

$	grep	-ri	'red'

poem.txt:Roses	are	red,

test_files/colors.txt:Red

test_files/vibgyor.txt:Red

$	grep	-rin	'red'

poem.txt:1:Roses	are	red,

test_files/colors.txt:1:Red

test_files/vibgyor.txt:7:Red

$	grep	-ril	'red'

poem.txt

test_files/colors.txt

test_files/vibgyor.txt

Exclude/Include	specific	files/directories

By	default,	recursive	search	includes	hidden	files	as	well
They	can	be	excluded	by	file	name	or	directory	name

glob	patterns	can	be	used
for	example:		*.[ch]		to	specify	all	files	ending	with		.c		or		.h	

The	exclusion	options	can	be	used	multiple	times
for	example:		--exclude='*.txt'	--exclude='*.log'		or	specified	from	a	file	using		--

GNU	grep

29

https://github.com/learnbyexample/Linux_command_line/blob/master/Shell.md#wildcards

exclude-from=FILE	

To	search	only	files	with	specific	pattern	in	their	names,	use		--include=GLOB	
Note:	exclusion/inclusion	applies	only	to	basename	of	file/directory,	not	the	entire	path
To	follow	all	symbolic	links	(not	directly	specificied	as	arguments,	but	found	on	recursive	search),
use		-R		instead	of		-r	

$	grep	-ri	'you'

poem.txt:And	so	are	you.

test_files/hidden_files/.fav_color.info:What	about	you

$	#	exclude	file	names	starting	with	`.`	i.e	hidden	files

$	grep	-ri	--exclude='.*'	'you'

poem.txt:And	so	are	you.

$	#	include	only	file	names	ending	with	`.info`

$	grep	-ri	--include='*.info'	'you'

test_files/hidden_files/.fav_color.info:What	about	you

$	#	exclude	a	directory

$	grep	-ri	--exclude-dir='hidden_files'	'you'

poem.txt:And	so	are	you.

$	#	If	you	are	using	git(or	similar),	this	would	be	handy

$	#	grep	--exclude-dir='.git'	-rl	'search	pattern'

Recursive	search	with	bash	options

Using		bash		options		globstar		(for	recursion)
Other	options	like		extglob		and		dotglob		come	in	handy	too
See	glob	for	more	info	on	these	options

The		-d	skip		option	tells	grep	to	skip	directories	instead	of	trying	to	treat	them	as	text	file	to	be
searched

GNU	grep

30

https://github.com/learnbyexample/Linux_command_line/blob/master/Shell.md#wildcards

$	grep	-ril	'yellow'

test_files/hidden_files/.fav_color.info

test_files/vibgyor.txt

$	#	recursive	search

$	shopt	-s	globstar

$	grep	-d	skip	-il	'yellow'	**/*

test_files/vibgyor.txt

$	#	include	hidden	files	as	well

$	shopt	-s	dotglob	

$	grep	-d	skip	-il	'yellow'	**/*

test_files/hidden_files/.fav_color.info

test_files/vibgyor.txt

$	#	use	extended	glob	patterns

$	shopt	-s	extglob	

$	#	other	than	poem.txt

$	grep	-d	skip	-il	'red'	**/!(poem.txt)

test_files/colors.txt

test_files/vibgyor.txt

$	#	other	than	poem.txt	or	colors.txt

$	grep	-d	skip	-il	'red'	**/!(poem|colors).txt

test_files/vibgyor.txt

Recursive	search	using	find	command

	find		is	obviously	more	versatile
See	also	this	guide	for	more	examples/tutorials	on	using		find	

$	#	all	files,	including	hidden	ones

$	find	-type	f	-exec	grep	-il	'red'	{}	+

./poem.txt

./test_files/colors.txt

./test_files/vibgyor.txt

$	#	all	files	ending	with	.txt

$	find	-type	f	-name	'*.txt'	-exec	grep	-in	'you'	{}	+

./poem.txt:4:And	so	are	you.

$	#	all	files	not	ending	with	.txt

$	find	-type	f	-not	-name	'*.txt'	-exec	grep	-in	'you'	{}	+

./test_files/hidden_files/.fav_color.info:2:What	about	you

GNU	grep

31

Passing	file	names	to	other	commands

To	pass	files	filtered	to	another	command,	see	if	the	receiving	command	can	differentiate	file	names
by	ASCII	NUL	character
If	so,	use	the		-Z		so	that		grep		output	is	terminated	with	NUL	character	and	commands	like
	xargs		have	option		-0		to	understand	it
This	helps	when	file	names	can	have	characters	like	space,	newline,	etc
Typical	use	case:	Search	and	replace	something	in	all	files	matching	some	pattern,	for	ex:		grep	-
rlZ	'PAT1'	|	xargs	-0	sed	-i	's/PAT2/REPLACE/g'	

$	#	prompt	at	end	of	line	not	shown	for	simplicity

$	grep	-rlZ	'you'	|	cat	-A

poem.txt^@test_files/hidden_files/.fav_color.info^@

$	#	print	first	column	from	all	lines	of	all	files

$	grep	-rlZ	'you'	|	xargs	-0	awk	'{print	$1}'

Roses

Violets

Sugar

And

I

What

simple	example	to	show	filenames	with	space	causing	issue	if		-Z		is	not	used

$	#	'abc	xyz.txt'	is	a	file	with	space	in	its	name

$	grep	-ri	'are'

abc	xyz.txt:hi	how	are	you

poem.txt:Roses	are	red,

poem.txt:Violets	are	blue,

poem.txt:And	so	are	you.

saved_output.txt:Violets	are	blue,

$	#	problem	when	-Z	is	not	used

$	grep	-ril	'are'	|	xargs	grep	'you'

grep:	abc:	No	such	file	or	directory

grep:	xyz.txt:	No	such	file	or	directory

poem.txt:And	so	are	you.

$	#	no	issues	if	-Z	is	used

$	grep	-rilZ	'are'	|	xargs	-0	grep	'you'

abc	xyz.txt:hi	how	are	you

poem.txt:And	so	are	you.

GNU	grep

32

Example	for	matching	more	than	one	search	string	anywhere	in	file

$	#	files	containing	'you'

$	grep	-rl	'you'

poem.txt

test_files/hidden_files/.fav_color.info

$	#	files	containing	'you'	as	well	as	'are'

$	grep	-rlZ	'you'	|	xargs	-0	grep	-l	'are'

poem.txt

$	#	files	containing	'you'	but	NOT	'are'

$	grep	-rlZ	'you'	|	xargs	-0	grep	-L	'are'

test_files/hidden_files/.fav_color.info

another	example

$	grep	-rilZ	'red'	|	xargs	-0	grep	-il	'blue'

poem.txt

test_files/colors.txt

test_files/vibgyor.txt

$	#	note	the	use	of	`-Z`	for	middle	command

$	grep	-rilZ	'red'	|	xargs	-0	grep	-ilZ	'blue'	|	xargs	-0	grep	-il	'violet'

poem.txt

test_files/vibgyor.txt

Search	strings	from	file
using	file	input	to	specify	search	terms
	-F		option	will	force	matching	strings	literally(no	regular	expressions)
See	also	Fastest	way	to	find	lines	of	a	text	file	from	another	larger	text	file	-	read	all	answers

GNU	grep

33

https://stackoverflow.com/questions/42239179/fastest-way-to-find-lines-of-a-text-file-from-another-larger-text-file-in-bash

$	grep	-if	test_files/colors.txt	poem.txt	

Roses	are	red,

Violets	are	blue,

$	#	get	common	lines	between	two	files

$	grep	-Fxf	test_files/colors.txt	test_files/vibgyor.txt	

Blue

Green

Red

$	#	get	lines	present	in	vibgyor.txt	but	not	in	colors.txt

$	grep	-Fvxf	test_files/colors.txt	test_files/vibgyor.txt	

Violet

Indigo

Yellow

Orange

Options	for	scripting	purposes
In	scripts,	often	it	is	needed	just	to	know	if	a	pattern	matches	or	not
The		-q		option	doesn't	print	anything	on	stdout	and	exit	status	is		0		if	match	is	found

Check	out	this	practical	script	using	the		-q		option

$	grep	-qi	'rose'	poem.txt	

$	echo	$?

0

$	grep	-qi	'lily'	poem.txt	

$	echo	$?

1

$	if	grep	-qi	'rose'	poem.txt;	then	echo	'match	found!';	else	echo	'match	not	found'

;	fi

match	found!

$	if	grep	-qi	'lily'	poem.txt;	then	echo	'match	found!';	else	echo	'match	not	found'

;	fi

match	not	found

The		-s		option	will	suppress	error	messages	as	well

GNU	grep

34

https://github.com/learnbyexample/command_help/blob/master/ch

$	grep	'rose'	file_xyz.txt

grep:	file_xyz.txt:	No	such	file	or	directory

$	grep	-s	'rose'	file_xyz.txt

$	echo	$?

2

$	touch	foo.txt

$	chmod	-r	foo.txt

$	grep	'rose'	foo.txt

grep:	foo.txt:	Permission	denied

$	grep	-s	'rose'	foo.txt

$	echo	$?

2

Regular	Expressions	-	BRE/ERE
Before	diving	into	regular	expressions,	few	examples	to	show	default		grep		behavior	vs		-F	

$	#	oops,	why	did	it	not	match?

$	echo	'int	a[5]'	|	grep	'a[5]'

$	#	where	did	that	error	come	from??

$	echo	'int	a[5]'	|	grep	'a['

grep:	Invalid	regular	expression

$	#	what	is	going	on???

$	echo	'int	a[5]'	|	grep	'a[5'

grep:	Unmatched	[or	[^

$	#	phew,	-F	is	a	life	saver

$	echo	'int	a[5]'	|	grep	-F	'a[5]'

int	a[5]

$	#	[and]	are	meta	characters,	details	in	following	sections

$	echo	'int	a[5]'	|	grep	'a\[5]'

int	a[5]

By	default,		grep		treats	the	search	pattern	as	BRE	(Basic	Regular	Expression)
	-G		option	can	be	used	to	specify	explicitly	that	BRE	is	used

The		-E		option	allows	to	use	ERE	(Extended	Regular	Expression)	which	in	GNU	grep's	case	only
differs	in	how	meta	characters	are	used,	no	difference	in	regular	expression	functionalities
If		-F		option	is	used,	the	search	string	is	treated	literally

GNU	grep

35

If	available,	one	can	also	use		-P		which	indicates	PCRE	(Perl	Compatible	Regular	Expression)

Line	Anchors

Often,	search	must	match	from	beginning	of	line	or	towards	end	of	line
For	example,	an	integer	variable	declaration	in		C		will	start	with	optional	white-space,	the	keyword
	int	,	white-space	and	then	variable(s)

This	way	one	can	avoid	matching	declarations	inside	single	line	comments	as	well.
Similarly,	one	might	want	to	match	a	variable	at	end	of	statement
The	meta	characters	for	line	anchoring	are	 	̂ 		for	beginning	of	line	and		$		for	end	of	line

$	echo	'Fantasy	is	my	favorite	genre'	>	fav.txt

$	echo	'My	favorite	genre	is	Fantasy'	>>	fav.txt

$	cat	fav.txt	

Fantasy	is	my	favorite	genre

My	favorite	genre	is	Fantasy

$	#	start	of	line

$	grep	'^Fantasy'	fav.txt	

Fantasy	is	my	favorite	genre

$	#	end	of	line

$	grep	'Fantasy$'	fav.txt	

My	favorite	genre	is	Fantasy

$	#	without	anchors

$	grep	'Fantasy'	fav.txt	

Fantasy	is	my	favorite	genre

My	favorite	genre	is	Fantasy

As	the	meta	characters	have	special	meaning	(assuming		-F		option	is	not	used),	they	have	to	be
escaped	using		\		to	match	literally
The		\		itself	is	meta	character,	so	to	match	it	literally,	use		\\	
The	line	anchors	 	̂ 		and		$		have	special	meaning	only	when	they	are	present	at	start/end	of
regular	expression

GNU	grep

36

$	echo	'^foo	bar$'	|	grep	'^foo'

$	echo	'^foo	bar$'	|	grep	'\^foo'

^foo	bar$

$	echo	'^foo	bar$'	|	grep	'^^foo'

^foo	bar$

$	echo	'^foo	bar$'	|	grep	'bar$'

$	echo	'^foo	bar$'	|	grep	'bar\$'

^foo	bar$

$	echo	'^foo	bar$'	|	grep	'bar$$'

^foo	bar$

$	echo	'foo	$	bar'	|	grep	'	$	'

foo	$	bar

$	printf	'foo\cbar'	|	grep	-o	'\c'

c

$	printf	'foo\cbar'	|	grep	-o	'\\c'

\c

Word	Anchors

The		-w		option	works	well	to	match	whole	words.	But	what	about	matching	only	start	or	end	of
words?
Anchors		\<		and		\>		will	match	start/end	positions	of	a	word
	\b		can	also	be	used	instead	of		\<		and		\>		which	matches	either	edge	of	a	word

$	printf	'spar\npar\npart\napparent\n'

spar

par

part

apparent

$	#	words	ending	with	par

$	printf	'spar\npar\npart\napparent\n'	|	grep	'par\>'

spar

par

$	#	words	starting	with	par

$	printf	'spar\npar\npart\napparent\n'	|	grep	'\<par'

par

part

GNU	grep

37

	-w		option	is	same	as	specifying	both	start	and	end	word	boundaries

$	printf	'spar\npar\npart\napparent\n'	|	grep	'\<par\>'

par

$	printf	'spar\npar\npart\napparent\n'	|	grep	'\bpar\b'

par

$	printf	'spar\npar\npart\napparent\n'	|	grep	-w	'par'

par

	\b		has	an	opposite		\B		which	is	quite	useful	too

$	#	string	not	surrounded	by	word	boundary	either	side

$	printf	'spar\npar\npart\napparent\n'	|	grep	'\Bpar\B'

apparent

$	#	word	containing	par	but	not	as	start	of	word

$	printf	'spar\npar\npart\napparent\n'	|	grep	'\Bpar'

spar

apparent

$	#	word	containing	par	but	not	as	end	of	word

$	printf	'spar\npar\npart\napparent\n'	|	grep	'par\B'

part

apparent

Alternation

The		|		meta	character	is	similar	to	using	multiple		-e		option
Each	side	of		|		is	complete	regular	expression	with	their	own	start/end	anchors
How	each	part	of	alternation	is	handled	and	order	of	evaluation/output	is	beyond	the	scope	of	this
tutorial

See	this	for	more	info	on	this	topic.
	|		is	one	of	meta	characters	that	requires	different	syntax	between	BRE/ERE

GNU	grep

38

http://www.regular-expressions.info/alternation.html

$	grep	'blue\|you'	poem.txt	

Violets	are	blue,

And	so	are	you.

$	grep	-E	'blue|you'	poem.txt	

Violets	are	blue,

And	so	are	you.

$	#	extract	case-insensitive	e	or	f	from	anywhere	in	line

$	echo	'Fantasy	is	my	favorite	genre'	|	grep	-Eio	'e|f'

F

f

e

e

e

$	#	extract	case-insensitive	e	at	end	of	line,	f	at	start	of	line

$	echo	'Fantasy	is	my	favorite	genre'	|	grep	-Eio	'e$|^f'

F

e

A	cool	usecase	of	alternation	is	using	 	̂ 		or		$		anchors	to	highlight	searched	term	as	well	as
display	rest	of	unmatched	lines

the	line	anchors	will	match	every	input	line,	even	empty	lines	as	they	are	position	markers

$	grep	--color=auto	-E	'^|are'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

$	grep	--color=auto	-E	'is|$'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

Screenshot	for	above	example:

See	also

stackoverflow	-	Grep	output	with	multiple	Colors
unix.stackexchange	-	Multicolored	Grep

GNU	grep

39

https://stackoverflow.com/questions/17236005/grep-output-with-multiple-colors
https://unix.stackexchange.com/questions/104350/multicolored-grep

The	dot	meta	character

The		.		meta	character	matches	is	used	to	match	any	character

$	#	any	two	characters	surrounded	by	word	boundaries

$	echo	'I	have	12,	he	has	132!'	|	grep	-ow	'..'

12

he

$	#	match	three	characters	from	start	of	line

$	#	\t	(TAB)	is	single	character	here

$	printf	'a\tbcd\n'	|	grep	-o	'^...'

a							b

$	#	all	three	character	word	starting	with	c

$	echo	'car	bat	cod	cope	scat	dot	abacus'	|	grep	-ow	'c..'

car

cod

$	echo	'1	&	2'	|	grep	-o	'.'

1

&

2

Quantifiers

Defines	how	many	times	a	character	(simplified	for	now)	should	be	matched

	?		will	try	to	match	0	or	1	time
For	BRE,	use		\?	

GNU	grep

40

$	printf	'late\npale\nfactor\nrare\nact\n'

late

pale

factor

rare

act

$	#	match	a	followed	by	t,	with	or	without	c	in	between

$	printf	'late\npale\nfactor\nrare\nact\n'	|	grep	-E	'ac?t'

late

factor

act

$	#	same	as	using	this	alternation

$	printf	'late\npale\nfactor\nrare\nact\n'	|	grep	-E	'at|act'

late

factor

act

	*		will	try	to	match	0	or	more	times
There	is	no	upper	limit	and		*		will	try	to	match	as	many	times	as	possible

GNU	grep

41

$	echo	'abbbc'	|	grep	-o	'b*'

bbb

$	#	matches	0	or	more	b	only	if	surrounded	by	a	and	c

$	echo	'abc	ac	adc	abbc	bbb	bc'	|	grep	-o	'ab*c'

abc

ac

abbc

$	#	see	how	it	matched	everything

$	echo	'car	bat	cod	map	scat	dot	abacus'	|	grep	-o	'.*'

car	bat	cod	map	scat	dot	abacus

$	#	but	here	it	stops	at	m

$	echo	'car	bat	cod	map	scat	dot	abacus'	|	grep	-o	'.*m'

car	bat	cod	m

$	#	stopped	at	dot,	not	bat	or	scat	-	match	as	much	as	possible

$	echo	'car	bat	cod	map	scat	dot	abacus'	|	grep	-o	'c.*t'

car	bat	cod	map	scat	dot

$	#	matching	overall	expression	gets	preference

$	echo	'car	bat	cod	map	scat	dot	abacus'	|	grep	-o	'c.*at'

car	bat	cod	map	scat

$	#	precendence	is	left	to	right	in	case	of	multiple	matches

$	echo	'car	bat	cod	map	scat	dot	abacus'	|	grep	-o	'b.*m'

bat	cod	m

$	echo	'car	bat	cod	map	scat	dot	abacus'	|	grep	-o	'b.*m*'

bat	cod	map	scat	dot	abacus

	+		will	try	to	match	1	or	more	times
Another	meta	character	that	differs	in	syntax	between	BRE/ERE

GNU	grep

42

$	echo	'abbbc'	|	grep	-o	'b\+'

bbb

$	echo	'abbbc'	|	grep	-oE	'b+'

bbb

$	echo	'abc	ac	adc	abbc	bbb	bc'	|	grep	-oE	'ab+c'

abc

abbc

$	echo	'abc	ac	adc	abbc	bbb	bc'	|	grep	-o	'ab*c'

abc

ac

abbc

For	more	precise	control	on	number	of	times	to	match,		{}		(\{\}		for	BRE)	is	useful
It	can	take	one	of	four	forms,		{n}	,		{n,m}	,		{,m}		and		{n,}	

$	#	{n}	-	exactly	n	times

$	echo	'ac	abc	abbc	abbbc'	|	grep	-Eo	'ab{2}c'

abbc

$	#	{n,m}	-	n	to	m,	including	both	n	and	m

$	echo	'ac	abc	abbc	abbbc'	|	grep	-Eo	'ab{1,2}c'

abc

abbc

$	#	{,m}	-	0	to	m	times

$	echo	'ac	abc	abbc	abbbc'	|	grep	-Eo	'ab{,2}c'

ac

abc

abbc

$	#	{n,}	-	at	least	n	times

$	echo	'ac	abc	abbc	abbbc'	|	grep	-Eo	'ab{2,}c'

abbc

abbbc

Character	classes

The	meta	character	pairs		[]		allow	to	match	any	of	the	multiple	characters	within		[]	
Meta	characters	like	 	̂ 	,		$		have	different	meaning	inside	and	outside	of		[]	
Simple	example	first,	matching	any	of	the	characters	within		[]	

GNU	grep

43

$	echo	'do	so	in	to	no	on'	|	grep	-ow	'[nt]o'

to

no

$	echo	'do	so	in	to	no	on'	|	grep	-ow	'[sot][on]'

so

to

on

Adding	a	quantifier
Check	out	unix	words)	and	sample	words	file

$	#	words	made	up	of	letters	o	and	n,	at	least	2	letters

$	grep	-xE	'[on]{2,}'	/usr/share/dict/words	

no

non

noon

on

$	#	lines	containing	only	digits

$	printf	'cat\nfoo\n123\nbaz\n42\n'	|	grep	-xE	'[0123456789]+'

123

42

Character	ranges
Matching	any	alphabet,	number,	hexadecimal	number	etc	becomes	cumbersome	if	every	character
has	to	be	individually	specified
So,	there's	a	shortcut,	using		-		to	construct	a	range	(has	to	be	specified	in	ascending	order)
See	ascii	codes	table	for	reference

Note	that	behavior	of	range	will	differ	for	other	character	encodings
See	Character	Classes	and	Bracket	Expressions	as	well	as	LC_COLLATE	under
Environment	Variables	sections	in		info	grep		for	more	detail

Matching	Numeric	Ranges	with	a	Regular	Expression

GNU	grep

44

https://en.wikipedia.org/wiki/Words_(Unix
https://users.cs.duke.edu/~ola/ap/linuxwords
http://ascii.cl/
http://www.regular-expressions.info/numericranges.html

$	printf	'cat\nfoo\n123\nbaz\n42\n'	|	grep	-xE	'[0-9]+'

123

42

$	printf	'cat\nfoo\n123\nbaz\n42\n'	|	grep	-xiE	'[a-z]+'

cat

foo

baz

$	#	only	valid	decimal	numbers

$	printf	'128\n34\nfe32\nfoo1\nbar\n'	|	grep	-xE	'[0-9]+'

128

34

$	#	only	valid	octal	numbers

$	printf	'128\n34\nfe32\nfoo1\nbar\n'	|	grep	-xE	'[0-7]+'

34

$	#	only	valid	hexadecimal	numbers

$	printf	'128\n34\nfe32\nfoo1\nbar\n'	|	grep	-xiE	'[0-9a-f]+'

128

34

fe32

$	#	numbers	between	10-29

$	echo	'23	54	12	92'	|	grep	-owE	'[12][0-9]'

23

12

Negating	character	class
By	using	 	̂ 		as	first	character	inside		[]	,	we	get	inverted	character	class

As	pointed	out	earlier,	some	meta	characters	behave	differently	inside	and	outside	of		[]	

GNU	grep

45

$	#	alphabetic	words	not	starting	with	c

$	echo	'123	core	not	sink	code	finish'	|	grep	-owE	'[^c][a-z]+'

not

sink

finish

$	#	excluding	numbers	2,3,4,9

$	#	note	that	200a	200;	etc	will	also	match,	usage	depends	on	knowing	input

$	echo	'2001	2004	2005	2008	2009'	|	grep	-ow	'200[^2-49]'

2001

2005

2008

$	#	get	characters	from	start	of	line	upto(not	including)	known	identifier

$	echo	'foo=bar;	baz=123'	|	grep	-oE	'^[^=]+'

foo

$	#	get	characters	at	end	of	line	from(not	including)	known	identifier

$	echo	'foo=bar;	baz=123'	|	grep	-oE	'[^=]+$'

123

$	#	get	all	sequence	of	characters	surrounded	by	unique	identifier

$	echo	'I	like	"mango"	and	"guava"'	|	grep	-oE	'"[^"]+"'

"mango"

"guava"

Matching	meta	characters	inside		[]	
Most	meta	characters	like		()	.	+	{	}	|	$		don't	have	special	meaning	inside		[]		and	hence
do	not	require	special	treatment
Some	combination	like		[.		or		=]		cannot	be	used	in	this	order,	as	they	have	special	meaning
within		[]	

See	Character	Classes	and	Bracket	Expressions	section	in		info	grep		for	more	detail

GNU	grep

46

$	#	to	match	-	it	should	be	first	or	last	character	within	[]

$	echo	'Foo-bar	123-456	42	Co-operate'	|	grep	-oiwE	'[a-z-]+'

Foo-bar

Co-operate

$	#	to	match]	it	should	be	first	character	within	[]

$	printf	'int	a[5]\nfoo=bar\n'	|	grep	'[]=]'

int	a[5]

foo=bar

$	#	to	match	[use	[anywhere	in	the	character	list

$	#	[][]	will	match	both	[and]

$	printf	'int	a[5]\nfoo=bar\n'	|	grep	'[[]'

int	a[5]

$	#	to	match	^	it	should	be	other	than	first	in	the	list

$	echo	'(a+b)^2	=	a^2	+	b^2	+	2ab'	|	grep	-owE	'[a-z^0-9]{3,}'

a^2

b^2

2ab

Named	character	classes
Equivalent	class	shown	is	for	C	locale	and	ASCII	character	encoding

See	ascii	codes	table	for	reference
See	Character	Classes	and	Bracket	Expressions	section	in		info	grep		for	more	detail

Character
classes Description

[:digit:] Same	as	[0-9]

[:lower:] Same	as	[a-z]

[:upper:] Same	as	[A-Z]

[:alpha:] Same	as	[a-zA-Z]

[:alnum:] Same	as	[0-9a-zA-Z]

[:xdigit:] Same	as	[0-9a-fA-F]

[:cntrl:] Control	characters	-	first	32	ASCII	characters	and	127th	(DEL)

[:punct:] All	the	punctuation	characters

[:graph:] [:alnum:]	and	[:punct:]

[:print:] [:alnum:],	[:punct:]	and	space

[:blank:] Space	and	tab	characters

[:space:] white-space	characters:	tab,	newline,	vertical	tab,	form	feed,	carriage	return
and	space

GNU	grep

47

http://ascii.cl/

$	printf	'128\n34\nAB32\nFoo\nbar\n'	|	grep	-x	'[[:alnum:]]*'

128

34

AB32

Foo

bar

$	printf	'128\n34\nAB32\nFoo\nbar\n'	|	grep	-x	'[[:lower:]]*'

bar

$	printf	'128\n34\nAB32\nFoo\nbar\n'	|	grep	-x	'[[:lower:]0-9]*'

128

34

bar

backslash	character	classes
The	word		-w		option	matches	the	same	set	of	characters	as	that	of		\w	

Character	classes Description

\w Same	as	[0-9a-zA-Z]	or	[[:alnum:]]

\W Same	as	 	or	

\s Same	as	[[:space:]]

\S Same	as	

$	printf	'123\n$#\ncmp_str\nFoo_bar\n'	|	grep	-x	'\w*'

123

cmp_str

Foo_bar

$	printf	'123\n$#\ncmp_str\nFoo_bar\n'	|	grep	-x	'[[:alnum:]_]*'

123

cmp_str

Foo_bar

$	printf	'123\n$#\ncmp_str\nFoo_bar\n'	|	grep	-x	'\W*'

$#

$	printf	'123\n$#\ncmp_str\nFoo_bar\n'	|	grep	-x	'[^[:alnum:]_]*'

$#

Grouping

Character	classes	allow	matching	against	a	choice	of	multiple	character	list	and	then	quantifier

0-9a-zA-Z_ [:alnum:]_

[:space:]

GNU	grep

48

added	if	needed
One	of	the	uses	of	grouping	is	analogous	to	character	classes	for	whole	regular	expressions,
instead	of	just	list	of	characters
The	meta	characters		()		are	used	for	grouping

requires		\(\)		for	BRE
Similar	to	maths		ab	+	ac	=	a(b+c)	,	think	of	regular	expression		a(b|c)	=	ab|ac	

$	#	5	letter	words	starting	with	c	and	ending	with	ty	or	ly

$	grep	-xE	'c..(ty|ly)'	/usr/share/dict/words	

catty

coyly

curly

$	#	7	letter	words	starting	with	e	and	ending	with	rged	or	sted

$	grep	-xE	'e..(rg|st)ed'	/usr/share/dict/words	

emerged

existed

$	#	repeat	a	pattern	3	times

$	grep	-xE	'([a-d][r-z]){3}'	/usr/share/dict/words	

avatar

awards

cravat

$	#	nesting	of	()	is	allowed

$	grep	-E	'([as](p|c)[r-t]){2}'	/usr/share/dict/words

scraps

$	#	can	be	used	to	match	specific	columns	in	well	defined	tables

$	echo	'foo:123:bar:baz'	|	grep	-E	'^([^:]+:){2}bar'

foo:123:bar:baz

Back	reference

The	matched	string	within		()		can	also	be	used	to	be	matched	again	by	back	referencing	the
captured	groups
	\1		denotes	the	first	matched	group,		\2		the	second	one	and	so	on

Order	is	leftmost		(is		\1	,	next	one	is		\2		and	so	on
Note	that	the	matched	string,	not	the	regular	expression	itself	is	referenced

for	ex:	if		([0-9][a-f])		matches		3b	,	then	back	referencing	will	be		3b		not	any	other	valid
match	of	the	regular	expression	like		8f	,		0a		etc
Other	regular	expressions	like	PCRE	do	allow	referencing	the	regular	expression	itself

GNU	grep

49

$	#	note	how	first	three	and	last	three	letters	are	same

$	grep	-xE	'([a-d]..)\1'	/usr/share/dict/words	

bonbon

cancan

chichi

$	#	note	how	adding	quantifier	is	not	same	as	back-referencing

$	grep	-m4	-xE	'([a-d]..){2}'	/usr/share/dict/words

abacus

abided

abides

ablaze

$	#	words	with	consecutive	repeated	letters

$	echo	'eel	flee	all	pat	ilk	seen'	|	grep	-iowE	'[a-z]*(.)\1[a-z]*'

eel

flee

all

seen

$	#	17	letter	words	with	first	and	last	as	same	letter

$	grep	-xE	'(.)[a-z]{15}\1'	/usr/share/dict/words	

semiprofessionals

transcendentalist

Note	that	there	is	an	issue	for	certain	usage	of	back-reference	and	quantifier

$	#	no	output

$	grep	-m5	-xiE	'([a-z]*([a-z])\2[a-z]*){2}'	/usr/share/dict/words

$	#	works	when	nesting	is	unrolled

$	grep	-m5	-xiE	'[a-z]*([a-z])\1[a-z]*([a-z])\2[a-z]*'	/usr/share/dict/words

Abbott

Annabelle

Annette

Appaloosa

Appleseed

$	#	no	problem	if	PCRE	is	used	instead	of	ERE

$	grep	-m5	-xiP	'([a-z]*([a-z])\2[a-z]*){2}'	/usr/share/dict/words

Abbott

Annabelle

Annette

Appaloosa

Appleseed

Useful	to	spot	repeated	words

GNU	grep

50

https://debbugs.gnu.org/cgi/bugreport.cgi?bug=26864

Use		-z		option	(covered	later)	to	match	repetition	in	consecutive	lines

$	cat	story.txt	

singing	tin	in	the	rain

walking	for	for	a	cause

have	a	nice	day

day	and	night

$	grep	-wE	'(\w+)\W+\1'	story.txt	

walking	for	for	a	cause

Multiline	matching
If	input	is	small	enough	to	meet	memory	requirements,	the		-z		option	comes	in	handy	to	match
across	multiple	lines
Instead	of	newline	being	line	separator,	the	ASCII	NUL	character	is	used

So,	multiline	matching	depends	on	whether	or	not	input	file	itself	contains	the	NUL	character
Usually	text	files	won't	have	occasion	to	use	the	NUL	character	and	presence	of	it	marks	it	as
binary	file	for		grep	

$	#	\0	for	ASCII	NUL	character

$	printf	'red\nblue\n\0green\n'	|	cat	-e

red$

blue$

^@green$

$	#	see	--binary-files=TYPE	option	in	info	grep	for	binary	details

$	printf	'red\nblue\n\0green\n'	|	grep	-a	'red'

red

$	#	with	-z,	\0	marks	the	different	'lines'

$	printf	'red\nblue\n\0green\n'	|	grep	-z	'red'

red

blue

$	#	if	no	\0	in	input,	entire	input	read	as	single	string

$	printf	'red\nblue\ngreen\n'	|	grep	-z	'red'

red

blue

green

	\n		is	not	defined	in	BRE/ERE

GNU	grep

51

see	this	for	a	workaround
if	some	characteristics	of	input	is	known,		[[:space:]]		can	be	used	as	workaround,	which
matches	all	white-space	characters

$	grep	-oz	'Roses.*blue,[[:space:]]'	poem.txt	

Roses	are	red,

Violets	are	blue,

Perl	Compatible	Regular	Expressions

$	#	see	also:	https://github.com/learnbyexample/command_help

$	man	grep	|	sed	-n	'/^\s*-P/,/^$/p'

							-P,	--perl-regexp

														Interpret	the	pattern	as	a		Perl-compatible		regular		expression

														(PCRE).			This		is		highly		experimental	and	grep	-P	may	warn	of

														unimplemented	features.

The	man	page	informs	that		-P		is	highly	experimental.	So	far,	haven't	faced	any	issues.	But	do
keep	this	in	mind.
Only	a	few	highlights	is	presented	here
For	more	info

	man	pcrepattern		or	read	it	online
perldoc	-	re	-	Perl	regular	expression	syntax,	also	links	to	other	related	tutorials
regular	expression	examples	on	SO	documentation

Backslash	sequences

Some	of	the	backslash	constructs	available	in	PCRE	over	already	seen	ones	in	ERE

	\d		for		[0-9]	
	\s		for		[\	\t\r\n\f]	
	\h		for		[\t]	
	\n		for	newline	character
	\D	,		\S	,		\H	,		\N		etc	for	their	opposites

GNU	grep

52

http://unix.stackexchange.com/questions/19491/how-to-specify-characters-using-hexadecimal-codes-in-grep
http://www.pcre.org/original/doc/html/pcrepattern.html
http://perldoc.perl.org/perlre.html
https://stackoverflow.com/documentation/regex/topics

$	#	example	for	[0-9]	in	ERE	and	\d	in	PCRE

$	echo	'foo=5,	bar=3;	x=83,	y=120'	|	grep	-oE	'[0-9]+'

5

3

83

120

$	echo	'foo=5,	bar=3;	x=83,	y=120'	|	grep	-oP	'\d+'

5

3

83

120

$	#	(?s)	allows	newlines	to	be	also	matches	when	using	.	meta	character

$	grep	-ozP	'(?s)Roses.*blue,\n'	poem.txt	

Roses	are	red,

Violets	are	blue,

See	INTERNAL	OPTION	SETTING	in		man	pcrepattern		for	more	info	on		(?s)	,		(?m)		etc
Specifying	Modes	Inside	The	Regular	Expression	also	has	some	detail	on	such	options

Non-greedy	matching

Both	BRE/ERE	support	only	greedy	matching	quantifiers
match	as	much	as	possible

PCRE	supports	non-greedy	version	by	adding		?		after	quantifiers
match	as	minimal	as	possible

See	this	Python	notebook	for	an	interesting	project	on	palindrome	sentences

GNU	grep

53

http://www.regular-expressions.info/modifiers.html
http://nbviewer.jupyter.org/url/norvig.com/ipython/pal3.ipynb

$	echo	'foo	and	bar	and	baz	went	shopping	bytes'	|	grep	-oi	'\w.*and'

foo	and	bar	and

$	echo	'foo	and	bar	and	baz	went	shopping	bytes'	|	grep	-oiP	'\w.*?and'

foo	and

bar	and

$	#	recall	that	matching	overall	expression	gets	preference

$	echo	'foo	and	bar	and	baz	went	shopping	bytes'	|	grep	-oi	'\w.*and	baz'

foo	and	bar	and	baz

$	echo	'foo	and	bar	and	baz	went	shopping	bytes'	|	grep	-oiP	'\w.*?and	baz'

foo	and	bar	and	baz

$	#	minimal	matching	with	single	character	has	simple	workaround

$	echo	'A	man,	a	plan,	a	canal,	Panama'	|	grep	-oi	'a.*,'

A	man,	a	plan,	a	canal,

$	echo	'A	man,	a	plan,	a	canal,	Panama'	|	grep	-oi	'a[^,]*,'

A	man,

a	plan,

a	canal,

Lookarounds

Ability	to	add	conditions	to	match	before/after	required	pattern
There	are	four	types

positive	lookahead		(?=	
negative	lookahead		(?!	
positive	lookbehind		(?<=	
negative	lookbehind		(?<!	

One	way	to	remember	is	that	behind	uses		<		and	negative	uses		!		instead	of		=	
When	used	with		-o		option,	lookarounds	portion	won't	be	part	of	output

Fixed	and	variable	length	lookbehind

GNU	grep

54

$	#	extract	digits	preceded	by	single	lowercase	letter	and	=

$	#	this	is	fixed	length	lookbehind	because	length	is	known

$	echo	'foo=5,	bar=3;	x=83,	y=120'	|	grep	-oP	'(?<=\b[a-z]=)\d+'

83

120

$	#	error	because	{2,}	induces	variable	length	matching

$	echo	'foo=5,	bar=3;	x=83,	y=120'	|	grep	-oP	'(?<=\b[a-z]{2,}=)\d+'

grep:	lookbehind	assertion	is	not	fixed	length

$	#	use	\K	for	such	cases

$	echo	'foo=5,	bar=3;	x=83,	y=120'	|	grep	-oP	'\b[a-z]{2,}=\K\d+'

5

3

Examples	for	lookarounds

$	#	extract	digits	that	follow	=

$	echo	'foo=5,	bar=3;	x=83,	y=120'	|	grep	-oP	'=\K\d+'

5

3

83

120

$	#	digits	that	follow	=	and	has	,	after

$	echo	'foo=5,	bar=3;	x=83,	y=120'	|	grep	-oP	'=\K\d+(?=,)'

5

83

$	#	extract	words,	but	not	those	at	start	of	line

$	echo	'car	bat	cod	map'	|	grep	-owP	'(?<!^)\w+'

bat

cod

map

$	#	extract	words,	but	not	those	at	start	of	line	or	end	of	line

$	echo	'car	bat	cod	map'	|	grep	-owP	'(?<!^)\w+(?!$)'

bat

cod

Ignoring	specific	matches

A	useful	construct	is		(*SKIP)(*F)		which	allows	to	discard	matches	not	needed

GNU	grep

55

Simple	way	to	use	is	that	regular	expression	which	should	be	discarded	is	written	first,		(*SKIP)
(*F)		is	appended	and	then	whichever	is	required	by	added	after		|	
See	Excluding	Unwanted	Matches	for	more	info

$	#	all	words	except	bat	and	map

$	echo	'car	bat	cod	map'	|	grep	-oP	'(bat|map)(*SKIP)(*F)|\w+'

car

cod

$	#	all	words	except	those	surrounded	by	double	quotes

$	echo	'I	like	"mango"	and	"guava"'	|	grep	-oP	'"[^"]+"(*SKIP)(*F)|\w+'

I

like

and

Re-using	regular	expression	pattern

	\1	,		\2		etc	only	matches	exact	string
	(?1)	,		(?2)		etc	re-uses	the	regular	expression	itself

$	#	(?1)	refers	to	first	group	\d{4}-\d{2}-\d{2}

$	echo	'2008-03-24	and	2012-08-12	foo'	|	grep	-oP	'(\d{4}-\d{2}-\d{2})\D+(?1)'

2008-03-24	and	2012-08-12

Gotchas	and	Tips
Always	quote	the	search	string	(unless	you	know	what	you	are	doing	:P)

$	grep	so	are	poem.txt	

grep:	are:	No	such	file	or	directory

poem.txt:And	so	are	you.

$	grep	'so	are'	poem.txt	

And	so	are	you.

Another	common	problem	is	unquoted	search	string	will	be	open	to	shell's	own	globbing	rules

GNU	grep

56

http://www.rexegg.com/backtracking-control-verbs.html#skipfail

$	#	sample	output	on	bash	shell,	might	vary	for	different	shells

$	echo	'*.txt'	|	grep	-F	*.txt

$	echo	'*.txt'	|	grep	-F	'*.txt'

*.txt

Use	double	quotes	for	variable	expansion,	command	substitution,	etc	(Note:	could	vary	based	on
shell	used)
See	mywiki.wooledge	Quotes	for	detailed	discussion	of	quoting	in		bash		shell

$	#	sample	output	on	bash	shell,	might	vary	for	different	shells

$	color='blue'

$	grep	"$color"	poem.txt	

Violets	are	blue,

Pattern	starting	with		-	

$	#	this	issue	is	not	specific	to	grep	alone

$	#	the	command	assumes	-2	is	an	option	and	hence	the	error

$	echo	'5*3-2=13'	|	grep	'-2'

Usage:	grep	[OPTION]...	PATTERN	[FILE]...

Try	'grep	--help'	for	more	information.

$	#	workaround	by	using	\-

$	echo	'5*3-2=13'	|	grep	'\-2'

5*3-2=13

$	#	or	use	--	to	indicate	no	further	options	to	process

$	echo	'5*3-2=13'	|	grep	--	'-2'

5*3-2=13

$	#	same	issue	with	printf

$	printf	'-1+2=1\n'

bash:	printf:	-1:	invalid	option

printf:	usage:	printf	[-v	var]	format	[arguments]

$	printf	--	'-1+2=1\n'

-1+2=1

Tip:	Options	can	be	specified	at	end	of	command	as	well,	useful	if	option	was	forgotten	and	have	to
quickly	add	it	to	previous	command	from	history

GNU	grep

57

http://mywiki.wooledge.org/Quotes

$	grep	'are'	poem.txt	

Roses	are	red,

Violets	are	blue,

And	so	are	you.

$	#	use	previous	command	from	history,	for	ex	up	arrow	key	in	bash

$	#	then	simply	add	the	option	at	end

$	grep	'are'	poem.txt	-n

1:Roses	are	red,

2:Violets	are	blue,

4:And	so	are	you.

Speed	boost	if	input	file	is	ASCII

$	time	grep	-xE	'([a-d][r-z]){3}'	/usr/share/dict/words

avatar

awards

cravat

real				0m0.145s

$	time	LC_ALL=C	grep	-xE	'([a-d][r-z]){3}'	/usr/share/dict/words

avatar

awards

cravat

real				0m0.011s

Speed	boost	by	using	PCRE	for	back-references
might	be	faster	when	using	quantifiers	as	well

GNU	grep

58

$	time	LC_ALL=C	grep	-xE	'([a-z]..)\1'	/usr/share/dict/words

bonbon

cancan

chichi

murmur

muumuu

pawpaw

pompom

tartar

testes

real				0m0.174s

$	time	grep	-xP	'([a-z]..)\1'	/usr/share/dict/words

bonbon

cancan

chichi

murmur

muumuu

pawpaw

pompom

tartar

testes

real				0m0.008s

Regular	Expressions	Reference	(ERE)

Anchors

	̂ 		match	from	start	of	line
	$		match	end	of	line
	\<		match	beginning	of	word
	\>		match	end	of	word
	\b		match	edge	of	word
	\B		match	other	than	edge	of	word

Character	Quantifiers

	.		match	any	single	character

GNU	grep

59

	*		match	preceding	character/group	0	or	more	times
	+		match	preceding	character/group	1	or	more	times
	?		match	preceding	character/group	0	or	1	times
	{n}		match	preceding	character/group	exactly	n	times
	{n,}		match	preceding	character/group	n	or	more	times
	{n,m}		match	preceding	character/group	n	to	m	times,	including	n	and	m
	{,m}		match	preceding	character/group	up	to	m	times

Character	classes	and	backslash	sequences

	[aeiou]		match	any	of	these	characters
	[^aeiou]		do	not	match	any	of	these	characters
	[a-z]		match	any	lowercase	alphabet
	[0-9]		match	any	digit	character
	\w		match	alphabets,	digits	and	underscore	character,	short	cut	for		[a-zA-Z0-9_]	
	\W		opposite	of		\w		,	short	cut	for		[^a-zA-Z0-9_]	
	\s		match	white-space	characters:	tab,	newline,	vertical	tab,	form	feed,	carriage	return,	and	space
	\S		match	other	than	white-space	characters

Pattern	groups

	|		matches	either	of	the	given	patterns
	()		patterns	within		()		are	grouped	and	treated	as	one	pattern,	useful	in	conjunction	with		|	
	\1		backreference	to	first	grouped	pattern	within		()	
	\2		backreference	to	second	grouped	pattern	within		()		and	so	on

Basic	vs	Extended	Regular	Expressions

By	default,	the	pattern	passed	to		grep		is	treated	as	Basic	Regular	Expressions(BRE),	which	can	be
overridden	using	options	like		-E		for	ERE	and		-P		for	Perl	Compatible	Regular	Expression(PCRE)
Paraphrasing	from		info	grep	

In	Basic	Regular	Expressions	the	meta-characters		?	+	{	|	()		lose	their	special	meaning,
instead	use	the	backslashed	versions		\?	\+	\{	\|	\(\)	

Further	Reading

GNU	grep

60

	man	grep		and		info	grep	
At	least	go	through	all	options	;)
Usage	section	in		info	grep		has	good	examples	as	well

A	bit	of	history
how	grep	command	was	born
why	GNU	grep	is	fast
Difference	between	grep,	egrep	and	fgrep

Tutorials	and	Q&A
grep	tutorial
grep	examples
grep	Q&A	on	stackoverflow
grep	Q&A	on	unix	stackexchange

Learn	Regular	Expressions	(has	information	on	flavors	other	than	BRE/ERE/PCRE	too)
Regular	Expressions	Tutorial
regexcrossword
What	does	this	regex	mean?
online	regex	tester	and	debugger	-	by	default		pcre		flavor

Alternatives
pcregrep
ag	-	silver	searcher
ripgrep

unix.stackexchange	-	When	to	use	grep,	sed,	awk,	perl,	etc

GNU	grep

61

https://medium.com/@rualthanzauva/grep-was-a-private-command-of-mine-for-quite-a-while-before-i-made-it-public-ken-thompson-a40e24a5ef48
https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html
https://unix.stackexchange.com/questions/17949/what-is-the-difference-between-grep-egrep-and-fgrep
http://www.panix.com/~elflord/unix/grep.html
https://alvinalexander.com/unix/edu/examples/grep.shtml
https://stackoverflow.com/questions/tagged/grep?sort=votes&pageSize=15
https://unix.stackexchange.com/questions/tagged/grep?sort=votes&pageSize=15
http://www.regular-expressions.info/tutorial.html
https://regexcrossword.com/
https://stackoverflow.com/questions/22937618/reference-what-does-this-regex-mean
https://regex101.com/
http://www.pcre.org/original/doc/html/pcregrep.html
https://github.com/ggreer/the_silver_searcher
https://github.com/BurntSushi/ripgrep
https://unix.stackexchange.com/questions/303044/when-to-use-grep-less-awk-sed

GNU	sed
Table	of	Contents

Simple	search	and	replace
editing	stdin
editing	file	input

Inplace	file	editing
With	backup
Without	backup
Multiple	files
Prefix	backup	name
Place	backups	in	directory

Line	filtering	options
Print	command
Delete	command
Quit	commands
Negating	REGEXP	address
Combining	multiple	REGEXP
Filtering	by	line	number
Print	only	line	number
Address	range
Relative	addressing

Using	different	delimiter	for	REGEXP
Regular	Expressions

Line	Anchors
Word	Anchors
Matching	the	meta	characters
Alternation
The	dot	meta	character
Quantifiers
Character	classes
Escape	sequences
Grouping
Back	reference
Changing	case

Substitute	command	modifiers
g	modifier
Replace	specific	occurrence
Ignoring	case
p	modifier

GNU	sed

62

w	modifier
e	modifier
m	modifier

Shell	substitutions
Variable	substitution
Command	substitution

z	and	s	command	line	options
change	command
insert	command
append	command
adding	contents	of	file

r	for	entire	file
R	for	line	by	line

n	and	N	commands
Control	structures

if	then	else
replacing	in	specific	column
overlapping	substitutions

Lines	between	two	REGEXPs
Include	or	Exclude	matching	REGEXPs
First	or	Last	block
Broken	blocks

sed	scripts
Further	Reading

GNU	sed

63

$	sed	--version	|	head	-n1

sed	(GNU	sed)	4.2.2

$	man	sed

SED(1)																											User	Commands																										SED(1)

NAME

							sed	-	stream	editor	for	filtering	and	transforming	text

SYNOPSIS

							sed	[OPTION]...	{script-only-if-no-other-script}	[input-file]...

DESCRIPTION

							Sed		is	a	stream	editor.		A	stream	editor	is	used	to	perform	basic	text

							transformations	on	an	input	stream	(a	file	or	input	from		a		pipeline).

							While		in		some		ways	similar	to	an	editor	which	permits	scripted	edits

							(such	as	ed),	sed	works	by	making	only	one	pass	over	the	input(s),		and

							is	consequently	more	efficient.		But	it	is	sed's	ability	to	filter	text

							in	a	pipeline	which	particularly	distinguishes	it	from	other		types		of

							editors.

...

Note:	Multiline	and	manipulating	pattern	space	with	h,x,D,G,H,P	etc	is	not	covered	in	this	chapter	and
examples/information	is	based	on	ASCII	encoded	text	input	only

Simple	search	and	replace
Detailed	examples	for	substitute	command	will	be	convered	in	later	sections,	syntax	is

s/REGEXP/REPLACEMENT/FLAGS

The		/		character	is	idiomatically	used	as	delimiter	character.	See	also	Using	different	delimiter	for
REGEXP

editing	stdin

GNU	sed

64

https://www.gnu.org/software/sed/manual/sed.html#Multiline-techniques

$	seq	10	|	paste	-sd,

1,2,3,4,5,6,7,8,9,10

$	#	change	only	first	','	to	'	:	'

$	seq	10	|	paste	-sd,	|	sed	's/,/	:	/'

1	:	2,3,4,5,6,7,8,9,10

$	#	change	all	','	to	'	:	'	by	using	'g'	modifier

$	seq	10	|	paste	-sd,	|	sed	's/,/	:	/g'

1	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10

Note:	As	a	good	practice,	all	examples	use	single	quotes	around	arguments	to	prevent	shell
interpretation.	See	Shell	substitutions	section	on	use	of	double	quotes

editing	file	input

By	default	newline	character	is	the	line	separator
See	Regular	Expressions	section	for	qualifying	search	terms

for	example	to	distinguish	between	'hi',	'this',	'his',	'history',	etc

$	cat	greeting.txt	

Hi	there

Have	a	nice	day

$	#	change	first	'Hi'	in	each	line	to	'Hello'

$	sed	's/Hi/Hello/'	greeting.txt

Hello	there

Have	a	nice	day

$	#	change	first	'nice	day'	in	each	line	to	'safe	journey'

$	sed	's/nice	day/safe	journey/'	greeting.txt

Hi	there

Have	a	safe	journey

$	#	change	all	'e'	to	'E'	and	save	changed	text	to	another	file

$	sed	's/e/E/g'	greeting.txt	>	out.txt

$	cat	out.txt	

Hi	thErE

HavE	a	nicE	day

Inplace	file	editing

GNU	sed

65

In	previous	section,	the	output	from		sed		was	displayed	on	stdout	or	saved	to	another	file
To	write	the	changes	back	to	original	file,	use		-i		option

Note:

Refer	to		man	sed		for	details	of	how	to	use	the		-i		option.	It	varies	with	different		sed	
implementations.	As	mentioned	at	start	of	this	chapter,		sed	(GNU	sed)	4.2.2		is	being	used	here
See	this	Q&A	when	working	with	symlinks

With	backup

When	extension	is	given,	the	original	input	file	is	preserved	with	name	changed	according	to
extension	provided

$	#	'.bkp'	is	extension	provided

$	sed	-i.bkp	's/Hi/Hello/'	greeting.txt

$	#	original	file	gets	preserved	in	'greeting.txt.bkp'

Hi	there

Have	a	nice	day

$	#	output	from	sed	gets	written	to	'greeting.txt'

$	cat	greeting.txt

Hello	there

Have	a	nice	day

Without	backup

Use	this	option	with	caution,	changes	made	cannot	be	undone

$	sed	-i	's/nice	day/safe	journey/'	greeting.txt

$	#	note,	'Hi'	was	already	changed	to	'Hello'	in	previous	example

$	cat	greeting.txt

Hello	there

Have	a	safe	journey

Multiple	files

Multiple	input	files	are	treated	individually	and	changes	are	written	back	to	respective	files

GNU	sed

66

https://unix.stackexchange.com/questions/348693/sed-update-etc-grub-conf-in-spite-this-link-file

$	cat	f1

I	ate	3	apples

$	cat	f2

I	bought	two	bananas	and	3	mangoes

$	#	-i	can	be	used	with	or	without	backup

$	sed	-i	's/3/three/'	f1	f2

$	cat	f1

I	ate	three	apples

$	cat	f2

I	bought	two	bananas	and	three	mangoes

Prefix	backup	name

A		*		in	argument	given	to		-i		will	get	expanded	to	input	filename
This	way,	one	can	add	prefix	instead	of	suffix	for	backup

$	cat	var.txt	

foo

bar

baz

$	sed	-i'bkp.*'	's/foo/hello/'	var.txt	

$	cat	var.txt	

hello

bar

baz

$	cat	bkp.var.txt	

foo

bar

baz

Place	backups	in	directory

	*		also	allows	to	specify	an	existing	directory	to	place	the	backups	instead	of	current	working
directory

GNU	sed

67

$	mkdir	bkp_dir

$	sed	-i'bkp_dir/*'	's/bar/hi/'	var.txt	

$	cat	var.txt	

hello

hi

baz

$	cat	bkp_dir/var.txt

hello

bar

baz

$	#	extensions	can	be	added	as	well

$	#	bkp_dir/*.bkp	for	suffix

$	#	bkp_dir/bkp.*	for	prefix

$	#	bkp_dir/bkp.*.2017	for	both	and	so	on

Line	filtering	options
By	default,		sed		acts	on	entire	file.	Often,	one	needs	to	extract	or	change	only	specific	lines	based
on	text	search,	line	numbers,	lines	between	two	patterns,	etc
This	filtering	is	much	like	using		grep	,		head		and		tail		commands	in	many	ways	and	there	are
even	more	features

Use		sed		for	inplace	editing,	the	filtered	lines	to	be	transformed	etc.	Not	as	substitute	for
	grep	,		head		and		tail	

Print	command

It	is	usually	used	in	conjunction	with		-n		option
By	default,		sed		prints	every	input	line,	including	any	changes	made	by	commands	like	substitution

printing	here	refers	to	line	being	part	of		sed		output	which	may	be	shown	on	terminal,
redirected	to	file,	etc

Using		-n		option	and		p		command	together,	only	specific	lines	needed	can	be	filtered
Examples	below	use	the		/REGEXP/		addressing,	other	forms	will	be	seen	in	sections	to	follow

GNU	sed

68

$	cat	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

$	#	all	lines	containing	the	string	'are'

$	#	same	as:	grep	'are'	poem.txt	

$	sed	-n	'/are/p'	poem.txt	

Roses	are	red,

Violets	are	blue,

And	so	are	you.

$	#	all	lines	containing	the	string	'so	are'

$	#	same	as:	grep	'so	are'	poem.txt	

$	sed	-n	'/so	are/p'	poem.txt	

And	so	are	you.

Using	print	and	substitution	together

$	#	print	only	lines	on	which	substitution	happens

$	sed	-n	's/are/ARE/p'	poem.txt	

Roses	ARE	red,

Violets	ARE	blue,

And	so	ARE	you.

$	#	if	line	contains	'are',	perform	given	command

$	#	print	only	if	substitution	succeeds

$	sed	-n	'/are/	s/so/SO/p'	poem.txt	

And	SO	are	you.

Duplicating	every	input	line

$	#	note,	-n	is	not	used	and	no	filtering	applied

$	seq	3	|	sed	'p'

1

1

2

2

3

3

Delete	command

GNU	sed

69

By	default,		sed		prints	every	input	line,	including	any	changes	like	substitution
Using	the		d		command,	those	specific	lines	will	NOT	be	printed

$	#	same	as:	grep	-v	'are'	poem.txt	

$	sed	'/are/d'	poem.txt	

Sugar	is	sweet,

$	#	same	as:	seq	5	|	grep	-v	'3'

$	seq	5	|	sed	'/3/d'

1

2

4

5

Modifier		I		allows	to	filter	lines	in	case-insensitive	way
See	Regular	Expressions	section	for	more	details

$	#	/rose/I	means	match	the	string	'rose'	irrespective	of	case

$	sed	'/rose/Id'	poem.txt	

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

Quit	commands

Exit		sed		without	processing	further	input

$	#	same	as:	seq	23	45	|	head	-n5

$	#	remember	that	printing	is	default	action	if	-n	is	not	used

$	seq	23	45	|	sed	'5q'

23

24

25

26

27

	Q		is	similar	to		q		but	won't	print	the	matching	line

GNU	sed

70

$	seq	23	45	|	sed	'5Q'

23

24

25

26

$	#	useful	to	print	from	beginning	of	file	up	to	but	not	including	line	matching	REG

EXP

$	sed	'/is/Q'	poem.txt	

Roses	are	red,

Violets	are	blue,

Use		tac		to	get	all	lines	starting	from	last	occurrence	of	search	string

$	#	all	lines	from	last	occurrence	of	'7'

$	seq	50	|	tac	|	sed	'/7/q'	|	tac

47

48

49

50

$	#	all	lines	from	last	occurrence	of	'7'	excluding	line	with	'7'

$	seq	50	|	tac	|	sed	'/7/Q'	|	tac

48

49

50

Note

This	way	of	using	quit	commands	won't	work	for	inplace	editing	with	multiple	file	input
See	this	Q&A	for	alternate	solution	as	well	using		gawk		and		perl		instead

Negating	REGEXP	address

Use		!		to	invert	the	specified	address

$	#	same	as:	sed	-n	'/so	are/p'	poem.txt

$	sed	'/so	are/!d'	poem.txt

And	so	are	you.

$	#	same	as:	sed	'/are/d'	poem.txt

$	sed	-n	'/are/!p'	poem.txt	

Sugar	is	sweet,

GNU	sed

71

https://unix.stackexchange.com/questions/309514/sed-apply-changes-in-multiple-files

Combining	multiple	REGEXP

See	also	sed	manual	-	Multiple	commands	syntax	for	more	details
See	also	sed	scripts	section	to	use	a	file	for	multiple	commands

$	#	each	command	as	argument	to	-e	option

$	sed	-n	-e	'/blue/p'	-e	'/you/p'	poem.txt	

Violets	are	blue,

And	so	are	you.

$	#	each	command	separated	by	;

$	#	not	all	commands	can	be	specified	so

$	sed	-n	'/blue/p;	/you/p'	poem.txt	

Violets	are	blue,

And	so	are	you.

$	#	each	command	separated	by	literal	newline	character

$	#	might	depend	on	whether	the	shell	allows	such	multiline	command

$	sed	-n	'

/blue/p

/you/p

'	poem.txt

Violets	are	blue,

And	so	are	you.

Use		{}		command	grouping	for	logical	AND

$	#	same	as:	grep	'are'	poem.txt	|	grep	'And'

$	#	space	between	/REGEXP/	and	{}	is	optional

$	sed	-n	'/are/	{/And/p}'	poem.txt	

And	so	are	you.

$	#	same	as:	grep	'are'	poem.txt	|	grep	-v	'so'

$	sed	-n	'/are/	{/so/!p}'	poem.txt	

Roses	are	red,

Violets	are	blue,

$	#	same	as:	grep	-v	'red'	poem.txt	|	grep	-v	'blue'

$	sed	-n	'/red/!{/blue/!p}'	poem.txt	

Sugar	is	sweet,

And	so	are	you.

$	#	many	ways	to	do	it,	use	whatever	feels	easier	to	construct

$	#	sed	-e	'/red/d'	-e	'/blue/d'	poem.txt	

$	#	grep	-v	-e	'red'	-e	'blue'	poem.txt

GNU	sed

72

https://www.gnu.org/software/sed/manual/sed.html#Multiple-commands-syntax

Different	ways	to	do	same	things.	See	also	Alternation	and	Control	structures

$	#	multiple	commands	can	lead	to	duplicatation

$	sed	-n	'/blue/p;	/t/p'	poem.txt	

Violets	are	blue,

Violets	are	blue,

Sugar	is	sweet,

$	#	in	such	cases,	use	regular	expressions	instead

$	sed	-nE	'/blue|t/p;'	poem.txt	

Violets	are	blue,

Sugar	is	sweet,

$	sed	-nE	'/red|blue/!p'	poem.txt	

Sugar	is	sweet,

And	so	are	you.

$	sed	-n	'/so/b;	/are/p'	poem.txt

Roses	are	red,

Violets	are	blue,

Filtering	by	line	number

Exact	line	number	can	be	specified	to	be	acted	upon
As	a	special	case,		$		indicates	last	line	of	file
See	also	sed	manual	-	Multiple	commands	syntax

GNU	sed

73

https://www.gnu.org/software/sed/manual/sed.html#Multiple-commands-syntax

$	#	here,	2	represents	the	address	for	print	command,	similar	to	/REGEXP/p

$	#	same	as:	head	-n2	poem.txt	|	tail	-n1

$	sed	-n	'2p'	poem.txt	

Violets	are	blue,

$	#	print	2nd	and	4th	line

$	#	for	`p`,	`d`,	`s`	etc	multiple	commands	can	be	specified	separated	by	;

$	sed	-n	'2p;	4p'	poem.txt	

Violets	are	blue,

And	so	are	you.

$	#	same	as:	tail	-n1	poem.txt

$	sed	-n	'$p'	poem.txt	

And	so	are	you.

$	#	delete	only	3rd	line

$	sed	'3d'	poem.txt	

Roses	are	red,

Violets	are	blue,

And	so	are	you.

For	large	input	files,	combine		p		with		q		for	speedy	exit
	sed		would	immediately	quit	without	processing	further	input	lines	when		q		is	used

$	seq	3542	4623452	|	sed	-n	'2452{p;q}'

5993

$	seq	3542	4623452	|	sed	-n	'250p;	2452{p;q}'

3791

5993

$	#	here	is	a	sample	time	comparison

$	time	seq	3542	4623452	|	sed	-n	'2452{p;q}'	>	/dev/null	

real				0m0.003s

user				0m0.000s

sys					0m0.000s

$	time	seq	3542	4623452	|	sed	-n	'2452p'	>	/dev/null	

real				0m0.334s

user				0m0.396s

sys					0m0.024s

mimicking		head		command	using		q	

GNU	sed

74

$	#	same	as:	seq	23	45	|	head	-n5

$	#	remember	that	printing	is	default	action	if	-n	is	not	used

$	seq	23	45	|	sed	'5q'

23

24

25

26

27

Print	only	line	number

$	#	gives	both	line	number	and	matching	line

$	grep	-n	'blue'	poem.txt	

2:Violets	are	blue,

$	#	gives	only	line	number	of	matching	line

$	sed	-n	'/blue/='	poem.txt	

2

$	sed	-n	'/are/='	poem.txt	

1

2

4

If	needed,	matching	line	can	also	be	printed.	But	there	will	be	newline	separation

$	sed	-n	'/blue/{=;p}'	poem.txt	

2

Violets	are	blue,

$	#	or

$	sed	-n	'/blue/{p;=}'	poem.txt	

Violets	are	blue,

2

Address	range

So	far,	we've	seen	how	to	filter	specific	line	based	on	REGEXP	and	line	numbers
	sed		also	allows	to	combine	them	to	enable	selecting	a	range	of	lines
Consider	the	sample	input	file	for	this	section

GNU	sed

75

$	cat	addr_range.txt	

Hello	World

Good	day

How	are	you

Just	do-it

Believe	it

Today	is	sunny

Not	a	bit	funny

No	doubt	you	like	it	too

Much	ado	about	nothing

He	he	he

Range	defined	by	start	and	end	REGEXP
For	other	cases	like	getting	lines	without	the	line	matching	start	and/or	end,	unbalanced	start/end,
when	end	REGEXP	doesn't	match,	etc	see	Lines	between	two	REGEXPs	section

$	sed	-n	'/is/,/like/p'	addr_range.txt	

Today	is	sunny

Not	a	bit	funny

No	doubt	you	like	it	too

$	sed	-n	'/just/I,/believe/Ip'	addr_range.txt	

Just	do-it

Believe	it

$	#	the	second	REGEXP	will	always	be	checked	after	the	line	matching	first	address

$	sed	-n	'/No/,/No/p'	addr_range.txt	

Not	a	bit	funny

No	doubt	you	like	it	too

$	#	all	the	matching	ranges	will	be	printed

$	sed	-n	'/you/,/do/p'	addr_range.txt	

How	are	you

Just	do-it

No	doubt	you	like	it	too

Much	ado	about	nothing

Range	defined	by	start	and	end	line	numbers

GNU	sed

76

$	#	print	lines	numbered	3	to	7

$	sed	-n	'3,7p'	addr_range.txt	

Good	day

How	are	you

Just	do-it

Believe	it

$	#	print	lines	from	line	number	13	to	last	line

$	sed	-n	'13,$p'	addr_range.txt	

Much	ado	about	nothing

He	he	he

$	#	delete	lines	numbered	2	to	13

$	sed	'2,13d'	addr_range.txt	

Hello	World

He	he	he

Range	defined	by	mix	of	line	number	and	REGEXP

$	sed	-n	'3,/do/p'	addr_range.txt	

Good	day

How	are	you

Just	do-it

$	sed	-n	'/Today/,$p'	addr_range.txt	

Today	is	sunny

Not	a	bit	funny

No	doubt	you	like	it	too

Much	ado	about	nothing

He	he	he

Negating	address	range,	just	add		!		to	end	of	address	range

GNU	sed

77

$	#	same	as:	seq	10	|	sed	'3,7d'

$	seq	10	|	sed	-n	'3,7!p'

1

2

8

9

10

$	#	same	as:	sed	'/Today/,$d'	addr_range.txt

$	sed	-n	'/Today/,$!p'	addr_range.txt

Hello	World

Good	day

How	are	you

Just	do-it

Believe	it

Relative	addressing

Prefixing		+		to	a	number	for	second	address	gives	relative	filtering
Similar	to	using		grep	-A<num>	--no-group-separator	'REGEXP'		but		grep		merges	adjacent
groups	while		sed		does	not

$	#	line	matching	'is'	and	2	lines	after

$	sed	-n	'/is/,+2p'	addr_range.txt	

Today	is	sunny

Not	a	bit	funny

No	doubt	you	like	it	too

$	#	note	that	all	matching	ranges	will	be	filtered

$	sed	-n	'/do/,+2p'	addr_range.txt	

Just	do-it

Believe	it

No	doubt	you	like	it	too

Much	ado	about	nothing

The	first	address	could	be	number	too
Useful	when	using	Shell	substitutions

GNU	sed

78

$	sed	-n	'3,+4p'	addr_range.txt	

Good	day

How	are	you

Just	do-it

Believe	it

Another	relative	format	is		i~j		which	acts	on	ith	line	and	i+j,	i+2j,	i+3j,	etc
	1~2		means	1st,	3rd,	5th,	7th,	etc	(i.e	odd	numbered	lines)
	5~3		means	5th,	8th,	11th,	etc

$	#	match	odd	numbered	lines

$	#	for	even,	use	2~2

$	seq	10	|	sed	-n	'1~2p'

1

3

5

7

9

$	#	match	line	numbers:	2,	2+2*2,	2+3*2,	etc

$	seq	10	|	sed	-n	'2~4p'

2

6

10

If		~j		is	specified	after		,		then	meaning	changes	completely
After	the	matching	line	based	on	number	or	REGEXP	of	start	address,	the	closest	line	number
multiple	of		j		will	mark	end	address

GNU	sed

79

$	#	2nd	line	is	start	address

$	#	closest	multiple	of	4	is	4th	line

$	seq	10	|	sed	-n	'2,~4p'

2

3

4

$	#	closest	multiple	of	4	is	8th	line

$	seq	10	|	sed	-n	'5,~4p'

5

6

7

8

$	#	line	matching	on	`Just`	is	6th	line,	so	ending	is	10th	line

$	sed	-n	'/Just/,~5p'	addr_range.txt	

Just	do-it

Believe	it

Today	is	sunny

Not	a	bit	funny

Using	different	delimiter	for	REGEXP
	/		is	idiomatically	used	as	the	REGEXP	delimiter

See	also	a	bit	of	history	on	why	/	is	commonly	used	as	delimiter
But	any	character	other	than		\		and	newline	character	can	be	used	instead
This	helps	to	avoid/reduce	use	of		\	

$	#	instead	of	this

$	echo	'/home/learnbyexample/reports'	|	sed	's/\/home\/learnbyexample\//~\//'

~/reports

$	#	use	a	different	delimiter

$	echo	'/home/learnbyexample/reports'	|	sed	's#/home/learnbyexample/#~/#'

~/reports

For	REGEXP	used	in	address	matching,	syntax	is	a	bit	different		\<char>REGEXP<char>	

GNU	sed

80

https://www.reddit.com/r/commandline/comments/3lhgwh/why_did_people_standardize_on_using_forward/cvgie7j/

$	printf	'/foo/bar/1\n/foo/baz/1\n'

/foo/bar/1

/foo/baz/1

$	printf	'/foo/bar/1\n/foo/baz/1\n'	|	sed	-n	'\;/foo/bar/;p'

/foo/bar/1

Regular	Expressions
By	default,		sed		treats	REGEXP	as	BRE	(Basic	Regular	Expression)
The		-E		option	enables	ERE	(Extended	Regular	Expression)	which	in	GNU	sed's	case	only	differs
in	how	meta	characters	are	used,	no	difference	in	functionalities

Initially	GNU	sed	only	had		-r		option	to	enable	ERE	and		man	sed		doesn't	even	mention		-
E	

Other		sed		versions	use		-E		and		grep		uses		-E		as	well.	So		-r		won't	be	used	in
examples	in	this	tutorial
See	also	sed	manual	-	BRE-vs-ERE

See	sed	manual	-	Regular	Expressions	for	more	details

Line	Anchors

Often,	search	must	match	from	beginning	of	line	or	towards	end	of	line
For	example,	an	integer	variable	declaration	in		C		will	start	with	optional	white-space,	the	keyword
	int	,	white-space	and	then	variable(s)

This	way	one	can	avoid	matching	declarations	inside	single	line	comments	as	well
Similarly,	one	might	want	to	match	a	variable	at	end	of	statement

Consider	the	input	file	and	sample	substitution	without	using	any	anchoring

GNU	sed

81

https://www.gnu.org/software/sed/manual/sed.html#BRE-vs-ERE
https://www.gnu.org/software/sed/manual/sed.html#sed-regular-expressions

$	cat	anchors.txt	

cat	and	dog

too	many	cats	around	here

to	concatenate,	use	the	cmd	cat

catapults	laid	waste	to	the	village

just	scat	and	quit	bothering	me

that	is	quite	a	fabricated	tale

try	the	grape	variety	muscat

$	#	without	anchors,	substitution	will	replace	whereever	the	string	is	found

$	sed	's/cat/XXX/g'	anchors.txt	

XXX	and	dog

too	many	XXXs	around	here

to	conXXXenate,	use	the	cmd	XXX

XXXapults	laid	waste	to	the	village

just	sXXX	and	quit	bothering	me

that	is	quite	a	fabriXXXed	tale

try	the	grape	variety	musXXX

The	meta	character	 	̂ 		forces	REGEXP	to	match	only	at	start	of	line

$	#	filtering	lines	starting	with	'cat'

$	sed	-n	'/^cat/p'	anchors.txt	

cat	and	dog

catapults	laid	waste	to	the	village

$	#	replace	only	at	start	of	line

$	#	g	modifier	not	needed	as	there	can	only	be	single	match	at	start	of	line

$	sed	's/^cat/XXX/'	anchors.txt

XXX	and	dog

too	many	cats	around	here

to	concatenate,	use	the	cmd	cat

XXXapults	laid	waste	to	the	village

just	scat	and	quit	bothering	me

that	is	quite	a	fabricated	tale

try	the	grape	variety	muscat

$	#	add	something	to	start	of	line

$	echo	'Have	a	good	day'	|	sed	's/^/Hi!	/'

Hi!	Have	a	good	day

The	meta	character		$		forces	REGEXP	to	match	only	at	end	of	line

GNU	sed

82

$	#	filtering	lines	ending	with	'cat'

$	sed	-n	'/cat$/p'	anchors.txt	

to	concatenate,	use	the	cmd	cat

try	the	grape	variety	muscat

$	#	replace	only	at	end	of	line

$	sed	's/cat$/YYY/'	anchors.txt	

cat	and	dog

too	many	cats	around	here

to	concatenate,	use	the	cmd	YYY

catapults	laid	waste	to	the	village

just	scat	and	quit	bothering	me

that	is	quite	a	fabricated	tale

try	the	grape	variety	musYYY

$	#	add	something	to	end	of	line

$	echo	'Have	a	good	day'	|	sed	's/$/.	Cya	later/'

Have	a	good	day.	Cya	later

Word	Anchors

A	word	character	is	any	alphabet	(irrespective	of	case)	or	any	digit	or	the	underscore	character
The	word	anchors	help	in	matching	or	not	matching	boundaries	of	a	word

For	example,	to	distinguish	between		par	,		spar		and		apparent	
	\b		matches	word	boundary

	\		is	meta	character	and	certain	combinations	like		\b		and		\B		have	special	meaning
One	can	also	use	these	alternatives	for		\b	

	\<		for	start	of	word
	\>		for	end	of	word

GNU	sed

83

$	#	words	ending	with	'cat'

$	sed	-n	's/cat\b/XXX/p'	anchors.txt	

XXX	and	dog

to	concatenate,	use	the	cmd	XXX

just	sXXX	and	quit	bothering	me

try	the	grape	variety	musXXX

$	#	words	starting	with	'cat'

$	sed	-n	's/\bcat/YYY/p'	anchors.txt	

YYY	and	dog

too	many	YYYs	around	here

to	concatenate,	use	the	cmd	YYY

YYYapults	laid	waste	to	the	village

$	#	only	whole	words

$	sed	-n	's/\bcat\b/ZZZ/p'	anchors.txt	

ZZZ	and	dog

to	concatenate,	use	the	cmd	ZZZ

$	#	word	is	made	up	of	alphabets,	numbers	and	_

$	echo	'foo,	foo_bar	and	foo1'	|	sed	's/\bfoo\b/baz/g'

baz,	foo_bar	and	foo1

	\B		is	opposite	of		\b	,	i.e	it	doesn't	match	word	boundaries

$	#	substitute	only	if	'cat'	is	surrounded	by	word	characters

$	sed	-n	's/\Bcat\B/QQQ/p'	anchors.txt	

to	conQQQenate,	use	the	cmd	cat

that	is	quite	a	fabriQQQed	tale

$	#	substitute	only	if	'cat'	is	not	start	of	word

$	sed	-n	's/\Bcat/RRR/p'	anchors.txt	

to	conRRRenate,	use	the	cmd	cat

just	sRRR	and	quit	bothering	me

that	is	quite	a	fabriRRRed	tale

try	the	grape	variety	musRRR

$	#	substitute	only	if	'cat'	is	not	end	of	word

$	sed	-n	's/cat\B/SSS/p'	anchors.txt	

too	many	SSSs	around	here

to	conSSSenate,	use	the	cmd	cat

SSSapults	laid	waste	to	the	village

that	is	quite	a	fabriSSSed	tale

GNU	sed

84

Matching	the	meta	characters

Since	meta	characters	like	 	̂ 	,		$,		\		etc	have	special	meaning	in	REGEXP,	they	have	to	be
escaped	using		\		to	match	them	literally

$	#	here,	'^'	will	match	only	start	of	line

$	echo	'(a+b)^2	=	a^2	+	b^2	+	2ab'	|	sed	's/^/**/g'

**(a+b)^2	=	a^2	+	b^2	+	2ab

$	#	'\`	before	'^'	will	match	'^'	literally

$	echo	'(a+b)^2	=	a^2	+	b^2	+	2ab'	|	sed	's/\^/**/g'

(a+b)**2	=	a**2	+	b**2	+	2ab

$	#	to	match	'\'	use	'\\'

$	echo	'foo\bar'	|	sed	's/\\/	/'

foo	bar

$	echo	'pa$$'	|	sed	's/$/s/g'

pa$$s

$	echo	'pa$$'	|	sed	's/\$/s/g'

pass

$	#	'^'	has	special	meaning	only	at	start	of	REGEXP

$	#	similarly,	'$'	has	special	meaning	only	at	end	of	REGEXP

$	echo	'(a+b)^2	=	a^2	+	b^2	+	2ab'	|	sed	's/a^2/A^2/g'

(a+b)^2	=	A^2	+	b^2	+	2ab

Certain	characters	like		&		and		\		have	special	meaning	in	REPLACEMENT	section	of	substitute
as	well.	They	too	have	to	be	escaped	using		\	
And	the	delimiter	character	has	to	be	escaped	of	course
See	back	reference	section	for	use	of		&		in	REPLACEMENT	section

GNU	sed

85

$	#	&	will	refer	to	entire	matched	string	of	REGEXP	section

$	echo	'foo	and	bar'	|	sed	's/and/"&"/'

foo	"and"	bar

$	echo	'foo	and	bar'	|	sed	's/and/"\&"/'

foo	"&"	bar

$	#	use	different	delimiter	where	required

$	echo	'a	b'	|	sed	's/	/\//'

a/b

$	echo	'a	b'	|	sed	's#	#/#'

a/b

$	#	use	\\	to	represent	literal	\

$	echo	'/foo/bar/baz'	|	sed	's#/#\\#g'

\foo\bar\baz

Alternation

Two	or	more	REGEXP	can	be	combined	as	logical	OR	using	the		|		meta	character
syntax	is		\|		for	BRE	and		|		for	ERE

Each	side	of		|		is	complete	regular	expression	with	their	own	start/end	anchors
How	each	part	of	alternation	is	handled	and	order	of	evaluation/output	is	beyond	the	scope	of	this
tutorial

See	this	for	more	info	on	this	topic.

GNU	sed

86

http://www.regular-expressions.info/alternation.html

$	#	BRE

$	sed	-n	'/red\|blue/p'	poem.txt	

Roses	are	red,

Violets	are	blue,

$	#	ERE

$	sed	-nE	'/red|blue/p'	poem.txt	

Roses	are	red,

Violets	are	blue,

$	#	filter	lines	starting	or	ending	with	'cat'

$	sed	-nE	'/^cat|cat$/p'	anchors.txt	

cat	and	dog

to	concatenate,	use	the	cmd	cat

catapults	laid	waste	to	the	village

try	the	grape	variety	muscat

$	#	g	modifier	is	needed	for	more	than	one	replacement

$	echo	'foo	and	temp	and	baz'	|	sed	-E	's/foo|temp|baz/XYZ/'

XYZ	and	temp	and	baz

$	echo	'foo	and	temp	and	baz'	|	sed	-E	's/foo|temp|baz/XYZ/g'

XYZ	and	XYZ	and	XYZ

The	dot	meta	character

The		.		meta	character	matches	any	character	once,	including	newline

$	#	replace	all	sequence	of	3	characters	starting	with	'c'	and	ending	with	't'

$	echo	'coat	cut	fit	c#t'	|	sed	's/c.t/XYZ/g'

coat	XYZ	fit	XYZ

$	#	replace	all	sequence	of	4	characters	starting	with	'c'	and	ending	with	't'

$	echo	'coat	cut	fit	c#t'	|	sed	's/c..t/ABCD/g'

ABCD	cut	fit	c#t

$	#	space,	tab	etc	are	also	characters	which	will	be	matched	by	'.'	

$	echo	'coat	cut	fit	c#t'	|	sed	's/t.f/IJK/g'

coat	cuIJKit	c#t

Quantifiers

GNU	sed

87

All	quantifiers	in		sed		are	greedy,	i.e	longest	match	wins	as	long	as	overall	REGEXP	is	satisfied	and
precedence	is	left	to	right.	In	this	section,	we'll	cover	usage	of	quantifiers	on	characters

	?		will	try	to	match	0	or	1	time
For	BRE,	use		\?	

$	printf	'late\npale\nfactor\nrare\nact\n'

late

pale

factor

rare

act

$	#	same	as	using:	sed	-nE	'/at|act/p'

$	printf	'late\npale\nfactor\nrare\nact\n'	|	sed	-nE	'/ac?t/p'

late

factor

act

$	#	greediness	comes	in	handy	in	some	cases

$	#	problem:	'<'	has	to	be	replaced	with	'\<'	only	if	not	preceded	by	'\'

$	echo	'blah	\<	foo	bar	<	blah	baz	<'

blah	\<	foo	bar	<	blah	baz	<

$	#	this	won't	work	as	'\<'	gets	replaced	with	'\\<'

$	echo	'blah	\<	foo	bar	<	blah	baz	<'	|	sed	-E	's/</\\</g'

blah	\\<	foo	bar	\<	blah	baz	\<

$	#	by	using	'\\?<'	both	'\<'	and	'<'	gets	replaced	by	'\<'

$	echo	'blah	\<	foo	bar	<	blah	baz	<'	|	sed	-E	's/\\?</\\</g'

blah	\<	foo	bar	\<	blah	baz	\<

	*		will	try	to	match	0	or	more	times

GNU	sed

88

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'

abc

ac

adc

abbc

bbb

bc

abbbbbc

$	#	match	'a'	and	'c'	with	any	number	of	'b'	in	between

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'	|	sed	-n	'/ab*c/p'

abc

ac

abbc

abbbbbc

$	#	delete	from	start	of	line	to	'te'

$	echo	'that	is	quite	a	fabricated	tale'	|	sed	's/.*te//'

d	tale

$	#	delete	from	start	of	line	to	'te	'

$	echo	'that	is	quite	a	fabricated	tale'	|	sed	's/.*te	//'

a	fabricated	tale

$	#	delete	from	first	'f'	in	the	line	to	end	of	line

$	echo	'that	is	quite	a	fabricated	tale'	|	sed	's/f.*//'

that	is	quite	a

	+		will	try	to	match	1	or	more	times
For	BRE,	use		\+	

$	#	match	'a'	and	'c'	with	at	least	one	'b'	in	between

$	#	BRE

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'	|	sed	-n	'/ab\+c/p'

abc

abbc

abbbbbc

$	#	ERE

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'	|	sed	-nE	'/ab+c/p'

abc

abbc

abbbbbc

For	more	precise	control	on	number	of	times	to	match,	use		{}	

GNU	sed

89

$	#	exactly	5	times

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'	|	sed	-nE	'/ab{5}c/p'

abbbbbc

$	#	between	1	to	3	times,	inclusive	of	1	and	3

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'	|	sed	-nE	'/ab{1,3}c/p'

abc

abbc

$	#	maximum	of	2	times,	including	0	times

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'	|	sed	-nE	'/ab{,2}c/p'

abc

ac

abbc

$	#	minimum	of	2	times

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'	|	sed	-nE	'/ab{2,}c/p'

abbc

abbbbbc

$	#	BRE

$	printf	'abc\nac\nadc\nabbc\nbbb\nbc\nabbbbbc\n'	|	sed	-n	'/ab\{2,\}c/p'

abbc

abbbbbc

Character	classes

The		.		meta	character	provides	a	way	to	match	any	character
Character	class	provides	a	way	to	match	any	character	among	a	specified	set	of	characters
enclosed	within		[]	

GNU	sed

90

$	#	same	as:	sed	-nE	'/lane|late/p'

$	printf	'late\nlane\nfate\nfete\n'	|	sed	-n	'/la[nt]e/p'

late

lane

$	printf	'late\nlane\nfate\nfete\n'	|	sed	-n	'/[fl]a[nt]e/p'

late

lane

fate

$	#	quantifiers	can	be	added	similar	to	using	for	any	other	character

$	#	filter	lines	made	up	entirely	of	digits,	containing	at	least	one	digit

$	printf	'cat5\nfoo\n123\n42\n'	|	sed	-nE	'/^[0123456789]+$/p'

123

42

$	#	filter	lines	made	up	entirely	of	digits,	containing	at	least	three	digits

$	printf	'cat5\nfoo\n123\n42\n'	|	sed	-nE	'/^[0123456789]{3,}$/p'

123

Character	ranges

Matching	any	alphabet,	number,	hexadecimal	number	etc	becomes	cumbersome	if	every	character
has	to	be	individually	specified
So,	there's	a	shortcut,	using		-		to	construct	a	range	(has	to	be	specified	in	ascending	order)
See	ascii	codes	table	for	reference

Note	that	behavior	of	range	will	depend	on	locale	settings
arch	wiki	-	locale
Linux:	Define	Locale	and	Language	Settings

Matching	Numeric	Ranges	with	a	Regular	Expression

GNU	sed

91

http://ascii.cl/
https://wiki.archlinux.org/index.php/locale
https://www.shellhacks.com/linux-define-locale-language-settings/
http://www.regular-expressions.info/numericranges.html

$	#	filter	lines	made	up	entirely	of	digits,	at	least	one

$	printf	'cat5\nfoo\n123\n42\n'	|	sed	-nE	'/^[0-9]+$/p'

123

42

$	#	filter	lines	made	up	entirely	of	lower	case	alphabets,	at	least	one

$	printf	'cat5\nfoo\n123\n42\n'	|	sed	-nE	'/^[a-z]+$/p'

foo

$	#	filter	lines	made	up	entirely	of	lower	case	alphabets	and	digits,	at	least	one

$	printf	'cat5\nfoo\n123\n42\n'	|	sed	-nE	'/^[a-z0-9]+$/p'

cat5

foo

123

42

$	#	numbers	between	10	to	29

$	printf	'23\n154\n12\n26\n98234\n'	|	sed	-n	'/^[12][0-9]$/p'

23

12

26

$	#	numbers	>=	100

$	printf	'23\n154\n12\n26\n98234\n'	|	sed	-nE	'/^[0-9]{3,}$/p'

154

98234

$	#	numbers	>=	100	if	there	are	leading	zeros

$	printf	'0501\n035\n154\n12\n26\n98234\n'	|	sed	-nE	'/^0*[1-9][0-9]{2,}$/p'

0501

154

98234

Negating	character	class

Meta	characters	inside	and	outside	of		[]		are	completely	different
For	example,	 	̂ 		as	first	character	inside		[]		matches	characters	other	than	those	specified	inside
character	class

GNU	sed

92

$	#	delete	all	characters	before	first	=

$	echo	'foo=bar;	baz=123'	|	sed	-E	's/^[^=]+//'

=bar;	baz=123

$	#	delete	all	characters	after	last	=

$	echo	'foo=bar;	baz=123'	|	sed	-E	's/[^=]+$//'

foo=bar;	baz=

$	#	same	as:	sed	-n	'/[aeiou]/!p'

$	printf	'tryst\nglyph\npity\nwhy\n'	|	sed	-n	'/^[^aeiou]*$/p'

tryst

glyph

why

Matching	meta	characters	inside		[]	

Characters	like	 	̂ 	,]	,		-	,	etc	need	special	attention	to	be	part	of	list
Also,	sequences	like		[.		or		=]		have	special	meaning	within		[]	

See	sed	manual	-	Character-Classes-and-Bracket-Expressions	for	complete	list

$	#	to	match	-	it	should	be	first	or	last	character	within	[]

$	printf	'Foo-bar\n123-456\n42\nCo-operate\n'	|	sed	-nE	'/^[a-z-]+$/Ip'

Foo-bar

Co-operate

$	#	to	match]	it	should	be	first	character	within	[]

$	printf	'int	foo\nint	a[5]\nfoo=bar\n'	|	sed	-n	'/[]=]/p'

int	a[5]

foo=bar

$	#	to	match	[use	[anywhere	in	the	character	list

$	#	[][]	will	match	both	[and]

$	printf	'int	foo\nint	a[5]\nfoo=bar\n'	|	sed	-n	'/[[]/p'

int	a[5]

$	#	to	match	^	it	should	be	other	than	first	in	the	list

$	printf	'c=a^b\nd=f*h+e\nz=x-y\n'	|	sed	-n	'/[*^]/p'

c=a^b

d=f*h+e

Named	character	classes

Equivalent	class	shown	is	for	C	locale	and	ASCII	character	encoding
See	ascii	codes	table	for	reference

See	sed	manual	-	Character	Classes	and	Bracket	Expressions	for	more	details

GNU	sed

93

https://www.gnu.org/software/sed/manual/sed.html#Character-Classes-and-Bracket-Expressions
http://ascii.cl/
https://www.gnu.org/software/sed/manual/sed.html#Character-Classes-and-Bracket-Expressions

Character
classes Description

[:digit:] Same	as	[0-9]

[:lower:] Same	as	[a-z]

[:upper:] Same	as	[A-Z]

[:alpha:] Same	as	[a-zA-Z]

[:alnum:] Same	as	[0-9a-zA-Z]

[:xdigit:] Same	as	[0-9a-fA-F]

[:cntrl:] Control	characters	-	first	32	ASCII	characters	and	127th	(DEL)

[:punct:] All	the	punctuation	characters

[:graph:] [:alnum:]	and	[:punct:]

[:print:] [:alnum:],	[:punct:]	and	space

[:blank:] Space	and	tab	characters

[:space:] white-space	characters:	tab,	newline,	vertical	tab,	form	feed,	carriage	return
and	space

$	#	lines	containing	only	hexadecimal	characters

$	printf	'128\n34\nfe32\nfoo1\nbar\n'	|	sed	-nE	'/^[[:xdigit:]]+$/p'

128

34

fe32

$	#	lines	containing	at	least	one	non-hexadecimal	character

$	printf	'128\n34\nfe32\nfoo1\nbar\n'	|	sed	-n	'/[^[:xdigit:]]/p'

foo1

bar

$	#	same	as:	sed	-nE	'/^[a-z-]+$/Ip'

$	printf	'Foo-bar\n123-456\n42\nCo-operate\n'	|	sed	-nE	'/^[[:alpha:]-]+$/p'

Foo-bar

Co-operate

$	#	remove	all	punctuation	characters

$	sed	's/[[:punct:]]//g'	poem.txt	

Roses	are	red

Violets	are	blue

Sugar	is	sweet

And	so	are	you

Backslash	character	classes

GNU	sed

94

Equivalent	class	shown	is	for	C	locale	and	ASCII	character	encoding
See	ascii	codes	table	for	reference

See	sed	manual	-	regular	expression	extensions	for	more	details

Character	classes Description

\w Same	as	[0-9a-zA-Z]	or	[[:alnum:]]

\W Same	as	 	or	

\s Same	as	[[:space:]]

\S Same	as	

$	#	lines	containing	only	word	characters

$	printf	'123\na=b+c\ncmp_str\nFoo_bar\n'	|	sed	-nE	'/^\w+$/p'

123

cmp_str

Foo_bar

$	#	backslash	character	classes	cannot	be	used	inside	[]	unlike	perl

$	#	\w	would	simply	match	w

$	echo	'w=y-x+9*3'	|	sed	's/[\w=]//g'

y-x+9*3

$	echo	'w=y-x+9*3'	|	perl	-pe	's/[\w=]//g'

-+*

Escape	sequences

Certain	ASCII	characters	like	tab,	carriage	return,	newline,	etc	have	escape	sequence	to	represent
them

Unlike	backslash	character	classes,	these	can	be	used	within		[]		as	well
Any	ASCII	character	can	be	also	represented	using	their	decimal	or	octal	or	hexadecimal	value

See	ascii	codes	table	for	reference
See	sed	manual	-	Escapes	for	more	details

0-9a-zA-Z_ [:alnum:]_

[:space:]

GNU	sed

95

http://ascii.cl/
https://www.gnu.org/software/sed/manual/sed.html#regexp-extensions
http://ascii.cl/
https://www.gnu.org/software/sed/manual/sed.html#Escapes

$	#	example	for	representing	tab	character

$	printf	'foo\tbar\tbaz\n'

foo					bar					baz

$	printf	'foo\tbar\tbaz\n'	|	sed	's/\t/	/g'

foo	bar	baz

$	echo	'a	b	c'	|	sed	's/	/\t/g'

a							b							c

$	#	using	escape	sequence	inside	character	class

$	printf	'a\tb\vc\n'

a							b

									c

$	printf	'a\tb\vc\n'	|	cat	-vT

a^Ib^Kc

$	printf	'a\tb\vc\n'	|	sed	's/[\t\v]/	/g'

a	b	c

$	#	most	common	use	case	for	hex	escape	sequence	is	to	represent	single	quotes

$	#	equivalent	is	'\d039'	and	'\o047'	for	decimal	and	octal	respectively

$	echo	"foo:	'34'"

foo:	'34'

$	echo	"foo:	'34'"	|	sed	's/\x27/"/g'

foo:	"34"

$	echo	'foo:	"34"'	|	sed	's/"/\x27/g'

foo:	'34'

Grouping

Character	classes	allow	matching	against	a	choice	of	multiple	character	list	and	then	quantifier
added	if	needed
One	of	the	uses	of	grouping	is	analogous	to	character	classes	for	whole	regular	expressions,
instead	of	just	list	of	characters
The	meta	characters		()		are	used	for	grouping

requires		\(\)		for	BRE
Similar	to	maths		ab	+	ac	=	a(b+c)	,	think	of	regular	expression		a(b|c)	=	ab|ac	

GNU	sed

96

$	#	four	letter	words	with	'on'	or	'no'	in	middle

$	printf	'known\nmood\nknow\npony\ninns\n'	|	sed	-nE	'/\b[a-z](on|no)[a-z]\b/p'

know

pony

$	#	common	mistake	to	use	character	class,	will	match	'oo'	and	'nn'	as	well

$	printf	'known\nmood\nknow\npony\ninns\n'	|	sed	-nE	'/\b[a-z][on]{2}[a-z]\b/p'

mood

know

pony

inns

$	#	quantifier	example

$	printf	'handed\nhand\nhandy\nhands\nhandle\n'	|	sed	-nE	'/^hand([sy]|le)?$/p'

hand

handy

hands

handle

$	#	remove	first	two	columns	where	:	is	delimiter

$	echo	'foo:123:bar:baz'	|	sed	-E	's/^([^:]+:){2}//'

bar:baz

$	#	can	be	nested	as	required

$	printf	'spade\nscore\nscare\nspare\nsphere\n'	|	sed	-nE	'/^s([cp](he|a)[rd])e$/p'

spade

scare

spare

sphere

Back	reference

The	matched	string	within		()		can	also	be	used	to	be	matched	again	by	back	referencing	the
captured	groups
	\1		denotes	the	first	matched	group,		\2		the	second	one	and	so	on

Order	is	leftmost		(is		\1	,	next	one	is		\2		and	so	on
Can	be	used	both	in	REGEXP	as	well	as	in	REPLACEMENT	sections

	&		or		\0		represents	entire	matched	string	in	REPLACEMENT	section
Note	that	the	matched	string,	not	the	regular	expression	itself	is	referenced

for	ex:	if		([0-9][a-f])		matches		3b	,	then	back	referencing	will	be		3b		not	any	other	valid
match	of	the	regular	expression	like		8f	,		0a		etc

As		\		and		&		are	special	characters	in	REPLACEMENT	section,	use		\\		and		\&		respectively
for	literal	representation

GNU	sed

97

$	#	filter	lines	with	consecutive	repeated	alphabets

$	printf	'eel\nflee\nall\npat\nilk\nseen\n'	|	sed	-nE	'/([a-z])\1/p'

eel

flee

all

seen

$	#	reduce	\\	to	single	\	and	delete	if	only	single	\

$	echo	'\[\]	and	\\w	and	\[a-zA-Z0-9_\]'	|	sed	-E	's/(\\?)\\/\1/g'

[]	and	\w	and	[a-zA-Z0-9_]

$	#	remove	two	or	more	duplicate	words	separated	by	space

$	#	word	boundaries	prevent	false	matches	like	'the	theatre'	'sand	and	stone'	etc

$	echo	'a	a	a	walking	for	for	a	cause'	|	sed	-E	's/\b(\w+)(\1)+\b/\1/g'

a	walking	for	a	cause

$	#	surround	only	third	column	with	double	quotes

$	#	note	the	nested	capture	groups	and	numbers	used	in	REPLACEMENT	section

$	echo	'foo:123:bar:baz'	|	sed	-E	's/^(([^:]+:){2})([^:]+)/\1"\3"/'

foo:123:"bar":baz

$	#	add	first	column	data	to	end	of	line	as	well

$	echo	'foo:123:bar:baz'	|	sed	-E	's/^([^:]+).*/&	\1/'

foo:123:bar:baz	foo

$	#	surround	entire	line	with	double	quotes

$	echo	'hello	world'	|	sed	's/.*/"&"/'

"hello	world"

$	#	add	something	at	start	as	well	as	end	of	line

$	echo	'hello	world'	|	sed	's/.*/Hi.	&.	Have	a	nice	day/'

Hi.	hello	world.	Have	a	nice	day

Changing	case

Applies	only	to	REPLACEMENT	section,	unlike		perl		where	these	can	be	used	in	REGEXP
portion	as	well
See	sed	manual	-	The	s	Command	for	more	details	and	corner	cases

GNU	sed

98

https://www.gnu.org/software/sed/manual/sed.html#The-_0022s_0022-Command

$	#	UPPERCASE	all	alphabets,	will	be	stopped	on	\L	or	\E

$	echo	'HeLlO	WoRLD'	|	sed	's/.*/\U&/'

HELLO	WORLD

$	#	lowercase	all	alphabets,	will	be	stopped	on	\U	or	\E

$	echo	'HeLlO	WoRLD'	|	sed	's/.*/\L&/'

hello	world

$	#	Uppercase	only	next	character

$	echo	'foo	bar'	|	sed	's/\w*/\u&/g'

Foo	Bar

$	echo	'foo_bar	next_line'	|	sed	-E	's/_([a-z])/\u\1/g'

fooBar	nextLine

$	#	lowercase	only	next	character

$	echo	'FOO	BAR'	|	sed	's/\w*/\l&/g'

fOO	bAR

$	echo	'fooBar	nextLine	Baz'	|	sed	-E	's/([a-z])([A-Z])/\1_\l\2/g'

foo_bar	next_line	Baz

$	#	titlecase	if	input	has	mixed	case

$	echo	'HeLlO	WoRLD'	|	sed	's/.*/\L&/;	s/\w*/\u&/g'

Hello	World

$	#	sed	's/.*/\L\u&/'	also	works,	but	not	sure	if	it	is	defined	behavior

$	echo	'HeLlO	WoRLD'	|	sed	's/.*/\L&/;	s/./\u&/'

Hello	world

$	#	\E	will	stop	conversion	started	by	\U	or	\L

$	echo	'foo_bar	next_line	baz'	|	sed	-E	's/([a-z]+)(_[a-z]+)/\U\1\E\2/g'

FOO_bar	NEXT_line	baz

Substitute	command	modifiers
The		s		command	syntax:

s/REGEXP/REPLACEMENT/FLAGS

Modifiers	(or	FLAGS)	like		g	,		p		and		I		have	been	already	seen.	For	completeness,	they	will	be
discussed	again	along	with	rest	of	the	modifiers
See	sed	manual	-	The	s	Command	for	more	details	and	corner	cases

GNU	sed

99

https://www.gnu.org/software/sed/manual/sed.html#The-_0022s_0022-Command

g	modifier

By	default,	substitute	command	will	replace	only	first	occurrence	of	match.		g		modifier	is	needed	to
replace	all	occurrences

$	#	replace	only	first	:	with	-

$	echo	'foo:123:bar:baz'	|	sed	's/:/-/'

foo-123:bar:baz

$	#	replace	all	:	with	-

$	echo	'foo:123:bar:baz'	|	sed	's/:/-/g'

foo-123-bar-baz

Replace	specific	occurrence

A	number	can	be	used	to	specify	Nth	match	to	be	replaced

$	#	replace	first	occurrence

$	echo	'foo:123:bar:baz'	|	sed	's/:/-/'

foo-123:bar:baz

$	echo	'foo:123:bar:baz'	|	sed	-E	's/[^:]+/XYZ/'

XYZ:123:bar:baz

$	#	replace	second	occurrence

$	echo	'foo:123:bar:baz'	|	sed	's/:/-/2'

foo:123-bar:baz

$	echo	'foo:123:bar:baz'	|	sed	-E	's/[^:]+/XYZ/2'

foo:XYZ:bar:baz

$	#	replace	third	occurrence

$	echo	'foo:123:bar:baz'	|	sed	's/:/-/3'

foo:123:bar-baz

$	echo	'foo:123:bar:baz'	|	sed	-E	's/[^:]+/XYZ/3'

foo:123:XYZ:baz

$	#	choice	of	quantifier	depends	on	knowing	input

$	echo	':123:bar:baz'	|	sed	's/[^:]*/XYZ/2'

:XYZ:bar:baz

$	echo	':123:bar:baz'	|	sed	-E	's/[^:]+/XYZ/2'

:123:XYZ:baz

Replacing	Nth	match	from	end	of	line	when	number	of	matches	is	unknown
Makes	use	of	greediness	of	quantifiers

GNU	sed

100

$	#	replacing	last	occurrence

$	#	can	also	use	sed	-E	's/:([^:]*)$/-\1/'

$	echo	'foo:123:bar:baz'	|	sed	-E	's/(.*):/\1-/'

foo:123:bar-baz

$	echo	'456:foo:123:bar:789:baz'	|	sed	-E	's/(.*):/\1-/'

456:foo:123:bar:789-baz

$	echo	'foo	and	bar	and	baz	and	good'	|	sed	-E	's/(.*)and/\1XYZ/'

foo	and	bar	and	baz	XYZ	good

$	#	use	word	boundaries	as	necessary

$	echo	'foo	and	bar	and	baz	land	good'	|	sed	-E	's/(.*)\band\b/\1XYZ/'

foo	and	bar	XYZ	baz	land	good

$	#	replacing	last	but	one

$	echo	'foo:123:bar:baz'	|	sed	-E	's/(.*):(.*:)/\1-\2/'

foo:123-bar:baz

$	echo	'456:foo:123:bar:789:baz'	|	sed	-E	's/(.*):(.*:)/\1-\2/'

456:foo:123:bar-789:baz

$	#	replacing	last	but	two

$	echo	'456:foo:123:bar:789:baz'	|	sed	-E	's/(.*):((.*:){2})/\1-\2/'

456:foo:123-bar:789:baz

$	#	replacing	last	but	three

$	echo	'456:foo:123:bar:789:baz'	|	sed	-E	's/(.*):((.*:){3})/\1-\2/'

456:foo-123:bar:789:baz

Replacing	all	but	first	N	occurrences	by	combining	with		g		modifier

$	#	replace	all	:	with	-	except	first	two

$	echo	'456:foo:123:bar:789:baz'	|	sed	-E	's/:/-/3g'

456:foo:123-bar-789-baz

$	#	replace	all	:	with	-	except	first	three

$	echo	'456:foo:123:bar:789:baz'	|	sed	-E	's/:/-/4g'

456:foo:123:bar-789-baz

Replacing	multiple	Nth	occurrences

GNU	sed

101

$	#	replace	first	two	occurrences	of	:	with	-

$	echo	'456:foo:123:bar:789:baz'	|	sed	's/:/-/;	s/:/-/'

456-foo-123:bar:789:baz

$	#	replace	second	and	third	occurrences	of	:	with	-

$	#	note	the	changes	in	number	to	be	used	for	subsequent	replacement

$	echo	'456:foo:123:bar:789:baz'	|	sed	's/:/-/2;	s/:/-/2'

456:foo-123-bar:789:baz

$	#	better	way	is	to	use	descending	order

$	echo	'456:foo:123:bar:789:baz'	|	sed	's/:/-/3;	s/:/-/2'

456:foo-123-bar:789:baz

$	#	replace	second,	third	and	fifth	occurrences	of	:	with	-

$	echo	'456:foo:123:bar:789:baz'	|	sed	's/:/-/5;	s/:/-/3;	s/:/-/2'

456:foo-123-bar:789-baz

Ignoring	case

Either		i		or		I		can	be	used	for	replacing	in	case-insensitive	manner
Since	only		I		can	be	used	for	address	filtering	(for	ex:		sed	'/rose/Id'	poem.txt),	use		I		for
substitute	command	as	well	for	consistency

$	echo	'hello	Hello	HELLO	HeLlO'	|	sed	's/hello/hi/g'

hi	Hello	HELLO	HeLlO

$	echo	'hello	Hello	HELLO	HeLlO'	|	sed	's/hello/hi/Ig'

hi	hi	hi	hi

p	modifier

Usually	used	in	conjunction	with		-n		option	to	output	only	modified	lines

GNU	sed

102

$	#	no	output	if	no	substitution

$	echo	'hi	there.	have	a	nice	day'	|	sed	-n	's/xyz/XYZ/p'

$	#	modified	line	if	there	is	substitution

$	echo	'hi	there.	have	a	nice	day'	|	sed	-n	's/\bh/H/pg'

Hi	there.	Have	a	nice	day

$	#	only	lines	containing	'are'

$	sed	-n	's/are/ARE/p'	poem.txt	

Roses	ARE	red,

Violets	ARE	blue,

And	so	ARE	you.

$	#	only	lines	containing	'are'	as	well	as	'so'

$	sed	-n	'/are/	s/so/SO/p'	poem.txt	

And	SO	are	you.

w	modifier

Allows	to	write	only	the	changes	to	specified	file	name	instead	of	default	stdout

$	#	space	between	w	and	filename	is	optional

$	#	same	as:	sed	-n	's/3/three/p'	>	3.txt

$	seq	20	|	sed	-n	's/3/three/w	3.txt'

$	cat	3.txt	

three

1three

$	#	do	not	use	-n	if	output	should	be	displayed	as	well	as	written	to	file

$	echo	'456:foo:123:bar:789:baz'	|	sed	-E	's/(:[^:]*){2}$//w	col.txt'

456:foo:123:bar

$	cat	col.txt	

456:foo:123:bar

For	multiple	output	files,	use		-e		for	each	file

$	seq	20	|	sed	-n	-e	's/5/five/w	5.txt'	-e	's/7/seven/w	7.txt'

$	cat	5.txt	

five

1five

$	cat	7.txt	

seven

1seven

GNU	sed

103

There	are	two	predefined	filenames
	/dev/stdout		to	write	to	stdout
	/dev/stderr		to	write	to	stderr

$	#	inplace	editing	as	well	as	display	changes	on	terminal

$	sed	-i	's/three/3/w	/dev/stdout'	3.txt	

3

13

$	cat	3.txt	

3

13

e	modifier

Allows	to	use	shell	command	output	in	REPLACEMENT	section
Trailing	newline	from	command	output	is	suppressed

$	#	replacing	a	line	with	output	of	shell	command

$	printf	'Date:\nreplace	this	line\n'

Date:

replace	this	line

$	printf	'Date:\nreplace	this	line\n'	|	sed	's/^replace.*/date/e'

Date:

Thu	May	25	10:19:46	IST	2017

$	#	when	using	p	modifier	with	e,	order	is	important

$	printf	'Date:\nreplace	this	line\n'	|	sed	-n	's/^replace.*/date/ep'

Thu	May	25	10:19:46	IST	2017

$	printf	'Date:\nreplace	this	line\n'	|	sed	-n	's/^replace.*/date/pe'

date

$	#	entire	modified	line	is	executed	as	shell	command

$	echo	'xyz	5'	|	sed	's/xyz/seq/e'

1

2

3

4

5

m	modifier

GNU	sed

104

Either		m		or		M		can	be	used
So	far,	we've	seen	only	line	based	operations	(newline	character	being	used	to	distinguish	lines)
There	are	various	ways	(see	sed	manual	-	How	sed	Works)	by	which	more	than	one	line	is	there	in
pattern	space	and	in	such	cases		m		modifier	can	be	used
See	also	usage	of	multi-line	modifier	for	more	examples

Before	seeing	example	with		m		modifier,	let's	see	a	simple	example	to	get	two	lines	in	pattern	space

$	#	line	matching	'blue'	and	next	line	in	pattern	space

$	sed	-n	'/blue/{N;p}'	poem.txt	

Violets	are	blue,

Sugar	is	sweet,

$	#	applying	substitution,	remember	that	.	matches	newline	as	well

$	sed	-n	'/blue/{N;s/are.*is//p}'	poem.txt	

Violets		sweet,

When		m		modifier	is	used,	it	affects	the	behavior	of	 	̂ 	,		$		and		.		meta	characters

$	#	without	m	modifier,	^	will	anchor	only	beginning	of	entire	pattern	space

$	sed	-n	'/blue/{N;s/^/::	/pg}'	poem.txt	

::	Violets	are	blue,

Sugar	is	sweet,

$	#	with	m	modifier,	^	will	anchor	each	individual	line	within	pattern	space

$	sed	-n	'/blue/{N;s/^/::	/pgm}'	poem.txt	

::	Violets	are	blue,

::	Sugar	is	sweet,

$	#	same	applies	to	$	as	well

$	sed	-n	'/blue/{N;s/$/	::/pg}'	poem.txt	

Violets	are	blue,

Sugar	is	sweet,	::

$	sed	-n	'/blue/{N;s/$/	::/pgm}'	poem.txt	

Violets	are	blue,	::

Sugar	is	sweet,	::

$	#	with	m	modifier,	.	will	not	match	newline	character

$	sed	-n	'/blue/{N;s/are.*//p}'	poem.txt	

Violets	

$	sed	-n	'/blue/{N;s/are.*//pm}'	poem.txt	

Violets	

Sugar	is	sweet,

GNU	sed

105

https://www.gnu.org/software/sed/manual/sed.html#Execution-Cycle
https://unix.stackexchange.com/questions/298670/simple-significant-usage-of-m-multi-line-address-suffix

Shell	substitutions
Examples	presented	works	with		bash		shell,	might	differ	for	other	shells
See	also	Difference	between	single	and	double	quotes	in	Bash
For	robust	substitutions	taking	care	of	meta	characters	in	REGEXP	and	REPLACEMENT	sections,
see

How	to	ensure	that	string	interpolated	into	sed	substitution	escapes	all	metachars
Is	it	possible	to	escape	regex	metacharacters	reliably	with	sed

Variable	substitution

Entire	command	in	double	quotes	can	be	used	for	simple	use	cases

$	word='are'

$	sed	-n	"/$word/p"	poem.txt	

Roses	are	red,

Violets	are	blue,

And	so	are	you.

$	replace='ARE'

$	sed	"s/$word/$replace/g"	poem.txt	

Roses	ARE	red,

Violets	ARE	blue,

Sugar	is	sweet,

And	so	ARE	you.

$	#	need	to	use	delimiter	as	suitable

$	echo	'home	path	is:'	|	sed	"s/$/	$HOME/"

sed:	-e	expression	#1,	char	7:	unknown	option	to	`s'

$	echo	'home	path	is:'	|	sed	"s|$|	$HOME|"

home	path	is:	/home/learnbyexample

If	command	has	characters	like		\	,	backtick,		!		etc,	double	quote	only	the	variable

GNU	sed

106

https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash
https://unix.stackexchange.com/questions/129059/how-to-ensure-that-string-interpolated-into-sed-substitution-escapes-all-metac
https://stackoverflow.com/questions/29613304/is-it-possible-to-escape-regex-metacharacters-reliably-with-sed

$	#	if	history	expansion	is	enabled,	!	is	special

$	word='are'

$	sed	"/$word/!d"	poem.txt	

sed	"/$word/date	+%A"	poem.txt	

sed:	-e	expression	#1,	char	7:	extra	characters	after	command

$	#	so	double	quote	only	the	variable

$	#	the	command	is	concatenation	of	'/'	and	"$word"	and	'/!d'

$	sed	'/'"$word"'/!d'	poem.txt	

Roses	are	red,

Violets	are	blue,

And	so	are	you.

Command	substitution

Much	more	flexible	than	using		e		modifier	as	part	of	line	can	be	modified	as	well

$	echo	'today	is	date'	|	sed	's/date/'"$(date	+%A)"'/'

today	is	Tuesday

$	#	need	to	use	delimiter	as	suitable

$	echo	'current	working	dir	is:	'	|	sed	's/$/'"$(pwd)"'/'

sed:	-e	expression	#1,	char	6:	unknown	option	to	`s'

$	echo	'current	working	dir	is:	'	|	sed	's|$|'"$(pwd)"'|'

current	working	dir	is:	/home/learnbyexample/command_line_text_processing

$	#	multiline	output	cannot	be	substituted	in	this	manner

$	echo	'foo'	|	sed	's/foo/'"$(seq	5)"'/'

sed:	-e	expression	#1,	char	7:	unterminated	`s'	command

z	and	s	command	line	options
We	have	already	seen	a	few	options	like		-n	,		-e	,		-i		and		-E	
This	section	will	cover		-z		and		-s		options
See	sed	manual	-	Command	line	options	for	other	options	and	more	details

The		-z		option	will	cause		sed		to	separate	input	based	on	ASCII	NUL	character	instead	of	newlines

GNU	sed

107

https://www.gnu.org/software/sed/manual/sed.html#Command_002dLine-Options

$	#	useful	to	process	null	separated	data

$	#	for	ex:	output	of	grep	-Z,	find	-print0,	etc

$	printf	'teal\0red\nblue\n\0green\n'	|	sed	-nz	'/red/p'	|	cat	-A

red$

blue$

^@

$	#	also	useful	to	process	whole	file(not	having	NUL	characters)	as	a	single	string

$	#	adds	;	to	previous	line	if	current	line	starts	with	c

$	printf	'cat\ndog\ncoat\ncut\nmat\n'	|	sed	-z	's/\nc/;&/g'

cat

dog;

coat;

cut

mat

The		-s		option	will	cause		sed		to	treat	multiple	input	files	separately	instead	of	treating	them	as	single
concatenated	input.	If		-i		is	being	used,		-s		is	implied

$	#	without	-s,	there	is	only	one	first	line

$	#	F	command	prints	file	name	of	current	file

$	sed	'1F'	f1	f2

f1

I	ate	three	apples

I	bought	two	bananas	and	three	mangoes

$	#	with	-s,	each	file	has	its	own	address

$	sed	-s	'1F'	f1	f2

f1

I	ate	three	apples

f2

I	bought	two	bananas	and	three	mangoes

change	command
The	change	command		c		will	delete	line(s)	represented	by	address	or	address	range	and	replace	it
with	given	string

Note	the	string	used	cannot	have	literal	newline	character,	use	escape	sequence	instead

GNU	sed

108

$	#	white-space	between	c	and	replacement	string	is	ignored

$	seq	3	|	sed	'2c	foo	bar'

1

foo	bar

3

$	#	note	how	all	lines	in	address	range	are	replaced

$	seq	8	|	sed	'3,7cfoo	bar'

1

2

foo	bar

8

$	#	escape	sequences	are	allowed	in	string	to	be	replaced

$	sed	'/red/,/is/chello\nhi	there'	poem.txt	

hello

hi	there

And	so	are	you.

command	will	apply	for	all	matching	addresses

$	seq	5	|	sed	'/[24]/cfoo'

1

foo

3

foo

5

	\		is	special	immediately	after		c	,	see	sed	manual	-	other	commands	for	details
If	escape	sequence	is	needed	at	beginning	of	replacement	string,	use	an	additional		\	

GNU	sed

109

https://www.gnu.org/software/sed/manual/sed.html#Other-Commands

$	#	\	helps	to	add	leading	spaces

$	seq	3	|	sed	'2c		a'

1

a

3

$	seq	3	|	sed	'2c\	a'

1

	a

3

$	seq	3	|	sed	'2c\tgood	day'

1

tgood	day

3

$	seq	3	|	sed	'2c\\tgood	day'

1

								good	day

3

Since		;		cannot	be	used	to	distinguish	between	string	and	end	of	command,	use		-e		for	multiple
commands

$	sed	-e	'/are/cHi;s/is/IS/'	poem.txt	

Hi;s/is/IS/

Hi;s/is/IS/

Sugar	is	sweet,

Hi;s/is/IS/

$	sed	-e	'/are/cHi'	-e	's/is/IS/'	poem.txt	

Hi

Hi

Sugar	IS	sweet,

Hi

Using	shell	substitution

GNU	sed

110

$	text='good	day'

$	seq	3	|	sed	'2c'"$text"

1

good	day

3

$	text='good	day\nfoo	bar'

$	seq	3	|	sed	'2c'"$text"

1

good	day

foo	bar

3

$	seq	3	|	sed	'2c'"$(date	+%A)"

1

Thursday

3

$	#	multiline	command	output	will	lead	to	error

$	seq	3	|	sed	'2c'"$(seq	2)"

sed:	-e	expression	#1,	char	5:	missing	command

insert	command
The	insert	command	allows	to	add	string	before	a	line	matching	given	address

Note	the	string	used	cannot	have	literal	newline	character,	use	escape	sequence	instead

$	#	white-space	between	i	and	string	is	ignored

$	#	same	as:	sed	'2s/^/hello\n/'

$	seq	3	|	sed	'2i	hello'

1

hello

2

3

$	#	escape	sequences	can	be	used

$	seq	3	|	sed	'2ihello\nhi'

1

hello

hi

2

3

GNU	sed

111

command	will	apply	for	all	matching	addresses

$	seq	5	|	sed	'/[24]/ifoo'

1

foo

2

3

foo

4

5

	\		is	special	immediately	after		i	,	see	sed	manual	-	other	commands	for	details
If	escape	sequence	is	needed	at	beginning	of	replacement	string,	use	an	additional		\	

$	seq	3	|	sed	'2i		foo'

1

foo

2

3

$	seq	3	|	sed	'2i\	foo'

1

	foo

2

3

$	seq	3	|	sed	'2i\tbar'

1

tbar

2

3

$	seq	3	|	sed	'2i\\tbar'

1

								bar

2

3

Since		;		cannot	be	used	to	distinguish	between	string	and	end	of	command,	use		-e		for	multiple
commands

GNU	sed

112

https://www.gnu.org/software/sed/manual/sed.html#Other-Commands

$	sed	-e	'/is/ifoobar;s/are/ARE/'	poem.txt	

Roses	are	red,

Violets	are	blue,

foobar;s/are/ARE/

Sugar	is	sweet,

And	so	are	you.

$	sed	-e	'/is/ifoobar'	-e	's/are/ARE/'	poem.txt	

Roses	ARE	red,

Violets	ARE	blue,

foobar

Sugar	is	sweet,

And	so	ARE	you.

Using	shell	substitution

$	text='good	day'

$	seq	3	|	sed	'2i'"$text"

1

good	day

2

3

$	text='good	day\nfoo	bar'

$	seq	3	|	sed	'2i'"$text"

1

good	day

foo	bar

2

3

$	seq	3	|	sed	'2iToday	is	'"$(date	+%A)"

1

Today	is	Thursday

2

3

$	#	multiline	command	output	will	lead	to	error

$	seq	3	|	sed	'2i'"$(seq	2)"

sed:	-e	expression	#1,	char	5:	missing	command

append	command

GNU	sed

113

The	append	command	allows	to	add	string	after	a	line	matching	given	address

Note	the	string	used	cannot	have	literal	newline	character,	use	escape	sequence	instead

$	#	white-space	between	a	and	string	is	ignored

$	#	same	as:	sed	'2s/$/\nhello/'

$	seq	3	|	sed	'2a	hello'

1

2

hello

3

$	#	escape	sequences	can	be	used

$	seq	3	|	sed	'2ahello\nhi'

1

2

hello

hi

3

command	will	apply	for	all	matching	addresses

$	seq	5	|	sed	'/[24]/afoo'

1

2

foo

3

4

foo

5

	\		is	special	immediately	after		a	,	see	sed	manual	-	other	commands	for	details
If	escape	sequence	is	needed	at	beginning	of	replacement	string,	use	an	additional		\	

GNU	sed

114

https://www.gnu.org/software/sed/manual/sed.html#Other-Commands

$	seq	3	|	sed	'2a		foo'

1

2

foo

3

$	seq	3	|	sed	'2a\	foo'

1

2

	foo

3

$	seq	3	|	sed	'2a\tbar'

1

2

tbar

3

$	seq	3	|	sed	'2a\\tbar'

1

2

								bar

3

Since		;		cannot	be	used	to	distinguish	between	string	and	end	of	command,	use		-e		for	multiple
commands

$	sed	-e	'/is/afoobar;s/are/ARE/'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

foobar;s/are/ARE/

And	so	are	you.

$	sed	-e	'/is/afoobar'	-e	's/are/ARE/'	poem.txt	

Roses	ARE	red,

Violets	ARE	blue,

Sugar	is	sweet,

foobar

And	so	ARE	you.

Using	shell	substitution

GNU	sed

115

$	text='good	day'

$	seq	3	|	sed	'2a'"$text"

1

2

good	day

3

$	text='good	day\nfoo	bar'

$	seq	3	|	sed	'2a'"$text"

1

2

good	day

foo	bar

3

$	seq	3	|	sed	'2aToday	is	'"$(date	+%A)"

1

2

Today	is	Thursday

3

$	#	multiline	command	output	will	lead	to	error

$	seq	3	|	sed	'2a'"$(seq	2)"

sed:	-e	expression	#1,	char	5:	missing	command

See	this	Q&A	for	using		a		command	to	make	sure	last	line	of	input	has	a	newline	character

adding	contents	of	file

r	for	entire	file

The		r		command	allows	to	add	contents	of	file	after	a	line	matching	given	address
It	is	a	robust	way	to	add	multiline	content	or	if	content	can	have	characters	that	may	be	interpreted
Special	name		/dev/stdin		allows	to	read	from	stdin	instead	of	file	input
First,	a	simple	example	to	add	contents	of	one	file	into	another	at	specified	address

GNU	sed

116

https://stackoverflow.com/questions/41343062/what-does-this-mean-in-linux-sed-a-a-txt

$	cat	5.txt	

five

1five

$	cat	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

$	#	space	between	r	and	filename	is	optional

$	sed	'2r	5.txt'	poem.txt	

Roses	are	red,

Violets	are	blue,

five

1five

Sugar	is	sweet,

And	so	are	you.

$	#	content	cannot	be	added	before	first	line

$	sed	'0r	5.txt'	poem.txt	

sed:	-e	expression	#1,	char	2:	invalid	usage	of	line	address	0

$	#	but	that	is	trivial	to	solve:	cat	5.txt	poem.txt

command	will	apply	for	all	matching	addresses

$	seq	5	|	sed	'/[24]/r	5.txt'

1

2

five

1five

3

4

five

1five

5

adding	content	of	variable	as	it	is	without	any	interpretation
also	shows	example	for	using		/dev/stdin	

GNU	sed

117

$	text='Good	day\nfoo	bar	baz\n'

$	#	escape	sequence	like	\n	will	be	interpreted	when	'a'	command	is	used

$	sed	'/is/a'"$text"	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

Good	day

foo	bar	baz

And	so	are	you.

$	#	\	is	just	another	character,	won't	be	treated	as	special	with	'r'	command

$	echo	"$text"	|	sed	'/is/r	/dev/stdin'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

Good	day\nfoo	bar	baz\n

And	so	are	you.

adding	multiline	command	output	is	simple	as	well

$	seq	3	|	sed	'/is/r	/dev/stdin'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

1

2

3

And	so	are	you.

replacing	a	line	or	range	of	lines	with	contents	of	file

GNU	sed

118

$	#	replacing	range	of	lines

$	#	order	is	important,	first	'r'	and	then	'd'

$	sed	-e	'/is/r	5.txt'	-e	'1,/is/d'	poem.txt	

five

1five

And	so	are	you.

$	#	replacing	a	line

$	seq	3	|	sed	-e	'3r	/dev/stdin'	-e	'3d'	poem.txt

Roses	are	red,

Violets	are	blue,

1

2

3

And	so	are	you.

$	#	can	also	use	{}	grouping

$	seq	3	|	sed	-e	'/blue/{r	/dev/stdin'	-e	'd}'	poem.txt

Roses	are	red,

1

2

3

Sugar	is	sweet,

And	so	are	you.

R	for	line	by	line

add	a	line	for	every	address	match
Special	name		/dev/stdin		allows	to	read	from	stdin	instead	of	file	input

GNU	sed

119

$	#	space	between	R	and	filename	is	optional

$	seq	3	|	sed	'/are/R	/dev/stdin'	poem.txt	

Roses	are	red,

1

Violets	are	blue,

2

Sugar	is	sweet,

And	so	are	you.

3

$	sed	'2,3R	5.txt'	poem.txt	

Roses	are	red,

Violets	are	blue,

five

Sugar	is	sweet,

1five

And	so	are	you.

number	of	lines	from	file	to	be	read	different	from	number	of	matching	address	lines

$	#	file	has	more	lines	than	matching	address

$	sed	'/is/R	5.txt'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

five

And	so	are	you.

$	#	lines	matching	address	is	more	than	file	to	be	read

$	seq	1	|	sed	'/are/R	/dev/stdin'	poem.txt	

Roses	are	red,

1

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

n	and	N	commands
These	two	commands	will	fetch	next	line	(newline	or	NUL	character	separated,	depending	on
options)
	n		will	fetch	the	next	line	and	replace	whatever	is	already	there	in	pattern	space

GNU	sed

120

$	#	if	line	contains	'blue',	replace	'e'	with	'E'	only	for	following	line

$	sed	'/blue/{n;s/e/E/g}'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	swEEt,

And	so	are	you.

$	#	better	illustrated	with	-n	option

$	sed	-n	'/blue/{n;s/e/E/pg}'	poem.txt	

Sugar	is	swEEt,

$	#	if	line	contains	'blue',	replace	'e'	with	'E'	only	for	next	to	next	line

$	sed	-n	'/blue/{n;n;s/e/E/pg}'	poem.txt	

And	so	arE	you.

	N		will	fetch	the	next	line	and	append	to	pattern	space
See	this	Q&A	for	an	interesting	case	of	applying	substitution	every	4	lines	but	excluding	the	4th	line

$	#	if	line	contains	'blue',	replace	'e'	with	'E'	both	in	current	line	and	next

$	sed	'/blue/{N;s/e/E/g}'	poem.txt	

Roses	are	red,

ViolEts	arE	bluE,

Sugar	is	swEEt,

And	so	are	you.

$	#	better	illustrated	with	-n	option

$	sed	-n	'/blue/{N;s/e/E/pg}'	poem.txt	

ViolEts	arE	bluE,

Sugar	is	swEEt,

$	sed	-n	'/blue/{N;N;s/e/E/pg}'	poem.txt	

ViolEts	arE	bluE,

Sugar	is	swEEt,

And	so	arE	you.

Combination

$	#	n	will	fetch	next	line,	current	line	is	out	of	pattern	space

$	#	N	will	then	add	another	line

$	sed	-n	'/blue/{n;N;s/e/E/pg}'	poem.txt	

Sugar	is	swEEt,

And	so	arE	you.

not	necessary	to	qualify	with	an	address

GNU	sed

121

https://stackoverflow.com/questions/40229578/how-to-insert-a-line-feed-into-a-sed-line-concatenation

$	seq	6	|	sed	'n;cXYZ'

1

XYZ

3

XYZ

5

XYZ

$	seq	6	|	sed	'N;s/\n/	/'

1	2

3	4

5	6

Control	structures
Using		:label		one	can	mark	a	command	location	to	branch	to	conditionally	or	unconditionally
See	sed	manual	-	Commands	for	sed	gurus	for	more	details

if	then	else

Simple	if-then-else	can	be	simulated	using		b		command
	b		command	will	unconditionally	branch	to	specified	label
Without	label,		b		will	skip	rest	of	commands	and	start	next	cycle
See	processing	only	lines	between	REGEXPs	for	interesting	use	case

GNU	sed

122

https://www.gnu.org/software/sed/manual/sed.html#Programming-Commands
https://unix.stackexchange.com/questions/292819/remove-commented-lines-except-one-comment-using-sed

$	#	changing	-ve	to	+ve	and	vice	versa

$	cat	nums.txt	

42

-2

10101

-3.14

-75

$	#	same	as:	perl	-pe	'/^-/	?	s///	:	s/^/-/'

$	#	empty	REGEXP	section	will	reuse	previous	REGEXP,	in	this	case	/^-/

$	sed	'/^-/{s///;b};	s/^/-/'	nums.txt	

-42

2

-10101

3.14

75

$	#	same	as:	perl	-pe	'/are/	?	s/e/*/g	:	s/e/#/g'

$	#	if	line	contains	'are'	replace	'e'	with	'*'	else	replace	'e'	with	'#'

$	sed	'/are/{s/e/*/g;b};	s/e/#/g'	poem.txt	

Ros*s	ar*	r*d,

Viol*ts	ar*	blu*,

Sugar	is	sw##t,

And	so	ar*	you.

replacing	in	specific	column

	t		command	will	branch	to	specified	label	on	successful	substitution
Without	label,		t		will	skip	rest	of	commands	and	start	next	cycle
More	examples

replace	data	after	last	delimiter
replace	multiple	occurrences	in	specific	column

$	#	replace	space	with	underscore	only	in	3rd	column

$	#	^(([^|]+\|){2}	captures	first	two	columns

$	#	[^|]*	zero	or	more	non-column	separator	characters

$	#	as	long	as	match	is	found,	command	will	be	repeated	on	same	input	line

$	echo	'foo	bar|a	b	c|1	2	3|xyz	abc'	|	sed	-E	':a	s/^(([^|]+\|){2}[^|]*)	/\1_/;	ta'

foo	bar|a	b	c|1_2_3|xyz	abc

$	#	using	perl	or	awk	might	be	simpler

$	#	for	ex:	awk	'BEGIN{FS=OFS="|"}	{gsub(/	/,"_",$3);	print}'

example	to	show	difference	between		b		and		t	

GNU	sed

123

https://stackoverflow.com/questions/39907133/replace-data-after-last-delimiter-of-every-line-using-sed-or-awk/39908523#39908523
https://stackoverflow.com/questions/42886531/replace-mutliple-occurances-in-delimited-columns/42886919#42886919

$	#	whether	or	not	'R'	is	found	on	lines	containing	'are',	branch	will	happen

$	sed	'/are/{s/R/*/g;b};	s/e/#/g'	poem.txt	

*oses	are	red,

Violets	are	blue,

Sugar	is	sw##t,

And	so	are	you.

$	#	branch	only	if	line	contains	'are'	and	substitution	of	'R'	succeeds

$	sed	'/are/{s/R/*/g;t};	s/e/#/g'	poem.txt	

*oses	are	red,

Viol#ts	ar#	blu#,

Sugar	is	sw##t,

And	so	ar#	you.

overlapping	substitutions

	t		command	looping	with	label	comes	in	handy	for	overlapping	substitutions	as	well
Note	that	in	general	this	method	will	work	recursively,	see	substitute	recursively	for	example

$	#	consider	the	problem	of	replacing	empty	columns	with	something

$	#	case1:	no	consecutive	empty	columns	-	no	problem

$	echo	'foo::bar::baz'	|	sed	's/::/:0:/g'

foo:0:bar:0:baz

$	#	case2:	consecutive	empty	columns	are	present	-	problematic

$	echo	'foo:::bar::baz'	|	sed	's/::/:0:/g'

foo:0::bar:0:baz

$	#	t	command	looping	will	handle	both	cases

$	echo	'foo::bar::baz'	|	sed	':a	s/::/:0:/;	ta'

foo:0:bar:0:baz

$	echo	'foo:::bar::baz'	|	sed	':a	s/::/:0:/;	ta'

foo:0:0:bar:0:baz

Lines	between	two	REGEXPs
Simple	cases	were	seen	in	address	range	section
This	section	will	deal	with	more	cases	and	some	corner	cases

Include	or	Exclude	matching	REGEXPs

GNU	sed

124

https://stackoverflow.com/questions/9983646/sed-substitute-recursively

Consider	the	sample	input	file,	for	simplicity	the	two	REGEXPs	are	BEGIN	and	END	strings	instead	of
regular	expressions

$	cat	range.txt	

foo

BEGIN

1234

6789

END

bar

BEGIN

a

b

c

END

baz

First,	lines	between	the	two	REGEXPs	are	to	be	printed

Case	1:	both	starting	and	ending	REGEXP	part	of	output

$	sed	-n	'/BEGIN/,/END/p'	range.txt	

BEGIN

1234

6789

END

BEGIN

a

b

c

END

Case	2:	both	starting	and	ending	REGEXP	not	part	of	ouput

$	#	remember	that	empty	REGEXP	section	will	reuse	previously	matched	REGEXP

$	sed	-n	'/BEGIN/,/END/{//!p}'	range.txt	

1234

6789

a

b

c

Case	3:	only	starting	REGEXP	part	of	output

GNU	sed

125

$	sed	-n	'/BEGIN/,/END/{/END/!p}'	range.txt	

BEGIN

1234

6789

BEGIN

a

b

c

Case	4:	only	ending	REGEXP	part	of	output

$	sed	-n	'/BEGIN/,/END/{/BEGIN/!p}'	range.txt	

1234

6789

END

a

b

c

END

Second,	lines	between	the	two	REGEXPs	are	to	be	deleted

Case	5:	both	starting	and	ending	REGEXP	not	part	of	output

$	sed	'/BEGIN/,/END/d'	range.txt	

foo

bar

baz

Case	6:	both	starting	and	ending	REGEXP	part	of	output

$	#	remember	that	empty	REGEXP	section	will	reuse	previously	matched	REGEXP

$	sed	'/BEGIN/,/END/{//!d}'	range.txt	

foo

BEGIN

END

bar

BEGIN

END

baz

Case	7:	only	starting	REGEXP	part	of	output

GNU	sed

126

$	sed	'/BEGIN/,/END/{/BEGIN/!d}'	range.txt	

foo

BEGIN

bar

BEGIN

baz

Case	8:	only	ending	REGEXP	part	of	output

$	sed	'/BEGIN/,/END/{/END/!d}'	range.txt	

foo

END

bar

END

baz

First	or	Last	block

Getting	first	block	is	very	simple	by	using		q		command

$	sed	-n	'/BEGIN/,/END/{p;/END/q}'	range.txt	

BEGIN

1234

6789

END

$	#	use	other	tricks	discussed	in	previous	section	as	needed

$	sed	-n	'/BEGIN/,/END/{//!p;/END/q}'	range.txt	

1234

6789

To	get	last	block,	reverse	the	input	linewise,	the	order	of	REGEXPs	and	finally	reverse	again

GNU	sed

127

$	tac	range.txt	|	sed	-n	'/END/,/BEGIN/{p;/BEGIN/q}'	|	tac

BEGIN

a

b

c

END

$	#	use	other	tricks	discussed	in	previous	section	as	needed

$	tac	range.txt	|	sed	-n	'/END/,/BEGIN/{//!p;/BEGIN/q}'	|	tac

a

b

c

To	get	a	specific	block,	say	3rd	one,		awk		or		perl		would	be	a	better	choice

Broken	blocks

If	there	are	blocks	with	ending	REGEXP	but	without	corresponding	starting	REGEXP,		sed	-n
'/BEGIN/,/END/p'		will	suffice
Consider	the	modified	input	file	where	final	starting	REGEXP	doesn't	have	corresponding	ending

$	cat	broken_range.txt	

foo

BEGIN

1234

6789

END

bar

BEGIN

a

b

c

baz

All	lines	till	end	of	file	gets	printed	with	simple	use	of		sed	-n	'/BEGIN/,/END/p'	
The	file	reversing	trick	comes	in	handy	here	as	well
But	if	both	kinds	of	broken	blocks	are	present,	further	processing	will	be	required.	Better	to	use
	awk		or		perl		in	such	cases

GNU	sed

128

$	sed	-n	'/BEGIN/,/END/p'	broken_range.txt	

BEGIN

1234

6789

END

BEGIN

a

b

c

baz

$	tac	broken_range.txt	|	sed	-n	'/END/,/BEGIN/p'	|	tac

BEGIN

1234

6789

END

If	there	are	multiple	starting	REGEXP	but	single	ending	REGEXP,	the	reversing	trick	comes	handy
again

GNU	sed

129

$	cat	uneven_range.txt	

foo

BEGIN

1234

BEGIN

42

6789

END

bar

BEGIN

a

BEGIN

b

BEGIN

c

BEGIN

d

BEGIN

e

END

baz

$	tac	uneven_range.txt	|	sed	-n	'/END/,/BEGIN/p'	|	tac

BEGIN

42

6789

END

BEGIN

e

END

sed	scripts
	sed		commands	can	be	placed	in	a	file	and	called	using		-f		option	or	directly	executed	using
shebang)
See	sed	manual	-	Some	Sample	Scripts	for	more	examples
See	sed	manual	-	Often-Used	Commands	for	more	details	on	using	comments

GNU	sed

130

https://en.wikipedia.org/wiki/Shebang_(Unix
https://www.gnu.org/software/sed/manual/sed.html#Examples
https://www.gnu.org/software/sed/manual/sed.html#Common-Commands

$	cat	script.sed	

#	each	line	is	a	command

/is/cfoo	bar

/you/r	3.txt

/you/d

#	single	quotes	can	be	used	freely

s/are/'are'/g

$	sed	-f	script.sed	poem.txt	

Roses	'are'	red,

Violets	'are'	blue,

foo	bar

3

13

$	#	command	line	options	are	specified	as	usual

$	sed	-nf	script.sed	poem.txt	

foo	bar

3

13

command	line	options	can	be	specified	along	with	shebang	as	well	as	added	at	time	of	invocation
Note	usage	of	options	along	with	shebang	depends	on	lot	of	factors

GNU	sed

131

https://stackoverflow.com/questions/4303128/how-to-use-multiple-arguments-with-a-shebang-i-e

$	type	sed

sed	is	/bin/sed

$	cat	executable.sed	

#!/bin/sed	-f

/is/cfoo	bar

/you/r	3.txt

/you/d

s/are/'are'/g

$	chmod	+x	executable.sed	

$./executable.sed	poem.txt	

Roses	'are'	red,

Violets	'are'	blue,

foo	bar

3

13

$./executable.sed	-n	poem.txt	

foo	bar

3

13

Further	Reading
Manual	and	related

	man	sed		and		info	sed		for	more	details,	known	issues/limitations	as	well	as
options/commands	not	covered	in	this	tutorial
GNU	sed	manual	has	even	more	detailed	information	and	examples
sed	FAQ,	but	last	modified	'10	March	2003'
BSD/macOS	Sed	vs	GNU	Sed	vs	the	POSIX	Sed	specification

Tutorials	and	Q&A
sed	basics
sed	detailed	tutorial	-	has	details	on	differences	between	various		sed		versions	as	well
sed	one-liners	explained
cheat	sheet
common	search	and	replace	examples
sed	Q&A	on	unix	stackexchange
sed	Q&A	on	stackoverflow

Selected	examples	-	portable	solutions,	commands	not	covered	in	this	tutorial,	same	problem	solved

GNU	sed

132

https://www.gnu.org/software/sed/manual/sed.html
http://sed.sourceforge.net/sedfaq.html
https://stackoverflow.com/documentation/sed/9436/bsd-macos-sed-vs-gnu-sed-vs-the-posix-sed-specification#t=201706201518543829325
http://code.snipcademy.com/tutorials/shell-scripting/sed/introduction
http://www.grymoire.com/Unix/Sed.html
http://www.catonmat.net/series/sed-one-liners-explained
http://www.catonmat.net/download/sed.stream.editor.cheat.sheet.txt
https://unix.stackexchange.com/questions/112023/how-can-i-replace-a-string-in-a-files
https://unix.stackexchange.com/questions/tagged/sed?sort=votes&pageSize=15
https://stackoverflow.com/questions/tagged/sed?sort=votes&pageSize=15

using	different	tools,	etc
replace	multiline	string
deleting	empty	lines	with	optional	white	spaces
print	only	line	above	the	matching	line
How	to	select	lines	between	two	patterns?
get	lines	between	two	patterns	only	if	there	is	third	pattern	between	them

similar	example
Learn	Regular	Expressions

Regular	Expressions	Tutorial
regexcrossword
What	does	this	regex	mean?

Related	tools
sedsed	-	Debugger,	indenter	and	HTMLizer	for	sed	scripts
xo	-	composes	regular	expression	match	groups

GNU	sed

133

http://unix.stackexchange.com/questions/26284/how-can-i-use-sed-to-replace-a-multi-line-string
https://stackoverflow.com/questions/16414410/delete-empty-lines-using-sed
https://unix.stackexchange.com/questions/264489/find-each-line-matching-a-pattern-but-print-only-the-line-above-it
https://stackoverflow.com/questions/38972736/how-to-select-lines-between-two-patterns
https://stackoverflow.com/questions/39960075/bash-how-to-get-lines-between-patterns-only-if-there-is-pattern2-between-them
https://unix.stackexchange.com/questions/228699/sed-print-lines-matched-by-a-pattern-range-if-one-line-matches-a-condition
http://www.regular-expressions.info/tutorial.html
https://regexcrossword.com/
https://stackoverflow.com/questions/22937618/reference-what-does-this-regex-mean
https://github.com/aureliojargas/sedsed
https://github.com/ezekg/xo

GNU	awk
Table	of	Contents

Field	processing
Default	field	separation
Specifying	different	input	field	separator
Specifying	different	output	field	separator

Filtering
Idiomatic	print	usage
Field	comparison
Regular	expressions	based	filtering
Fixed	string	matching
Line	number	based	filtering

Case	Insensitive	filtering
Changing	record	separators

Paragraph	mode
Multicharacter	RS

Substitute	functions
Inplace	file	editing
Using	shell	variables
Multiple	file	input
Control	Structures

if-else	and	loops
next	and	nextfile

Multiline	processing
Two	file	processing

Comparing	whole	lines
Comparing	specific	fields
getline

Creating	new	fields
Dealing	with	duplicates
Lines	between	two	REGEXPs

All	unbroken	blocks
Specific	blocks
Broken	blocks

Arrays
awk	scripts
Miscellaneous

FPAT	and	FIELDWIDTHS
String	functions

GNU	awk

134

Executing	external	commands
printf	formatting
Redirecting	print	output

Gotchas	and	Tips
Further	Reading

$	awk	--version	|	head	-n1

GNU	Awk	4.1.3,	API:	1.1	(GNU	MPFR	3.1.4,	GNU	MP	6.1.0)

$	man	awk

GAWK(1)																								Utility	Commands																								GAWK(1)

NAME

							gawk	-	pattern	scanning	and	processing	language

SYNOPSIS

							gawk	[POSIX	or	GNU	style	options]	-f	program-file	[--]	file	...

							gawk	[POSIX	or	GNU	style	options]	[--]	program-text	file	...

DESCRIPTION

							Gawk		is		the		GNU	Project's	implementation	of	the	AWK	programming	lan‐
							guage.		It	conforms	to	the	definition	of		the		language		in		the		POSIX

							1003.1		Standard.			This	version	in	turn	is	based	on	the	description	in

							The	AWK	Programming	Language,	by	Aho,	Kernighan,	and	Weinberger.			Gawk

							provides		the	additional	features	found	in	the	current	version	of	Brian

							Kernighan's	awk	and	a	number	of	GNU-specific	extensions.

...

Prerequisites	and	notes

familiarity	with	programming	concepts	like	variables,	printing,	control	structures,	arrays,	etc
familiarity	with	regular	expressions

if	not,	check	out	ERE	portion	of	GNU	sed	regular	expressions	which	is	close	enough	to	features
available	in		gawk	

this	tutorial	is	primarily	focussed	on	short	programs	that	are	easily	usable	from	command	line,
similar	to	using		grep	,		sed	,	etc
see	Gawk:	Effective	AWK	Programming	manual	for	complete	reference,	has	information	on	other
	awk		versions	as	well	as	notes	on	POSIX	standard

Field	processing

GNU	awk

135

https://www.gnu.org/software/gawk/manual/

Default	field	separation

	$0		contains	the	entire	input	record
default	input	record	separator	is	newline	character

	$1		contains	the	first	field	text
default	input	field	separator	is	one	or	more	of	continuous	space,	tab	or	newline	characters

	$2		contains	the	second	field	text	and	so	on
	$(2+3)		result	of	expressions	can	be	used,	this	one	evaluates	to		$5		and	hence	gives	fifth	field

similarly	if	variable		i		has	value		2	,	then		$(i+3)		will	give	fifth	field
See	also	gawk	manual	-	Expressions

	NF		is	a	built-in	variable	which	contains	number	of	fields	in	the	current	record
so,		$NF		will	give	last	field
	$(NF-1)		will	give	second	last	field	and	so	on

$	cat	fruits.txt	

fruit			qty

apple			42

banana		31

fig					90

guava			6

$	#	print	only	first	field

$	awk	'{print	$1}'	fruits.txt	

fruit

apple

banana

fig

guava

$	#	print	only	second	field

$	awk	'{print	$2}'	fruits.txt	

qty

42

31

90

6

Specifying	different	input	field	separator

by	using		-F		command	line	option
by	setting		FS		variable

GNU	awk

136

https://www.gnu.org/software/gawk/manual/html_node/Expressions.html

See	FPAT	and	FIELDWIDTHS	section	for	other	ways	of	defining	input	fields

$	#	second	field	where	input	field	separator	is	:

$	echo	'foo:123:bar:789'	|	awk	-F:	'{print	$2}'

123

$	#	last	field

$	echo	'foo:123:bar:789'	|	awk	-F:	'{print	$NF}'

789

$	#	first	and	last	field

$	#	note	the	use	of	,	and	space	between	output	fields

$	echo	'foo:123:bar:789'	|	awk	-F:	'{print	$1,	$NF}'

foo	789

$	#	second	last	field

$	echo	'foo:123:bar:789'	|	awk	-F:	'{print	$(NF-1)}'

bar

$	#	use	quotes	to	avoid	clashes	with	shell	special	characters

$	echo	'one;two;three;four'	|	awk	-F';'	'{print	$3}'

three

Regular	expressions	based	input	field	separator

$	echo	'Sample123string54with908numbers'	|	awk	-F'[0-9]+'	'{print	$2}'

string

$	#	first	field	will	be	empty	as	there	is	nothing	before	'{'

$	echo	'{foo}			bar=baz'	|	awk	-F'[{}=]+'	'{print	$1}'

$	echo	'{foo}			bar=baz'	|	awk	-F'[{}=]+'	'{print	$2}'

foo

$	echo	'{foo}			bar=baz'	|	awk	-F'[{}=]+'	'{print	$3}'

bar

default	input	field	separator	is	one	or	more	of	continuous	space,	tab	or	newline	characters	(will	be
termed	as	whitespace	here	on)

exact	same	behavior	if		FS		is	assigned	single	space	character
in	addition,	leading	and	trailing	whitespaces	won't	be	considered	when	splitting	the	input	record

GNU	awk

137

$	printf	'	a				ate	b\tc			\n'

	a				ate	b					c

$	printf	'	a				ate	b\tc			\n'	|	awk	'{print	$1}'

a

$	printf	'	a				ate	b\tc			\n'	|	awk	'{print	NF}'

4

$	#	same	behavior	if	FS	is	assigned	to	single	space	character

$	printf	'	a				ate	b\tc			\n'	|	awk	-F'	'	'{print	$1}'

a

$	printf	'	a				ate	b\tc			\n'	|	awk	-F'	'	'{print	NF}'

4

$	#	for	anything	else,	leading/trailing	whitespaces	will	be	considered

$	printf	'	a				ate	b\tc			\n'	|	awk	-F'[\t]+'	'{print	$2}'

a

$	printf	'	a				ate	b\tc			\n'	|	awk	-F'[\t]+'	'{print	NF}'

6

assigning	empty	string	to	FS	will	split	the	input	record	character	wise
note	the	use	of	command	line	option		-v		to	set	FS

$	echo	'apple'	|	awk	-v	FS=	'{print	$1}'

a

$	echo	'apple'	|	awk	-v	FS=	'{print	$2}'

p

$	echo	'apple'	|	awk	-v	FS=	'{print	$NF}'

e

$	#	detecting	multibyte	characters	depends	on	locale

$	printf	'hi	how	are	you?' 	|	awk	-v	FS=	'{print	$3}'

Further	Reading

gawk	manual	-	Field	Splitting	Summary
stackoverflow	-	explanation	on	default	FS
unix.stackexchange	-	filter	lines	if	it	contains	a	particular	character	only	once

Specifying	different	output	field	separator

by	setting		OFS		variable
also	gets	added	between	every	argument	to		print		statement

use	printf	to	avoid	this

GNU	awk

138

https://www.gnu.org/software/gawk/manual/html_node/Field-Splitting-Summary.html#Field-Splitting-Summary
https://stackoverflow.com/questions/30405694/default-field-separator-for-awk
https://unix.stackexchange.com/questions/362550/how-to-remove-line-if-it-contains-a-character-exactly-once

default	is	single	space

$	#	statements	inside	BEGIN	are	executed	before	processing	any	input	text

$	echo	'foo:123:bar:789'	|	awk	'BEGIN{FS=OFS=":"}	{print	$1,	$NF}'

foo:789

$	#	can	also	be	set	using	command	line	option	-v

$	echo	'foo:123:bar:789'	|	awk	-F:	-v	OFS=':'	'{print	$1,	$NF}'

foo:789

$	#	changing	a	field	will	re-build	contents	of	$0

$	echo	'	a						ate	b			'	|	awk	'{$2	=	"foo";	print	$0}'	|	cat	-A

a	foo	b$

$	#	$1=$1	is	an	idiomatic	way	to	re-build	when	there	is	nothing	else	to	change

$	echo	'foo:123:bar:789'	|	awk	-F:	-v	OFS='-'	'{print	$0}'

foo:123:bar:789

$	echo	'foo:123:bar:789'	|	awk	-F:	-v	OFS='-'	'{$1=$1;	print	$0}'

foo-123-bar-789

$	#	OFS	is	used	to	separate	different	arguments	given	to	print

$	echo	'foo:123:bar:789'	|	awk	-F:	-v	OFS='\t'	'{print	$1,	$3}'

foo					bar

$	echo	'Sample123string54with908numbers'	|	awk	-F'[0-9]+'	'{$1=$1;	print	$0}'

Sample	string	with	numbers

Filtering

Idiomatic	print	usage

	print		statement	with	no	arguments	will	print	contents	of		$0	
if	condition	is	specified	without	corresponding	statements,	contents	of		$0		is	printed	if	condition
evaluates	to	true
	1		is	typically	used	to	represent	always	true	condition	and	thus	print	contents	of		$0	

GNU	awk

139

$	cat	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

$	#	displaying	contents	of	input	file(s)	similar	to	'cat'	command

$	#	equivalent	to	using	awk	'{print	$0}'	and	awk	'1'

$	awk	'{print}'	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

Field	comparison

Each	block	of	statements	within		{}		can	be	prefixed	by	an	optional	condition	so	that	those
statements	will	execute	only	if	condition	evaluates	to	true
Condition	specified	without	corresponding	statements	will	lead	to	printing	contents	of		$0		if
condition	evaluates	to	true

$	#	if	first	field	exactly	matches	the	string	'apple'

$	awk	'$1=="apple"{print	$2}'	fruits.txt	

42

$	#	print	first	field	if	second	field	>	35

$	#	NR>1	to	avoid	the	header	line

$	#	NR	built-in	variable	contains	record	number

$	awk	'NR>1	&&	$2>35{print	$1}'	fruits.txt	

apple

fig

$	#	print	header	and	lines	with	qty	<	35

$	awk	'NR==1	||	$2<35'	fruits.txt

fruit			qty

banana		31

guava			6

If	the	above	examples	are	too	confusing,	think	of	it	as	syntactical	sugar
Statements	are	grouped	within		{}	

inside		{}	,	we	have	a		if		control	structure
Like		C		language,	braces	not	needed	for	single	statements	within		if	,	but	consider	that		{}	

GNU	awk

140

is	used	for	clarity
From	this	explicit	syntax,	remove	the	outer		{}	,		if		and		()		used	for		if	

As	we'll	see	later,	this	allows	to	mash	up	few	lines	of	program	compactly	on	command	line	itself
Of	course,	for	medium	to	large	programs,	it	is	better	to	put	the	code	in	separate	file.	See	awk
scripts	section

$	#	awk	'$1=="apple"{print	$2}'	fruits.txt	

$	awk	'{

									if($1	==	"apple"){

												print	$2

									}

							}'	fruits.txt

42

$	#	awk	'NR==1	||	$2<35'	fruits.txt

$	awk	'{

									if(NR==1	||	$2<35){

												print	$0

									}

							}'	fruits.txt

fruit			qty

banana		31

guava			6

Further	Reading

gawk	manual	-	Truth	Values	and	Conditions
gawk	manual	-	Operator	Precedence
unix.stackexchange	-	filtering	columns	by	header	name

Regular	expressions	based	filtering

the	REGEXP	is	specified	within		//		and	by	default	acts	upon		$0	
See	also	stackoverflow	-	lines	around	matching	regexp

GNU	awk

141

https://www.gnu.org/software/gawk/manual/html_node/Truth-Values-and-Conditions.html
https://www.gnu.org/software/gawk/manual/html_node/Precedence.html
https://unix.stackexchange.com/questions/359697/print-columns-in-awk-by-header-name
https://stackoverflow.com/questions/17908555/printing-with-sed-or-awk-a-line-following-a-matching-pattern

$	#	all	lines	containing	the	string	'are'

$	#	same	as:	grep	'are'	poem.txt

$	awk	'/are/'	poem.txt

Roses	are	red,

Violets	are	blue,

And	so	are	you.

$	#	negating	REGEXP,	same	as:	grep	-v	'are'	poem.txt

$	awk	'!/are/'	poem.txt

Sugar	is	sweet,

$	#	same	as:	grep	'are'	poem.txt	|	grep	-v	'so'

$	awk	'/are/	&&	!/so/'	poem.txt

Roses	are	red,

Violets	are	blue,

$	#	lines	starting	with	'a'	or	'b'

$	awk	'/^[ab]/'	fruits.txt

apple			42

banana		31

$	#	print	last	field	of	all	lines	containing	'are'

$	awk	'/are/{print	$NF}'	poem.txt

red,

blue,

you.

strings	can	be	used	as	well,	which	will	be	interpreted	as	REGEXP	if	necessary
Allows	using	shell	variables	instead	of	hardcoded	REGEXP

that	section	also	notes	difference	between	using		//		and	string

GNU	awk

142

$	awk	'$0	!~	"are"'	poem.txt

Sugar	is	sweet,

$	awk	'$0	~	"^[ab]"'	fruits.txt

apple			42

banana		31

$	#	also	helpful	if	search	strings	have	the	/	delimiter	character

$	cat	paths.txt

/foo/a/report.log

/foo/y/power.log

$	awk	'/\/foo\/a\//'	paths.txt

/foo/a/report.log

$	awk	'$0	~	"/foo/a/"'	paths.txt

/foo/a/report.log

REGEXP	matching	against	specific	field

$	#	if	first	field	contains	'a'

$	awk	'$1	~	/a/'	fruits.txt	

apple			42

banana		31

guava			6

$	#	if	first	field	contains	'a'	and	qty	>	20

$	awk	'$1	~	/a/	&&	$2	>	20'	fruits.txt	

apple			42

banana		31

$	#	if	first	field	does	NOT	contain	'a'

$	awk	'$1	!~	/a/'	fruits.txt	

fruit			qty

fig					90

Fixed	string	matching

to	search	a	string	literally,		index		function	can	be	used	instead	of	REGEXP
similar	to		grep	-F	

the	function	returns	the	starting	position	and		0		if	no	match	found

GNU	awk

143

$	cat	eqns.txt

a=b,a+b=c,c*d

a+b,pi=3.14,5e12

i*(t+9-g)/8,4-a+b

$	#	no	output	since	'+'	is	meta	character,	would	need	'/a\+b/'

$	awk	'/a+b/'	eqns.txt

$	#	same	as:	grep	-F	'a+b'	eqns.txt

$	awk	'index($0,"a+b")'	eqns.txt

a+b,pi=3.14,5e12

i*(t+9-g)/8,4-a+b

$	#	much	easier	than	'/i*\(t\+9-g\)/'

$	awk	'index($0,"i*(t+9-g)")'	eqns.txt

i*(t+9-g)/8,4-a+b

$	#	check	only	last	field

$	awk	-F,	'index($NF,"a+b")'	eqns.txt

i*(t+9-g)/8,4-a+b

$	#	index	not	needed	if	entire	field/line	is	being	compared

$	awk	-F,	'$1=="a+b"'	eqns.txt

a+b,pi=3.14,5e12

return	value	is	useful	to	match	at	specific	position
for	ex:	at	start/end	of	line

$	#	start	of	line

$	awk	'index($0,"a+b")==1'	eqns.txt

a+b,pi=3.14,5e12

$	#	end	of	line

$	#	length	function	returns	number	of	characters,	by	default	acts	on	$0

$	awk	'index($0,"a+b")==length()-length("a+b")+1'	eqns.txt

i*(t+9-g)/8,4-a+b

$	#	to	avoid	repetitions,	save	the	search	string	in	variable

$	awk	-v	s="a+b"	'index($0,s)==length()-length(s)+1'	eqns.txt

i*(t+9-g)/8,4-a+b

Line	number	based	filtering

Built-in	variable		NR		contains	total	records	read	so	far
Use		FNR		if	you	need	line	numbers	separately	for	multiple	file	processing

GNU	awk

144

$	#	same	as:	head	-n2	poem.txt	|	tail	-n1

$	awk	'NR==2'	poem.txt	

Violets	are	blue,

$	#	print	2nd	and	4th	line

$	awk	'NR==2	||	NR==4'	poem.txt	

Violets	are	blue,

And	so	are	you.

$	#	same	as:	tail	-n1	poem.txt

$	#	statements	inside	END	are	executed	after	processing	all	input	text

$	awk	'END{print}'	poem.txt	

And	so	are	you.

$	awk	'NR==4{print	$2}'	fruits.txt	

90

for	large	input,	use		exit		to	avoid	unnecessary	record	processing

$	seq	14323	14563435	|	awk	'NR==234{print;	exit}'

14556

$	#	sample	time	comparison

$	time	seq	14323	14563435	|	awk	'NR==234{print;	exit}'

14556

real				0m0.004s

user				0m0.004s

sys					0m0.000s

$	time	seq	14323	14563435	|	awk	'NR==234{print}'

14556

real				0m2.167s

user				0m2.280s

sys					0m0.092s

See	also	unix.stackexchange	-	filtering	list	of	lines	from	every	X	number	of	lines

Case	Insensitive	filtering

GNU	awk

145

https://unix.stackexchange.com/questions/325985/how-to-print-lines-number-15-and-25-out-of-each-50-lines

$	#	same	as:	grep	-i	'rose'	poem.txt	

$	awk	-v	IGNORECASE=1	'/rose/'	poem.txt	

Roses	are	red,

$	#	for	small	enough	set,	can	also	use	REGEXP	character	class

$	awk	'/[rR]ose/'	poem.txt	

Roses	are	red,

$	#	another	way	is	to	use	built-in	string	function	'tolower'

$	awk	'tolower($0)	~	/rose/'	poem.txt	

Roses	are	red,

Changing	record	separators
	RS		to	change	input	record	separator
default	is	newline	character

$	s='this	is	a	sample	string'

$	#	space	as	input	record	separator,	printing	all	records

$	printf	"$s"	|	awk	-v	RS='	'	'{print	NR,	$0}'

1	this

2	is

3	a

4	sample

5	string

$	#	print	all	records	containing	'a'

$	printf	"$s"	|	awk	-v	RS='	'	'/a/'

a

sample

	ORS		to	change	output	record	separator
gets	added	to	every		print		statement

use	printf	to	avoid	this
default	is	newline	character

GNU	awk

146

$	seq	3	|	awk	'{print	$0}'

1

2

3

$	#	note	that	there	is	empty	line	after	last	record

$	seq	3	|	awk	-v	ORS='\n\n'	'{print	$0}'

1

2

3

$	#	dynamically	changing	ORS

$	#	can	also	use:	seq	6	|	awk	'{ORS	=	NR%2	?	"	"	:	RS}	1'

$	seq	6	|	awk	'{ORS	=	NR%2	?	"	"	:	"\n"}	1'

1	2

3	4

5	6

$	seq	6	|	awk	'{ORS	=	NR%3	?	"-"	:	"\n"}	1'

1-2-3

4-5-6

Paragraph	mode

When		RS		is	set	to	empty	string,	one	or	more	consecutive	empty	lines	is	used	as	input	record
separator
Can	also	use	regular	expression		RS=\n\n+		but	there	are	subtle	differences,	see	gawk	manual	-
multiline	records.	Important	points	from	that	link	quoted	below

However,	there	is	an	important	difference	between	‘RS	=	""’	and	‘RS	=	"\n\n+"’.	In	the	first	case,
leading	newlines	in	the	input	data	file	are	ignored,	and	if	a	file	ends	without	extra	blank	lines	after
the	last	record,	the	final	newline	is	removed	from	the	record.	In	the	second	case,	this	special
processing	is	not	done

Now	that	the	input	is	separated	into	records,	the	second	step	is	to	separate	the	fields	in	the	records.
One	way	to	do	this	is	to	divide	each	of	the	lines	into	fields	in	the	normal	manner.	This	happens	by
default	as	the	result	of	a	special	feature.	When	RS	is	set	to	the	empty	string	and	FS	is	set	to	a
single	character,	the	newline	character	always	acts	as	a	field	separator.	This	is	in	addition	to
whatever	field	separations	result	from	FS

When	FS	is	the	null	string	("")	or	a	regexp,	this	special	feature	of	RS	does	not	apply.	It	does	apply	to
the	default	field	separator	of	a	single	space:	‘FS	=	"	"’

Consider	the	below	sample	file

GNU	awk

147

https://www.gnu.org/software/gawk/manual/html_node/Multiple-Line.html

$	cat	sample.txt

Hello	World

Good	day

How	are	you

Just	do-it

Believe	it

Today	is	sunny

Not	a	bit	funny

No	doubt	you	like	it	too

Much	ado	about	nothing

He	he	he

Filtering	paragraphs

$	#	print	all	paragraphs	containing	'it'

$	#	if	extra	newline	at	end	is	undesirable,	can	use

$	#	awk	-v	RS=	'/it/{print	c++	?	"\n"	$0	:	$0}'	sample.txt

$	awk	-v	RS=	-v	ORS='\n\n'	'/it/'	sample.txt

Just	do-it

Believe	it

Today	is	sunny

Not	a	bit	funny

No	doubt	you	like	it	too

$	#	based	on	number	of	lines	in	each	paragraph

$	awk	-F'\n'	-v	RS=	-v	ORS='\n\n'	'NF==1'	sample.txt

Hello	World

$	awk	-F'\n'	-v	RS=	-v	ORS='\n\n'	'NF==2	&&	/do/'	sample.txt

Just	do-it

Believe	it

Much	ado	about	nothing

He	he	he

Re-structuring	paragraphs

GNU	awk

148

$	#	default	FS	is	one	or	more	of	continuous	space,	tab	or	newline	characters

$	#	default	OFS	is	single	space

$	#	so,	$1=$1	will	change	it	uniformly	to	single	space	between	fields

$	awk	-v	RS=	'{$1=$1}	1'	sample.txt

Hello	World

Good	day	How	are	you

Just	do-it	Believe	it

Today	is	sunny	Not	a	bit	funny	No	doubt	you	like	it	too

Much	ado	about	nothing	He	he	he

$	#	a	better	usecase

$	awk	'BEGIN{FS="\n";	OFS=".	";	RS="";	ORS="\n\n"}	{$1=$1}	1'	sample.txt

Hello	World

Good	day.	How	are	you

Just	do-it.	Believe	it

Today	is	sunny.	Not	a	bit	funny.	No	doubt	you	like	it	too

Much	ado	about	nothing.	He	he	he

Further	Reading

unix.stackexchange	-	filtering	line	surrounded	by	empty	lines
stackoverflow	-	excellent	example	and	explanation	of	RS	and	FS

Multicharacter	RS

Some	marker	like		Error		or		Warning		etc

GNU	awk

149

https://unix.stackexchange.com/questions/359717/select-line-with-empty-line-above-and-under
https://stackoverflow.com/questions/46142118/converting-regex-to-sed-or-grep-regex

$	cat	report.log	

blah	blah

Error:	something	went	wrong

more	blah

whatever

Error:	something	surely	went	wrong

some	text

some	more	text

blah	blah	blah

$	awk	-v	RS='Error:'	'END{print	NR-1}'	report.log

2

$	awk	-v	RS='Error:'	'NR==1'	report.log

blah	blah

$	#	filter	'Error:'	block	matching	particular	string

$	#	to	preserve	formatting,	use:	'/whatever/{print	RS	$0}'

$	awk	-v	RS='Error:'	'/whatever/'	report.log

	something	went	wrong

more	blah

whatever

$	#	blocks	with	more	than	3	lines

$	#	splitting	string	with	3	newlines	will	yield	4	fields

$	awk	-F'\n'	-v	RS='Error:'	'NF>4{print	RS	$0}'	report.log

Error:	something	surely	went	wrong

some	text

some	more	text

blah	blah	blah

Regular	expression	based		RS	
the		RT		variable	will	contain	string	matched	by		RS	

Note	that	entire	input	is	treated	as	single	string,	so	 	̂ 		and		$		anchors	will	apply	only	once	-	not
every	line

GNU	awk

150

$	s='Sample123string54with908numbers'

$	printf	"$s"	|	awk	-v	RS='[0-9]+'	'NR==1'

Sample

$	#	note	the	relationship	between	record	and	separators

$	printf	"$s"	|	awk	-v	RS='[0-9]+'	'{print	NR	"	:	"	$0	"	-	"	RT}'

1	:	Sample	-	123

2	:	string	-	54

3	:	with	-	908

4	:	numbers	-	

$	#	need	to	be	careful	of	empty	records

$	printf	'123string54with908'	|	awk	-v	RS='[0-9]+'	'{print	NR	"	:	"	$0}'

1	:	

2	:	string

3	:	with

$	#	and	newline	at	end	of	input

$	printf	'123string54with908\n'	|	awk	-v	RS='[0-9]+'	'{print	NR	"	:	"	$0}'

1	:	

2	:	string

3	:	with

4	:

Joining	lines	based	on	specific	end	of	line	condition

$	cat	msg.txt

Hello	there.

It	will	rain	to-

day.	Have	a	safe

and	pleasant	jou-

rney.

$	#	join	lines	ending	with	-	to	next	line

$	#	by	manipulating	RS	and	ORS

$	awk	-v	RS='-\n'	-v	ORS=	'1'	msg.txt

Hello	there.

It	will	rain	today.	Have	a	safe

and	pleasant	journey.

$	#	by	manipulating	ORS	alone,	sub	function	covered	in	later	sections

$	awk	'{ORS	=	sub(/-$/,"")	?	""	:	"\n"}	1'	msg.txt

Hello	there.

It	will	rain	today.	Have	a	safe

and	pleasant	journey.

$	#	easier:	perl	-pe	's/-\n//'	msg.txt	as	newline	is	still	part	of	input	line

GNU	awk

151

processing	null	terminated	input

$	printf	'foo\0bar\0'	|	cat	-A

foo^@bar^@$	

$	printf	'foo\0bar\0'	|	awk	-v	RS='\0'	'{print}'

foo

bar

Further	Reading

gawk	manual	-	Records
unix.stackexchange	-	Slurp-mode	in	awk
stackoverflow	-	using	RS	to	count	number	of	occurrences	of	a	given	string

Substitute	functions
Use		sub		string	function	for	replacing	first	occurrence
Use		gsub		for	replacing	all	occurrences
By	default,		$0		which	contains	input	record	is	modified,	can	specify	any	other	field	or	variable	as
needed

$	#	replacing	first	occurrence

$	echo	'1-2-3-4-5'	|	awk	'{sub("-",	":")}	1'

1:2-3-4-5

$	#	replacing	all	occurrences

$	echo	'1-2-3-4-5'	|	awk	'{gsub("-",	":")}	1'

1:2:3:4:5

$	#	return	value	for	sub/gsub	is	number	of	replacements	made

$	echo	'1-2-3-4-5'	|	awk	'{n=gsub("-",	":");	print	n}	1'

4

1:2:3:4:5

$	#	//	format	is	better	suited	to	specify	search	REGEXP

$	echo	'1-2-3-4-5'	|	awk	'{gsub(/[^-]+/,	"abc")}	1'

abc-abc-abc-abc-abc

$	#	replacing	all	occurrences	only	for	third	field

$	echo	'one;two;three;four'	|	awk	-F';'	'{gsub("e",	"E",	$3)}	1'

one	two	thrEE	four

Use		gensub		to	return	the	modified	string	unlike		sub		or		gsub		which	modifies	inplace

GNU	awk

152

https://www.gnu.org/software/gawk/manual/html_node/Records.html#Records
https://unix.stackexchange.com/questions/304457/slurp-mode-in-awk
https://stackoverflow.com/questions/45102651/how-to-grep-double-quote-followed-by-a-string-at-same-time/45102962#45102962

it	also	supports	back-references	and	ability	to	modify	specific	match
acts	upon		$0		if	target	is	not	specified

$	#	replace	second	occurrence

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(":",	"-",	2)}	1'

foo:123-bar:baz

$	#	use	REGEXP	as	needed

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(/[^:]+/,	"XYZ",	2)}	1'

foo:XYZ:bar:baz

$	#	or	print	the	returned	string	directly

$	echo	'foo:123:bar:baz'	|	awk	'{print	gensub(":",	"-",	2)}'

foo:123-bar:baz

$	#	replace	third	occurrence

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(/[^:]+/,	"XYZ",	3)}	1'

foo:123:XYZ:baz

$	#	replace	all	occurrences,	similar	to	gsub

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(/[^:]+/,	"XYZ",	"g")}	1'

XYZ:XYZ:XYZ:XYZ

$	#	target	other	than	$0

$	echo	'foo:123:bar:baz'	|	awk	-F:	-v	OFS=:	'{$1=gensub(/o/,	"b",	2,	$1)}	1'

fob:123:bar:baz

back-reference	examples
use		\"		within	double-quotes	to	represent		"		character	in	replacement	string
use		\\1		to	represent		\1		-	the	first	captured	group	and	so	on
	&		or		\0		will	back-reference	entire	matched	string

GNU	awk

153

$	#	replacing	last	occurrence	without	knowing	how	many	occurrences	are	there

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(/(.*):/,	"\\1-",	1)}	1'

foo:123:bar-baz

$	echo	'foo	and	bar	and	baz	land	good'	|	awk	'{$0=gensub(/(.*)and/,	"\\1XYZ",	1)}	1'

foo	and	bar	and	baz	lXYZ	good

$	#	use	word	boundaries	as	necessary

$	echo	'foo	and	bar	and	baz	land	good'	|	awk	'{$0=gensub(/(.*)\<and\>/,	"\\1XYZ",	1)

}	1'

foo	and	bar	XYZ	baz	land	good

$	#	replacing	last	but	one

$	echo	'456:foo:123:bar:789:baz'	|	awk	'{$0=gensub(/(.*):(.*:)/,	"\\1-\\2",	1)}	1'

456:foo:123:bar-789:baz

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(/[^:]+/,	"\"&\"",	"g")}	1'

"foo":"123":"bar":"baz"

saving	quotes	in	variables	-	to	avoid	escaping	double	quotes	or	having	to	use	octal	code	for	single
quotes

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(/[^:]+/,	"\047&\047",	"g")}	1'

'foo':'123':'bar':'baz'

$	echo	'foo:123:bar:baz'	|	awk	-v	sq="'"	'{$0=gensub(/[^:]+/,	sq"&"sq,	"g")}	1'

'foo':'123':'bar':'baz'

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(/[^:]+/,	"\"&\"",	"g")}	1'

"foo":"123":"bar":"baz"

$	echo	'foo:123:bar:baz'	|	awk	-v	dq='"'	'{$0=gensub(/[^:]+/,	dq"&"dq,	"g")}	1'

"foo":"123":"bar":"baz"

Further	Reading

gawk	manual	-	String-Manipulation	Functions
gawk	manual	-	escape	processing

Inplace	file	editing
Use	this	option	with	caution,	preferably	after	testing	that	the		awk		code	is	working	as	intended

GNU	awk

154

https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html
https://www.gnu.org/software/gawk/manual/html_node/Gory-Details.html

$	cat	greeting.txt	

Hi	there

Have	a	nice	day

$	awk	-i	inplace	'{gsub("e",	"E")}	1'	greeting.txt	

$	cat	greeting.txt	

Hi	thErE

HavE	a	nicE	day

Multiple	input	files	are	treated	individually	and	changes	are	written	back	to	respective	files

$	cat	f1

I	ate	3	apples

$	cat	f2

I	bought	two	bananas	and	3	mangoes

$	awk	-i	inplace	'{gsub("3",	"three")}	1'	f1	f2

$	cat	f1

I	ate	three	apples

$	cat	f2

I	bought	two	bananas	and	three	mangoes

to	create	backups	of	original	file,	set		INPLACE_SUFFIX		variable

$	awk	-i	inplace	-v	INPLACE_SUFFIX='.bkp'	'{gsub("three",	"3")}	1'	f1

$	cat	f1

I	ate	3	apples

$	cat	f1.bkp

I	ate	three	apples

See	gawk	manual	-	Enabling	In-Place	File	Editing	for	implementation	details

Using	shell	variables
when		awk		code	is	part	of	shell	program	and	shell	variable	needs	to	be	passed	as	input	to		awk	
code
for	example:

command	line	argument	passed	to	shell	script,	which	is	in	turn	passed	on	to		awk	
control	structures	in	shell	script	calling		awk		with	different	search	strings

See	also	stackoverflow	-	How	do	I	use	shell	variables	in	an	awk	script?

GNU	awk

155

https://www.gnu.org/software/gawk/manual/html_node/Extension-Sample-Inplace.html
https://stackoverflow.com/questions/19075671/how-do-i-use-shell-variables-in-an-awk-script

$	#	examples	tested	with	bash	shell

$	f='apple'

$	awk	-v	word="$f"	'$1==word'	fruits.txt

apple			42

$	f='fig'

$	awk	-v	word="$f"	'$1==word'	fruits.txt

fig					90

$	q='20'

$	awk	-v	threshold="$q"	'NR==1	||	$2>threshold'	fruits.txt

fruit			qty

apple			42

banana		31

fig					90

accessing	shell	environment	variables

$	#	existing	environment	variable

$	awk	'BEGIN{print	ENVIRON["PWD"]}'

/home/learnbyexample

$	awk	'BEGIN{print	ENVIRON["SHELL"]}'

/bin/bash

$	#	defined	along	with	awk	code

$	word='hello	world'	awk	'BEGIN{print	ENVIRON["word"]}'

hello	world

$	#	using	ENVIRON	also	prevents	awk's	interpretation	of	escape	sequences

$	s='a\n=c'

$	foo="$s"	awk	'BEGIN{print	ENVIRON["foo"]}'

a\n=c

$	awk	-v	foo="$s"	'BEGIN{print	foo}'

a

=c

passing	REGEXP
See	also	gawk	manual	-	Using	Dynamic	Regexps

GNU	awk

156

https://www.gnu.org/software/gawk/manual/html_node/Computed-Regexps.html

$	s='are'

$	#	for:	awk	'!/are/'	poem.txt

$	awk	-v	s="$s"	'$0	!~	s'	poem.txt

Sugar	is	sweet,

$	#	for:	awk	'/are/	&&	!/so/'	poem.txt

$	awk	-v	s="$s"	'$0	~	s	&&	!/so/'	poem.txt

Roses	are	red,

Violets	are	blue,

$	r='[^-]+'

$	echo	'1-2-3-4-5'	|	awk	-v	r="$r"	'{gsub(r,	"abc")}	1'

abc-abc-abc-abc-abc

$	#	escape	sequence	has	to	be	doubled	when	string	is	interpreted	as	REGEXP

$	s='foo	and	bar	and	baz	land	good'

$	echo	"$s"	|	awk	'{$0=gensub("(.*)\\<and\\>",	"\\1XYZ",	1)}	1'

foo	and	bar	XYZ	baz	land	good

$	#	hence	passing	as	variable	should	be

$	r='(.*)\\<and\\>'

$	echo	"$s"	|	awk	-v	r="$r"	'{$0=gensub(r,	"\\1XYZ",	1)}	1'

foo	and	bar	XYZ	baz	land	good

$	#	or	use	ENVIRON

$	r='(.*)\<and\>'

$	echo	"$s"	|	r="$r"	awk	'{$0=gensub(ENVIRON["r"],	"\\1XYZ",	1)}	1'

foo	and	bar	XYZ	baz	land	good

Multiple	file	input
Example	to	show	difference	between		NR		and		FNR	

$	#	NR	for	overall	record	number

$	awk	'NR==1'	poem.txt	greeting.txt	

Roses	are	red,

$	#	FNR	for	individual	file's	record	number

$	#	same	as:	head	-q	-n1	poem.txt	greeting.txt

$	awk	'FNR==1'	poem.txt	greeting.txt	

Roses	are	red,

Hi	thErE

Constructs	to	do	some	processing	before	starting	each	file	as	well	as	at	the	end
	BEGINFILE		-	to	add	code	to	be	executed	before	start	of	each	input	file

GNU	awk

157

	ENDFILE		-	to	add	code	to	be	executed	after	processing	each	input	file
	FILENAME		-	file	name	of	current	input	file	being	processed

$	#	similar	to:	tail	-n1	poem.txt	greeting.txt

$	awk	'BEGINFILE{print	"file:	"FILENAME}

							ENDFILE{print	$0"\n------"}'	poem.txt	greeting.txt

file:	poem.txt

And	so	are	you.

file:	greeting.txt

HavE	a	nicE	day

And	of	course,	there	can	be	usual		awk		code

$	awk	'BEGINFILE{print	"file:	"FILENAME}

							FNR==1;

							ENDFILE{print	"------"}'	poem.txt	greeting.txt

file:	poem.txt

Roses	are	red,

file:	greeting.txt

Hi	thErE

$	awk	'BEGINFILE{c++;	print	"file:	"FILENAME}

							FNR==2;

							END{print	"\nTotal	input	files:	"c}'	poem.txt	greeting.txt

file:	poem.txt

Violets	are	blue,

file:	greeting.txt

HavE	a	nicE	day

Total	input	files:	2

Further	Reading

gawk	manual	-	Using	ARGC	and	ARGV
gawk	manual	-	ARGIND
gawk	manual	-	ERRNO
stackoverflow	-	Finding	common	value	across	multiple	files

Control	Structures

GNU	awk

158

https://www.gnu.org/software/gawk/manual/html_node/ARGC-and-ARGV.html
https://www.gnu.org/software/gawk/manual/html_node/Auto_002dset.html#index-ARGIND-variable
https://www.gnu.org/software/gawk/manual/html_node/Auto_002dset.html#index-ERRNO-variable
https://stackoverflow.com/a/43473385/4082052

Syntax	is	similar	to		C		language	and	single	statements	inside	control	structures	don't	require	to	be
grouped	within		{}	
See	gawk	manual	-	Control	Statements	for	details

Remember	that	by	default	there	is	a	loop	that	goes	over	all	input	records	and	constructs	like		BEGIN	
and		END		fall	outside	that	loop

$	cat	nums.txt	

42

-2

10101

-3.14

-75

$	awk	'{sum	+=	$1}	END{print	sum}'	nums.txt

10062.9

$	#	uninitialized	variables	will	have	empty	string

$	printf	''	|	awk	'{sum	+=	$1}	END{print	sum}'

$	#	so	either	add	'0'	or	use	unary	'+'	operator	to	convert	to	number

$	printf	''	|	awk	'{sum	+=	$1}	END{print	+sum}'

0

if-else	and	loops

We	have	already	seen	simple		if		examples	in	Filtering	section
See	also	gawk	manual	-	Switch

$	#	same	as:	sed	-n	'/are/	s/so/SO/p'	poem.txt	

$	#	remember	that	sub/gsub	returns	number	of	substitutions	made

$	awk	'/are/{if(sub("so",	"SO"))	print}'	poem.txt

And	SO	are	you.

$	#	of	course,	can	also	use

$	awk	'/are/	&&	sub("so",	"SO")'	poem.txt

And	SO	are	you.

$	#	if-else	example

$	awk	'NR>1{if($2>40)	$0="+"$0;	else	$0="-"$0}	1'	fruits.txt

fruit			qty

+apple			42

-banana		31

+fig					90

-guava			6

GNU	awk

159

https://www.gnu.org/software/gawk/manual/html_node/Statements.html
https://www.gnu.org/software/gawk/manual/html_node/Switch-Statement.html

conditional	operator
See	also	stackoverflow	-	finding	min	and	max	value	of	a	column

$	cat	nums.txt	

42

-2

10101

-3.14

-75

$	#	changing	-ve	to	+ve	and	vice	versa

$	#	same	as:	awk	'{if($0	~	/^-/)	sub(/^-/,"");	else	sub(/^/,"-")}	1'	nums.txt

$	awk	'{$0	~	/^-/	?	sub(/^-/,"")	:	sub(/^/,"-")}	1'	nums.txt

-42

2

-10101

3.14

75

$	#	can	also	use:	awk	'!sub(/^-/,""){sub(/^/,"-")}	1'	nums.txt

for	loop
similar	to		C		language,		break		and		continue		statements	are	also	available
See	also	stackoverflow	-	find	missing	numbers	from	sequential	list

$	awk	'BEGIN{for(i=2;	i<11;	i+=2)	print	i}'

2

4

6

8

10

$	#	looping	each	field

$	s='scat:cat:no	cat:abdicate:cater'

$	echo	"$s"	|	awk	-F:	-v	OFS=:	'{for(i=1;i<=NF;i++)	if($i=="cat")	$i="CAT"}	1'

scat:CAT:no	cat:abdicate:cater

$	#	can	also	use	sub	function

$	echo	"$s"	|	awk	-F:	-v	OFS=:	'{for(i=1;i<=NF;i++)	sub(/^cat$/,"CAT",$i)}	1'

scat:CAT:no	cat:abdicate:cater

while	loop
do-while	is	also	available

GNU	awk

160

https://stackoverflow.com/a/29784278/4082052
https://stackoverflow.com/questions/38491676/how-can-i-find-the-missing-integers-in-a-unique-and-sequential-list-one-per-lin

$	awk	'BEGIN{i=2;	while(i<11){print	i;	i+=2}}'

2

4

6

8

10

$	#	recursive	substitution

$	#	here	again	return	value	of	sub/gsub	is	useful

$	echo	'titillate'	|	awk	'{while(gsub(/til/,	""))	print}'

tilate

ate

next	and	nextfile

	next		will	skip	rest	of	statements	and	start	processing	next	line	of	current	file	being	processed
there	is	a	loop	by	default	which	goes	over	all	input	records,		next		is	applicable	for	that
it	is	similar	to		continue		statement	within	loops

it	is	often	used	in	Two	file	processing

$	#	here	'next'	is	used	to	skip	processing	header	line

$	awk	'NR==1{print;	next}	/a.*a/{$0="*"$0}	/[eiou]/{$0="-"$0}	1'	fruits.txt

fruit			qty

-apple			42

*banana		31

-fig					90

-*guava			6

	nextfile		is	useful	to	skip	remaining	lines	from	current	file	being	processed	and	move	on	to	next
file

GNU	awk

161

$	#	same	as:	head	-q	-n1	poem.txt	greeting.txt	fruits.txt

$	awk	'FNR>1{nextfile}	1'	poem.txt	greeting.txt	fruits.txt

Roses	are	red,

Hi	thErE

fruit			qty

$	#	specific	field

$	awk	'FNR>2{nextfile}	{print	$1}'	poem.txt	greeting.txt	fruits.txt

Roses

Violets

Hi

HavE

fruit

apple

$	#	similar	to	'grep	-il'

$	awk	-v	IGNORECASE=1	'/red/{print	FILENAME;	nextfile}'	*

colors_1.txt

colors_2.txt

poem.txt

$	awk	-v	IGNORECASE=1	'$1	~	/red/{print	FILENAME;	nextfile}'	*

colors_1.txt

colors_2.txt

Multiline	processing
Processing	consecutive	lines

GNU	awk

162

$	cat	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

$	#	match	two	consecutive	lines

$	awk	'p~/are/	&&	/is/{print	p	ORS	$0}	{p=$0}'	poem.txt	

Violets	are	blue,

Sugar	is	sweet,

$	#	if	only	the	second	line	is	needed

$	awk	'p~/are/	&&	/is/;	{p=$0}'	poem.txt	

Sugar	is	sweet,

$	#	match	three	consecutive	lines

$	awk	'p2~/red/	&&	p1~/blue/	&&	/is/{print	p2}	{p2=p1;	p1=$0}'	poem.txt

Roses	are	red,

$	#	common	mistake

$	sed	-n	'/are/{N;/is/p}'	poem.txt	

$	#	would	need	something	like	this	and	not	practical	to	extend	for	other	cases

$	sed	'$!N;	/are.*\n.*is/p;	D'	poem.txt	

Violets	are	blue,

Sugar	is	sweet,

Consider	this	sample	input	file

$	cat	range.txt	

foo

BEGIN

1234

6789

END

bar

BEGIN

a

b

c

END

baz

extracting	lines	around	matching	line
See	also	stackoverflow	-	lines	around	matching	regexp
how		n	&&	n--		works:

need	to	note	that	right	hand	side	of		&&		is	processed	only	if	left	hand	side	is		true	

GNU	awk

163

https://stackoverflow.com/questions/17908555/printing-with-sed-or-awk-a-line-following-a-matching-pattern

so	for	example,	if	initially		n=2	,	then	we	get
	2	&&	2;	n=1		-	evaluates	to		true	
	1	&&	1;	n=0		-	evaluates	to		true	
	0	&&		-	evaluates	to		false		...	no	decrementing		n		and	hence	will	be		false		until		n	
is	re-assigned	non-zero	value

$	#	similar	to:	grep	--no-group-separator	-A1	'BEGIN'	range.txt	

$	awk	'/BEGIN/{n=2}	n	&&	n--'	range.txt

BEGIN

1234

BEGIN

a

$	#	only	print	the	line	after	matching	line

$	#	can	also	use:	awk	'/BEGIN/{n=1;	next}	n	&&	n--'	range.txt

$	awk	'n	&&	n--;	/BEGIN/{n=1}'	range.txt	

1234

a

$	#	generic	case:	print	nth	line	after	match

$	awk	'n	&&	!--n;	/BEGIN/{n=3}'	range.txt

END

c

$	#	print	second	line	prior	to	matched	line

$	awk	'/END/{print	p2}	{p2=p1;	p1=$0}'	range.txt

1234

b

$	#	save	all	lines	in	an	array	for	generic	case

$	awk	'/END/{print	a[NR-3]}	{a[NR]=$0}'	range.txt

BEGIN

a

$	#	or	use	the	reversing	trick

$	tac	range.txt	|	awk	'n	&&	!--n;	/END/{n=3}'	|	tac

BEGIN

a

Checking	if	multiple	strings	are	present	at	least	once	in	entire	input	file
If	there	are	lots	of	strings	to	check,	use	arrays

GNU	awk

164

$	#	can	also	use	BEGINFILE	instead	of	FNR==1

$	awk	'FNR==1{s1=s2=0}	/is/{s1=1}	/are/{s2=1}	s1&&s2{print	FILENAME;	nextfile}'	*

poem.txt

sample.txt

$	awk	'FNR==1{s1=s2=0}	/foo/{s1=1}	/report/{s2=1}	s1&&s2{print	FILENAME;	nextfile}'	

*

paths.txt

Two	file	processing
We'll	use	awk's	associative	arrays	(key-value	pairs)	here

key	can	be	number	or	string
See	also	gawk	manual	-	Arrays

Unlike	comm	the	input	files	need	not	be	sorted	and	comparison	can	be	done	based	on	certain
field(s)	as	well

Comparing	whole	lines

Consider	the	following	test	files

$	cat	colors_1.txt

Blue

Brown

Purple

Red

Teal

Yellow

$	cat	colors_2.txt

Black

Blue

Green

Red

White

common	lines	and	lines	unique	to	one	of	the	files
For	two	files	as	input,		NR==FNR		will	be	true	only	when	first	file	is	being	processed
Using		next		will	skip	rest	of	code	when	first	file	is	processed
	a[$0]		will	create	unique	keys	(here	entire	line	content	is	used	as	key)	in	array		a	

GNU	awk

165

https://www.gnu.org/software/gawk/manual/html_node/Arrays.html

just	referencing	a	key	will	create	it	if	it	doesn't	already	exist,	with	value	as	empty	string	(will	also
act	as	zero	in	numeric	context)

	$0	in	a		will	be	true	if	key	already	exists	in	array		a	

$	#	common	lines

$	#	same	as:	grep	-Fxf	colors_1.txt	colors_2.txt

$	awk	'NR==FNR{a[$0];	next}	$0	in	a'	colors_1.txt	colors_2.txt

Blue

Red

$	#	lines	from	colors_2.txt	not	present	in	colors_1.txt

$	#	same	as:	grep	-vFxf	colors_1.txt	colors_2.txt

$	awk	'NR==FNR{a[$0];	next}	!($0	in	a)'	colors_1.txt	colors_2.txt

Black

Green

White

$	#	reversing	the	order	of	input	files	gives

$	#	lines	from	colors_1.txt	not	present	in	colors_2.txt

$	awk	'NR==FNR{a[$0];	next}	!($0	in	a)'	colors_2.txt	colors_1.txt

Brown

Purple

Teal

Yellow

Comparing	specific	fields

Consider	the	sample	input	file

$	cat	marks.txt

Dept				Name				Marks

ECE					Raj					53

ECE					Joel				72

EEE					Moi					68

CSE					Surya			81

EEE					Tia					59

ECE					Om						92

CSE					Amy					67

single	field
For	ex:	only	first	field	comparison	by	using		$1		instead	of		$0		as	key

GNU	awk

166

$	cat	list1

ECE

CSE

$	#	extract	only	lines	matching	first	field	specified	in	list1

$	awk	'NR==FNR{a[$1];	next}	$1	in	a'	list1	marks.txt

ECE					Raj					53

ECE					Joel				72

CSE					Surya			81

ECE					Om						92

CSE					Amy					67

$	#	if	header	is	needed	as	well

$	awk	'NR==FNR{a[$1];	next}	FNR==1	||	$1	in	a'	list1	marks.txt

Dept				Name				Marks

ECE					Raj					53

ECE					Joel				72

CSE					Surya			81

ECE					Om						92

CSE					Amy					67

multiple	fields
create	a	string	by	adding	some	character	between	the	fields	to	act	as	key

for	ex:	to	avoid	matching	two	field	values		abc		and		123		to	match	with	two	other	field	values
	ab		and		c123	
by	adding	character,	say		_	,	the	key	would	be		abc_123		for	first	case	and		ab_c123		for
second	case
this	can	still	lead	to	false	match	if	input	data	has		_	
there	is	also	a	built-in	way	to	do	this	using	gawk	manual	-	Multidimensional	Arrays

GNU	awk

167

https://www.gnu.org/software/gawk/manual/html_node/Multidimensional.html#Multidimensional

$	cat	list2

EEE	Moi

CSE	Amy

ECE	Raj

$	#	extract	only	lines	matching	both	fields	specified	in	list2

$	awk	'NR==FNR{a[$1"_"$2];	next}	$1"_"$2	in	a'	list2	marks.txt

ECE					Raj					53

EEE					Moi					68

CSE					Amy					67

$	#	uses	SUBSEP	as	separator,	whose	default	value	is	non-printing	character	\034

$	awk	'NR==FNR{a[$1,$2];	next}	($1,$2)	in	a'	list2	marks.txt

ECE					Raj					53

EEE					Moi					68

CSE					Amy					67

field	and	value	comparison

$	cat	list3

ECE	70

EEE	65

CSE	80

$	#	extract	line	matching	Dept	and	minimum	marks	specified	in	list3

$	awk	'NR==FNR{d[$1];	m[$1]=$2;	next}	$1	in	d	&&	$3	>=	m[$1]'	list3	marks.txt

ECE					Joel				72

EEE					Moi					68

CSE					Surya			81

ECE					Om						92

getline

If	entire	line	(instead	of	fields)	from	one	file	is	needed	to	change	the	other	file,	using		getline	
would	be	faster
But	use	it	with	caution

gawk	manual	-	getline	for	details,	especially	about	corner	cases,	errors,	etc
gawk	manual	-	Closing	Input	and	Output	Redirections	if	you	have	to	start	from	beginning	of	file
again

GNU	awk

168

https://www.gnu.org/software/gawk/manual/html_node/Getline.html
https://www.gnu.org/software/gawk/manual/html_node/Close-Files-And-Pipes.html

$	#	replace	mth	line	in	poem.txt	with	nth	line	from	nums.txt

$	awk	-v	m=3	-v	n=2	'BEGIN{while(n--	>	0)	getline	s	<	"nums.txt"}

																					FNR==m{$0=s}	1'	poem.txt

Roses	are	red,

Violets	are	blue,

-2

And	so	are	you.

$	#	without	getline,	but	slower	due	to	NR==FNR	check	for	every	line	processed

$	awk	-v	m=3	-v	n=2	'NR==FNR{if(FNR==n){s=$0;	nextfile}	next}

																					FNR==m{$0=s}	1'	nums.txt	poem.txt

Roses	are	red,

Violets	are	blue,

-2

And	so	are	you.

Another	use	case	is	if	two	files	are	to	be	processed	exactly	for	same	line	numbers

$	#	print	line	from	fruits.txt	if	corresponding	line	from	nums.txt	is	+ve	number

$	awk	-v	file='nums.txt'	'{getline	num	<	file;	if(num>0)	print}'	fruits.txt

fruit			qty

banana		31

$	#	without	getline,	but	has	to	save	entire	file	in	array

$	awk	'NR==FNR{n[FNR]=$0;	next}	n[FNR]>0'	nums.txt	fruits.txt

fruit			qty

banana		31

Further	Reading

stackoverflow	-	Fastest	way	to	find	lines	of	a	text	file	from	another	larger	text	file
unix.stackexchange	-	filter	lines	based	on	line	numbers	specified	in	another	file
stackoverflow	-	three	file	processing	to	extract	a	matrix	subset
unix.stackexchange	-	column	wise	merging
stackoverflow	-	extract	specific	rows	from	a	text	file	using	an	index	file

Creating	new	fields
Number	of	fields	in	input	record	can	be	changed	by	simply	manipulating		NF	

GNU	awk

169

https://stackoverflow.com/questions/42239179/fastest-way-to-find-lines-of-a-text-file-from-another-larger-text-file-in-bash
https://unix.stackexchange.com/questions/320651/read-numbers-from-control-file-and-extract-matching-line-numbers-from-the-data-f
https://stackoverflow.com/questions/45036019/how-to-filter-the-values-from-selected-columns-and-rows
https://unix.stackexchange.com/questions/294145/merging-two-files-one-column-at-a-time
https://stackoverflow.com/questions/40595990/print-many-specific-rows-from-a-text-file-using-an-index-file

$	#	reducing	fields

$	echo	'foo,bar,123,baz'	|	awk	-F,	-v	OFS=,	'{NF=2}	1'

foo,bar

$	#	creating	new	empty	field(s)

$	echo	'foo,bar,123,baz'	|	awk	-F,	-v	OFS=,	'{NF=5}	1'

foo,bar,123,baz,

$	#	assigning	to	field	greater	than	NF	will	create	empty	fields	as	needed

$	echo	'foo,bar,123,baz'	|	awk	-F,	-v	OFS=,	'{$7=42}	1'

foo,bar,123,baz,,,42

$	#	adding	a	new	'Grade'	field

$	awk	'BEGIN{OFS="\t";	g[9]="S";	g[8]="A";	g[7]="B";	g[6]="C";	g[5]="D"}

						{NF++;	if(NR==1)$NF="Grade";	else	$NF=g[int($(NF-1)/10)]}	1'	marks.txt

Dept				Name				Marks			Grade

ECE					Raj					53						D

ECE					Joel				72						B

EEE					Moi					68						C

CSE					Surya			81						A

EEE					Tia					59						D

ECE					Om						92						S

CSE					Amy					67						C

two	file	example

$	cat	list4

Raj	class_rep

Amy	sports_rep

Tia	placement_rep

$	awk	-v	OFS='\t'	'NR==FNR{r[$1]=$2;	next}

									{NF++;	if(FNR==1)$NF="Role";	else	$NF=r[$2]}	1'	list4	marks.txt

Dept				Name				Marks			Role

ECE					Raj					53						class_rep

ECE					Joel				72

EEE					Moi					68

CSE					Surya			81

EEE					Tia					59						placement_rep

ECE					Om						92

CSE					Amy					67						sports_rep

Dealing	with	duplicates

GNU	awk

170

default	value	of	uninitialized	variable	is		0		in	numeric	context	and	empty	string	in	text	context
and	evaluates	to		false		when	used	conditionally

Illustration	to	show	default	numeric	value	and	array	in	action

$	printf	'mad\n42\n42\ndam\n42\n'

mad

42

42

dam

42

$	printf	'mad\n42\n42\ndam\n42\n'	|	awk	'{print	$0	"\t"	int(a[$0]);	a[$0]++}'

mad					0

42						0

42						1

dam					0

42						2

$	#	only	those	entries	with	second	column	value	zero	will	be	retained

$	printf	'mad\n42\n42\ndam\n42\n'	|	awk	'!a[$0]++'

mad

42

dam

first,	examples	that	retain	only	first	copy	of	duplicates

$	cat	duplicates.txt

abc		7			4

food	toy	****

abc		7			4

test	toy	123

good	toy	****

$	#	whole	line

$	awk	'!seen[$0]++'	duplicates.txt

abc		7			4

food	toy	****

test	toy	123

good	toy	****

$	#	particular	column

$	awk	'!seen[$2]++'	duplicates.txt

abc		7			4

food	toy	****

For	multiple	fields,	separate	them	using		,		or	form	a	string	with	some	character	in	between

GNU	awk

171

choose	a	character	unlikely	to	appear	in	input	data,	else	there	can	be	false	matches

$	awk	'!seen[$2"_"$3]++'	duplicates.txt

abc		7			4

food	toy	****

test	toy	123

$	#	can	also	use	simulated	multidimensional	array

$	#	SUBSEP,	whose	default	is	\034	non-printing	character,	is	used	as	separator

$	awk	'!seen[$2,$3]++'	duplicates.txt

abc		7			4

food	toy	****

test	toy	123

retaining	specific	numbered	copy

$	#	second	occurrence	of	duplicate

$	awk	'++seen[$2]==2'	duplicates.txt

abc		7			4

test	toy	123

$	#	third	occurrence	of	duplicate

$	awk	'++seen[$2]==3'	duplicates.txt

good	toy	****

retaining	only	last	copy	of	duplicate

$	#	reverse	the	input	line-wise,	retain	first	copy	and	then	reverse	again

$	tac	duplicates.txt	|	awk	'!seen[$2]++'	|	tac

abc		7			4

good	toy	****

filtering	based	on	duplicate	count
allows	to	emulate	uniq	command	for	specific	fields
See	also	unix.stackexchange	-	retain	only	parent	directory	paths

GNU	awk

172

https://unix.stackexchange.com/questions/362571/filter-out-paths-from-a-text-file-that-are-deeper-than-their-immediate-predecces

$	#	all	duplicates	based	on	1st	column

$	awk	'NR==FNR{a[$1]++;	next}	a[$1]>1'	duplicates.txt	duplicates.txt

abc		7			4

abc		7			4

$	#	all	duplicates	based	on	3rd	column

$	awk	'NR==FNR{a[$3]++;	next}	a[$3]>1'	duplicates.txt	duplicates.txt

abc		7			4

food	toy	****

abc		7			4

good	toy	****

$	#	more	than	2	duplicates	based	on	2nd	column

$	awk	'NR==FNR{a[$2]++;	next}	a[$2]>2'	duplicates.txt	duplicates.txt

food	toy	****

test	toy	123

good	toy	****

$	#	only	unique	lines	based	on	3rd	column

$	awk	'NR==FNR{a[$3]++;	next}	a[$3]==1'	duplicates.txt	duplicates.txt

test	toy	123

Lines	between	two	REGEXPs
This	section	deals	with	filtering	lines	bound	by	two	REGEXPs	(referred	to	as	blocks)
For	simplicity	the	two	REGEXPs	usually	used	in	below	examples	are	the	strings	BEGIN	and	END

All	unbroken	blocks

Consider	the	below	sample	input	file,	which	doesn't	have	any	unbroken	blocks	(i.e	BEGIN	and	END	are
always	present	in	pairs)

GNU	awk

173

$	cat	range.txt	

foo

BEGIN

1234

6789

END

bar

BEGIN

a

b

c

END

baz

Extracting	lines	between	starting	and	ending	REGEXP

$	#	include	both	starting/ending	REGEXP

$	#	can	also	use:	awk	'/BEGIN/,/END/'	range.txt

$	#	which	is	similar	to	sed	-n	'/BEGIN/,/END/p'

$	#	but	not	suitable	to	extend	for	other	cases

$	awk	'/BEGIN/{f=1}	f;	/END/{f=0}'	range.txt

BEGIN

1234

6789

END

BEGIN

a

b

c

END

$	#	exclude	both	starting/ending	REGEXP

$	#	can	also	use:	awk	'/BEGIN/{f=1;	next}	/END/{f=0}	f'	range.txt

$	awk	'/END/{f=0}	f;	/BEGIN/{f=1}'	range.txt

1234

6789

a

b

c

Include	only	start	or	end	REGEXP

GNU	awk

174

$	#	include	only	starting	REGEXP

$	awk	'/BEGIN/{f=1}	/END/{f=0}	f'	range.txt

BEGIN

1234

6789

BEGIN

a

b

c

$	#	include	only	ending	REGEXP

$	awk	'f;	/END/{f=0}	/BEGIN/{f=1}'	range.txt

1234

6789

END

a

b

c

END

Extracting	lines	other	than	lines	between	the	two	REGEXPs

$	awk	'/BEGIN/{f=1}	!f;	/END/{f=0}'	range.txt

foo

bar

baz

$	#	the	other	three	cases	would	be

$	awk	'/END/{f=0}	!f;	/BEGIN/{f=1}'	range.txt

$	awk	'!f;	/BEGIN/{f=1}	/END/{f=0}'	range.txt	

$	awk	'/BEGIN/{f=1}	/END/{f=0}	!f'	range.txt

Specific	blocks

Getting	first	block

GNU	awk

175

$	awk	'/BEGIN/{f=1}	f;	/END/{exit}'	range.txt	

BEGIN

1234

6789

END

$	#	use	other	tricks	discussed	in	previous	section	as	needed

$	awk	'/END/{exit}	f;	/BEGIN/{f=1}'	range.txt

1234

6789

Getting	last	block

$	#	reverse	input	linewise,	change	the	order	of	REGEXPs,	finally	reverse	again

$	tac	range.txt	|	awk	'/END/{f=1}	f;	/BEGIN/{exit}'	|	tac

BEGIN

a

b

c

END

$	#	or,	save	the	blocks	in	a	buffer	and	print	the	last	one	alone

$	#	ORS	contains	output	record	separator,	which	is	newline	by	default

$	seq	30	|	awk	'/4/{f=1;	b=$0;	next}	f{b=b	ORS	$0}	/6/{f=0}	END{print	b}'

24

25

26

Getting	blocks	based	on	a	counter

GNU	awk

176

$	#	all	blocks

$	seq	30	|	sed	-n	'/4/,/6/p'

4

5

6

14

15

16

24

25

26

$	#	get	only	2nd	block

$	#	can	also	use:	seq	30	|	awk	-v	b=2	'/4/{c++}	c==b{print;	if(/6/)	exit}'

$	seq	30	|	awk	-v	b=2	'/4/{c++}	c==b;	/6/	&&	c==b{exit}'

14

15

16

$	#	to	get	all	blocks	greater	than	'b'	blocks

$	seq	30	|	awk	-v	b=1	'/4/{f=1;	c++}	f	&&	c>b;	/6/{f=0}'

14

15

16

24

25

26

excluding	a	particular	block

$	#	excludes	2nd	block

$	seq	30	|	awk	-v	b=2	'/4/{f=1;	c++}	f	&&	c!=b;	/6/{f=0}'

4

5

6

24

25

26

Broken	blocks

If	there	are	blocks	with	ending	REGEXP	but	without	corresponding	start,		awk	'/BEGIN/{f=1}	f;
/END/{f=0}'		will	suffice

GNU	awk

177

Consider	the	modified	input	file	where	starting	REGEXP	doesn't	have	corresponding	ending

$	cat	broken_range.txt

foo

BEGIN

1234

6789

END

bar

BEGIN

a

b

c

baz

$	#	the	file	reversing	trick	comes	in	handy	here	as	well

$	tac	broken_range.txt	|	awk	'/END/{f=1}	f;	/BEGIN/{f=0}'	|	tac

BEGIN

1234

6789

END

But	if	both	kinds	of	broken	blocks	are	present,	accumulate	the	records	and	print	accordingly

GNU	awk

178

$	cat	multiple_broken.txt	

qqqqqqq

BEGIN

foo

BEGIN

1234

6789

END

bar

END

0-42-1

BEGIN

a

BEGIN

b

END

;as;s;sd;

$	awk	'/BEGIN/{f=1;	buf=$0;	next}

							f{buf=buf	ORS	$0}

							/END/{f=0;	if(buf)	print	buf;	buf=""}'	multiple_broken.txt

BEGIN

1234

6789

END

BEGIN

b

END

Further	Reading

stackoverflow	-	select	lines	between	two	regexps
unix.stackexchange	-	print	only	blocks	with	lines	>	n
unix.stackexchange	-	print	a	block	only	if	it	contains	matching	string
unix.stackexchange	-	print	a	block	matching	two	different	strings

Arrays
We've	already	seen	examples	using	arrays,	some	more	examples	discussed	in	this	section

array	looping

GNU	awk

179

https://stackoverflow.com/questions/38972736/how-to-select-lines-between-two-patterns
https://unix.stackexchange.com/questions/295600/deleting-lines-between-rows-in-a-text-file-using-awk-or-sed
https://unix.stackexchange.com/a/335523/109046
https://unix.stackexchange.com/questions/347368/grep-with-range-and-pass-three-filters

$	#	average	marks	for	each	department

$	awk	'NR>1{d[$1]+=$3;	c[$1]++}	END{for(i	in	d)print	i,	d[i]/c[i]}'	marks.txt

ECE	72.3333

EEE	63.5

CSE	74

Sorting
See	gawk	manual	-	Predefined	Array	Scanning	Orders	for	more	details

$	#	by	default,	keys	are	traversed	in	random	order

$	awk	'BEGIN{a["z"]=1;	a["x"]=12;	a["b"]=42;	for(i	in	a)print	i,	a[i]}'

x	12

z	1

b	42

$	#	index	sorted	ascending	order	as	strings

$	awk	'BEGIN{PROCINFO["sorted_in"]	=	"@ind_str_asc";

							a["z"]=1;	a["x"]=12;	a["b"]=42;	for(i	in	a)print	i,	a[i]}'

b	42

x	12

z	1

$	#	value	sorted	ascending	order	as	numbers

$	awk	'BEGIN{PROCINFO["sorted_in"]	=	"@val_num_asc";

							a["z"]=1;	a["x"]=12;	a["b"]=42;	for(i	in	a)print	i,	a[i]}'

z	1

x	12

b	42

deleting	array	elements

GNU	awk

180

https://www.gnu.org/software/gawk/manual/html_node/Controlling-Scanning.html#Controlling-Scanning

$	cat	list5

CSE					Surya			75

EEE					Jai					69

ECE					Kal					83

$	#	update	entry	if	a	match	is	found

$	#	else	append	the	new	entries

$	awk	'{ky=$1"_"$2}	NR==FNR{upd[ky]=$0;	next}

								ky	in	upd{$0=upd[ky];	delete	upd[ky]}	1;

								END{for(i	in	upd)print	upd[i]}'	list5	marks.txt

Dept				Name				Marks

ECE					Raj					53

ECE					Joel				72

EEE					Moi					68

CSE					Surya			75

EEE					Tia					59

ECE					Om						92

CSE					Amy					67

ECE					Kal					83

EEE					Jai					69

true	multidimensional	arrays
length	of	sub-arrays	need	not	be	same.	See	gawk	manual	-	Arrays	of	Arrays	for	details

$	awk	'NR>1{d[$1][$2]=$3}	END{for(i	in	d["ECE"])print	i}'	marks.txt

Joel

Raj

Om

$	awk	-v	f='CSE'	'NR>1{d[$1][$2]=$3}	END{for(i	in	d[f])print	i,	d[f][i]}'	marks.txt

Surya	81

Amy	67

Further	Reading

gawk	manual	-	all	array	topics
unix.stackexchange	-	count	words	based	on	length
unix.stackexchange	-	filtering	specific	lines

awk	scripts
For	larger	programs,	save	the	code	in	a	file	and	use		-f		command	line	option
	;		is	not	needed	to	terminate	a	statement

GNU	awk

181

https://www.gnu.org/software/gawk/manual/html_node/Arrays-of-Arrays.html#Arrays-of-Arrays
https://www.gnu.org/software/gawk/manual/html_node/Arrays.html
https://unix.stackexchange.com/questions/396855/is-there-an-easy-way-to-count-characters-in-words-in-file-from-terminal
https://unix.stackexchange.com/a/326215/109046

See	also	gawk	manual	-	Command-Line	Options	for	other	related	options

$	cat	buf.awk

/BEGIN/{

				f=1

				buf=$0

				next

}

f{

				buf=buf	ORS	$0

}

/END/{

				f=0

				if(buf)

								print	buf

				buf=""

}

$	awk	-f	buf.awk	multiple_broken.txt	

BEGIN

1234

6789

END

BEGIN

b

END

Another	advantage	is	that	single	quotes	can	be	freely	used

$	echo	'foo:123:bar:baz'	|	awk	'{$0=gensub(/[^:]+/,	"\047&\047",	"g")}	1'

'foo':'123':'bar':'baz'

$	cat	quotes.awk

{

				$0	=	gensub(/[^:]+/,	"'&'",	"g")

}

1

$	echo	'foo:123:bar:baz'	|	awk	-f	quotes.awk

'foo':'123':'bar':'baz'

If	the	code	has	been	first	tried	out	on	command	line,	add		-o		option	to	get	a	pretty	printed	version

GNU	awk

182

https://www.gnu.org/software/gawk/manual/html_node/Options.html#Options

$	awk	-o	-v	OFS='\t'	'NR==FNR{r[$1]=$2;	next}

									{NF++;	if(FNR==1)$NF="Role";	else	$NF=r[$2]}	1'	list4	marks.txt

Dept				Name				Marks			Role

ECE					Raj					53						class_rep

ECE					Joel				72

EEE					Moi					68

CSE					Surya			81

EEE					Tia					59						placement_rep

ECE					Om						92

CSE					Amy					67						sports_rep

File	name	can	be	passed	along		-o		option,	otherwise	by	default		awkprof.out		will	be	used

$	cat	awkprof.out

								#	gawk	profile,	created	Tue	Oct	24	15:10:02	2017

								#	Rule(s)

								NR	==	FNR	{

																r[$1]	=	$2

																next

								}

								{

																NF++

																if	(FNR	==	1)	{

																								$NF	=	"Role"

																}	else	{

																								$NF	=	r[$2]

																}

								}

								1	{

																print	$0

								}

$	#	note	that	other	command	line	options	have	to	be	provided	as	usual

$	#	for	ex:	awk	-v	OFS='\t'	-f	awkprof.out	list4	marks.txt

Miscellaneous

GNU	awk

183

FPAT	and	FIELDWIDTHS

	FS		allows	to	define	field	separator
In	contrast,		FPAT		allows	to	define	what	should	the	fields	be	made	up	of
See	also	gawk	manual	-	Defining	Fields	by	Content

$	s='Sample123string54with908numbers'

$	#	define	fields	to	be	one	or	more	consecutive	digits

$	echo	"$s"	|	awk	-v	FPAT='[0-9]+'	'{print	$1,	$2,	$3}'

123	54	908

$	#	define	fields	to	be	one	or	more	consecutive	alphabets

$	echo	"$s"	|	awk	-v	FPAT='[a-zA-Z]+'	'{print	$1,	$2,	$3,	$4}'

Sample	string	with	numbers

For	simpler	csv	input	having	quoted	strings	if	fields	themselves	have		,		in	them,	using		FPAT		is
reasonable	approach
Use	a	proper	parser	if	input	can	have	other	cases	like	newlines	in	fields

See	unix.stackexchange	-	using	csv	parser	for	a	sample	program	in		perl	

$	s='foo,"bar,123",baz,abc'

$	echo	"$s"	|	awk	-F,	'{print	$2}'

"bar

$	echo	"$s"	|	awk	-v	FPAT='"[^"]*"|[^,]*'	'{print	$2}'

"bar,123"

if	input	has	well	defined	fields	based	on	number	of	characters,		FIELDWIDTHS		can	be	used	to
specify	width	of	each	field

$	awk	-v	FIELDWIDTHS='8	3'	-v	OFS=	'/fig/{$2=35}	1'	fruits.txt

fruit			qty

apple			42

banana		31

fig					35

guava			6

$	#	without	FIELDWIDTHS

$	awk	'/fig/{$2=35}	1'	fruits.txt

fruit			qty

apple			42

banana		31

fig	35

guava			6

Further	Reading

GNU	awk

184

https://www.gnu.org/software/gawk/manual/html_node/Splitting-By-Content.html
https://unix.stackexchange.com/a/238192

unix.stackexchange	-	Modify	records	in	fixed-width	files
unix.stackexchange	-	detecting	empty	fields	in	fixed	width	files
stackoverflow	-	count	number	of	times	value	is	repeated	each	line

String	functions

	length		function	-	returns	length	of	string,	by	default	acts	on		$0	

$	seq	8	13	|	awk	'length()==1'

8

9

$	awk	'NR==1	||	length($1)>4'	fruits.txt

fruit			qty

apple			42

banana		31

guava			6

$	#	character	count	and	not	byte	count	is	calculated,	similar	to	'wc	-m'

$	printf	'hi' 	|	awk	'{print	length()}'

3

$	#	use	-b	option	if	number	of	bytes	are	needed

$	printf	'hi' 	|	awk	-b	'{print	length()}'

6

	split		function	-	similar	to		FS		splitting	input	record	into	fields
use		patsplit		function	to	get	results	similar	to		FPAT	
See	also	gawk	manual	-	Split	function
See	also	unix.stackexchange	-	delimit	second	column

GNU	awk

185

https://unix.stackexchange.com/questions/368574/modify-records-in-fixed-width-files
https://unix.stackexchange.com/questions/321559/extracting-data-with-awk-when-some-lines-have-empty-missing-values
https://stackoverflow.com/questions/37450880/how-do-i-filter-tab-separated-input-by-the-count-of-fields-with-a-given-value
https://www.gnu.org/software/gawk/manual/gawk.html#index-split_0028_0029-function
https://unix.stackexchange.com/questions/372253/awk-command-to-delimit-the-second-column

$	#	1st	argument	is	string	to	be	split

$	#	2nd	argument	is	array	to	save	results,	indexed	from	1

$	#	3rd	argument	is	separator,	default	is	FS

$	s='foo,1996-10-25,hello,good'

$	echo	"$s"	|	awk	-F,	'{split($2,d,"-");	print	"Month	is:	"	d[2]}'

Month	is:	10

$	#	using	regular	expression	to	define	separator

$	#	return	value	is	number	of	fields	after	splitting

$	s='Sample123string54with908numbers'

$	echo	"$s"	|	awk	'{n=split($0,s,/[0-9]+/);	for(i=1;i<=n;i++)print	s[i]}'

Sample

string

with

numbers

$	#	use	4th	argument	if	separators	are	needed	as	well

$	echo	"$s"	|	awk	'{n=split($0,s,/[0-9]+/,seps);	for(i=1;i<n;i++)print	seps[i]}'

123

54

908

$	#	single	row	to	multiple	rows	based	on	splitting	last	field

$	s='foo,baz,12:42:3'

$	echo	"$s"	|	awk	-F,	'{n=split($NF,a,":");	NF--;	for(i=1;i<=n;i++)	print	$0,a[i]}'

foo	baz	12

foo	baz	42

foo	baz	3

	substr		function	allows	to	extract	specified	number	of	characters	from	given	string
indexing	starts	with		1	

See	gawk	manual	-	substr	function	for	corner	cases	and	details

GNU	awk

186

https://www.gnu.org/software/gawk/manual/gawk.html#index-substr_0028_0029-function

$	#	1st	argument	is	string	to	be	worked	on

$	#	2nd	argument	is	starting	position

$	#	3rd	argument	is	number	of	characters	to	be	extracted

$	echo	'abcdefghij'	|	awk	'{print	substr($0,1,5)}'

abcde

$	echo	'abcdefghij'	|	awk	'{print	substr($0,4,3)}'

def

$	#	if	3rd	argument	is	not	given,	string	is	extracted	until	end

$	echo	'abcdefghij'	|	awk	'{print	substr($0,6)}'

fghij

$	echo	'abcdefghij'	|	awk	-v	OFS=':'	'{print	substr($0,2,3),	substr($0,6,3)}'

bcd:fgh

$	#	if	only	few	characters	are	needed	from	input	line,	can	use	empty	FS

$	echo	'abcdefghij'	|	awk	-v	FS=	'{print	$3}'

c

$	echo	'abcdefghij'	|	awk	-v	FS=	'{print	$3,	$5}'

c	e

Executing	external	commands

External	commands	can	be	issued	using		system		function
Output	would	be	as	usual	on		stdout		unless	redirected	while	calling	the	command
Return	value	of		system		depends	on		exit		status	of	executed	command,	see	gawk	manual	-
Input/Output	Functions	for	details

GNU	awk

187

https://www.gnu.org/software/gawk/manual/html_node/I_002fO-Functions.html

$	awk	'BEGIN{system("echo	Hello	World")}'

Hello	World

$	wc	poem.txt

	4	13	65	poem.txt

$	awk	'BEGIN{system("wc	poem.txt")}'

	4	13	65	poem.txt

$	awk	'BEGIN{system("seq	10	|	paste	-sd,	>	out.txt")}'

$	cat	out.txt

1,2,3,4,5,6,7,8,9,10

$	ls	xyz.txt

ls:	cannot	access	'xyz.txt':	No	such	file	or	directory

$	echo	$?

2

$	awk	'BEGIN{s=system("ls	xyz.txt");	print	"Status:	"	s}'

ls:	cannot	access	'xyz.txt':	No	such	file	or	directory

Status:	2

$	cat	f2

I	bought	two	bananas	and	three	mangoes

$	echo	'f1,f2,odd.txt'	|	awk	-F,	'{system("cat	"	$2)}'

I	bought	two	bananas	and	three	mangoes

printf	formatting

Similar	to		printf		function	in		C		and	shell	built-in	command
use		sprintf		function	to	save	result	in	variable	instead	of	printing
See	also	gawk	manual	-	printf

GNU	awk

188

https://www.gnu.org/software/gawk/manual/html_node/Printf.html

$	awk	'{sum	+=	$1}	END{print	sum}'	nums.txt

10062.9

$	#	note	that	ORS	is	not	appended	and	has	to	be	added	manually

$	awk	'{sum	+=	$1}	END{printf	"%.2f\n",	sum}'	nums.txt

10062.86

$	awk	'{sum	+=	$1}	END{printf	"%10.2f\n",	sum}'	nums.txt

		10062.86

$	awk	'{sum	+=	$1}	END{printf	"%010.2f\n",	sum}'	nums.txt

0010062.86

$	awk	'{sum	+=	$1}	END{printf	"%d\n",	sum}'	nums.txt

10062

$	awk	'{sum	+=	$1}	END{printf	"%+d\n",	sum}'	nums.txt

+10062

$	awk	'{sum	+=	$1}	END{printf	"%e\n",	sum}'	nums.txt

1.006286e+04

to	refer	argument	by	positional	number	(starts	with	1),	use		<num>$	

$	#	can	also	use:	awk	'BEGIN{printf	"hex=%x\noct=%o\ndec=%d\n",	15,	15,	15}'

$	awk	'BEGIN{printf	"hex=%1$x\noct=%1$o\ndec=%1$d\n",	15}'

hex=f

oct=17

dec=15

$	#	adding	prefix	to	hex/oct	numbers

$	awk	'BEGIN{printf	"hex=%1$#x\noct=%1$#o\ndec=%1$d\n",	15}'

hex=0xf

oct=017

dec=15

strings

GNU	awk

189

$	#	prefix	remaining	width	with	spaces

$	awk	'BEGIN{printf	"%6s:%5s\n",	"foo",	"bar"}'

			foo:		bar

$	#	suffix	remaining	width	with	spaces

$	awk	'BEGIN{printf	"%-6s:%-5s\n",	"foo",	"bar"}'

foo			:bar		

$	#	truncate

$	awk	'BEGIN{printf	"%.2s\n",	"foobar"}'

fo

avoid	using		printf		without	format	specifier

$	awk	'BEGIN{s="solve:	5	%	x	=	1";	printf	s}'

awk:	cmd.	line:1:	fatal:	not	enough	arguments	to	satisfy	format	string

				`solve:	5	%	x	=	1'

															^	ran	out	for	this	one

$	awk	'BEGIN{s="solve:	5	%	x	=	1";	printf	"%s\n",	s}'

solve:	5	%	x	=	1

Redirecting	print	output

redirecting	to	file	instead	of	stdout	using		>	
similar	to	behavior	in	shell,	if	file	already	exists	it	is	overwritten

use		>>		to	append	to	an	existing	file	without	deleting	content
however,	unlike	shell,	subsequent	redirections	to	same	file	will	append	to	it
See	also	gawk	manual	-	Closing	Input	and	Output	Redirections	if	you	have	too	many	redirections

GNU	awk

190

https://www.gnu.org/software/gawk/manual/html_node/Close-Files-And-Pipes.html

$	seq	6	|	awk	'NR%2{print	>	"odd.txt";	next}	{print	>	"even.txt"}'

$	cat	odd.txt

1

3

5

$	cat	even.txt

2

4

6

$	awk	'NR==1{col1=$1".txt";	col2=$2".txt";	next}

							{print	$1	>	col1;	print	$2	>	col2}'	fruits.txt

$	cat	fruit.txt

apple

banana

fig

guava

$	cat	qty.txt

42

31

90

6

redirecting	to	shell	command
this	is	useful	if	you	have	different	things	to	redirect	to	different	commands,	otherwise	it	can	be	done
as	usual	in	shell	acting	on		awk	's	output
all	redirections	to	same	command	gets	combined	as	single	input	to	that	command

$	#	same	as:	echo	'foo	good	123'	|	awk	'{print	$2}'	|	wc	-c

$	echo	'foo	good	123'	|	awk	'{print	$2	|	"wc	-c"}'

5

$	#	to	avoid	newline	character	being	added	to	print

$	echo	'foo	good	123'	|	awk	-v	ORS=	'{print	$2	|	"wc	-c"}'

4

$	#	assuming	no	format	specifiers	in	input

$	echo	'foo	good	123'	|	awk	'{printf	$2	|	"wc	-c"}'

4

$	#	same	as:	echo	'foo	good	123'	|	awk	'{printf	$2	$3	|	"wc	-c"}'

$	echo	'foo	good	123'	|	awk	'{printf	$2	|	"wc	-c";	printf	$3	|	"wc	-c"}'

7

Further	Reading

gawk	manual	-	Input/Output	Functions

GNU	awk

191

https://www.gnu.org/software/gawk/manual/html_node/I_002fO-Functions.html

gawk	manual	-	Redirecting	Output	of	print	and	printf
gawk	manual	-	Two-Way	Communications	with	Another	Process
unix.stackexchange	-	inplace	editing	as	well	as	stdout
stackoverflow	-	redirect	blocks	to	separate	files

Gotchas	and	Tips
using		$		for	variables
only	input	record		$0		and	field	contents		$1	,		$2		etc	need		$	
See	also	unix.stackexchange	-	Why	does	awk	print	the	whole	line	when	I	want	it	to	print	a	variable?

$	#	wrong

$	awk	-v	word="apple"	'$1==$word'	fruits.txt

$	#	right

$	awk	-v	word="apple"	'$1==word'	fruits.txt

apple			42

dos	style	line	endings
See	also	unix.stackexchange	-	filtering	when	last	column	has	\r

$	#	no	issue	with	unix	style	line	ending

$	printf	'foo	bar\n123	789\n'	|	awk	'{print	$2,	$1}'

bar	foo

789	123

$	#	dos	style	line	ending	causes	trouble

$	printf	'foo	bar\r\n123	789\r\n'	|	awk	'{print	$2,	$1}'

	foo

	123

$	#	easy	to	deal	by	simply	setting	appropriate	RS

$	#	note	that	ORS	would	still	be	newline	character	only

$	printf	'foo	bar\r\n123	789\r\n'	|	awk	-v	RS='\r\n'	'{print	$2,	$1}'

bar	foo

789	123

relying	on	default	intial	value

GNU	awk

192

https://www.gnu.org/software/gawk/manual/html_node/Redirection.html
https://www.gnu.org/software/gawk/manual/html_node/Two_002dway-I_002fO.html
https://unix.stackexchange.com/questions/321679/gawk-inplace-and-stdout
https://stackoverflow.com/questions/45098279/write-blocks-in-a-text-file-to-multiple-new-files
https://unix.stackexchange.com/questions/291126/why-does-awk-print-the-whole-line-when-i-want-it-to-print-a-variable
https://unix.stackexchange.com/questions/399560/using-awk-to-select-rows-with-specific-value-in-specific-column

$	#	step	1	-	works	for	single	file

$	awk	'{sum	+=	$1}	END{print	sum}'	nums.txt

10062.9

$	#	step	2	-	change	to	work	for	multiple	file

$	awk	'{sum	+=	$1}	ENDFILE{print	FILENAME,	sum}'	nums.txt

nums.txt	10062.9

$	#	step	3	-	check	with	multiple	file	input

$	#	oops,	default	numerical	value	'0'	for	sum	works	only	once

$	awk	'{sum	+=	$1}	ENDFILE{print	FILENAME,	sum}'	nums.txt	<(seq	3)

nums.txt	10062.9

/dev/fd/63	10068.9

$	#	step	4	-	correctly	initialize	variables

$	awk	'BEGINFILE{sum=0}	{sum	+=	$1}	ENDFILE{print	FILENAME,	sum}'	nums.txt	<(seq	3)

nums.txt	10062.9

/dev/fd/63	6

use	unary	operator		+		to	force	numeric	conversion

$	awk	'{sum	+=	$1}	END{print	FILENAME,	sum}'	nums.txt

nums.txt	10062.9

$	awk	'{sum	+=	$1}	END{print	FILENAME,	sum}'	/dev/null

/dev/null	

$	awk	'{sum	+=	$1}	END{print	FILENAME,	+sum}'	/dev/null

/dev/null	0

concatenate	empty	string	to	force	string	comparison

$	echo	'5	5.0'	|	awk	'{print	$1==$2	?	"same"	:	"different",	"string"}'

same	string

$	echo	'5	5.0'	|	awk	'{print	$1""==$2	?	"same"	:	"different",	"string"}'

different	string

beware	of	expressions	going	-ve	for	field	calculations

GNU	awk

193

$	cat	misc.txt

foo

good	bad	ugly

123	xyz

a	b	c	d

$	#	trying	to	delete	last	two	fields

$	awk	'{NF	-=	2}	1'	misc.txt

awk:	cmd.	line:1:	(FILENAME=misc.txt	FNR=1)	fatal:	NF	set	to	negative	value

$	#	dynamically	change	it	depending	on	number	of	fields

$	awk	'{NF	=	(NF<=2)	?	0	:	NF-2}	1'	misc.txt

good

a	b

$	#	similarly,	trying	to	access	3rd	field	from	end

$	awk	'{print	$(NF-2)}'	misc.txt

awk:	cmd.	line:1:	(FILENAME=misc.txt	FNR=1)	fatal:	attempt	to	access	field	-1

$	awk	'NF>2{print	$(NF-2)}'	misc.txt

good

b

If	input	is	ASCII	alone,	simple	trick	to	improve	speed

$	#	all	words	containing	exactly	3	lowercase	a

$	time	awk	-F'a'	'NF==4{cnt++}	END{print	+cnt}'	/usr/share/dict/words

1019

real				0m0.075s

$	time	LC_ALL=C	awk	-F'a'	'NF==4{cnt++}	END{print	+cnt}'	/usr/share/dict/words

1019

real				0m0.045s

Further	Reading
	man	awk		and		info	awk		for	quick	reference	from	command	line
gawk	manual	for	complete	reference,	extensions	and	more
What's	up	with	different		awk		versions?

unix.stackexchange	-	brief	explanation

GNU	awk

194

https://www.gnu.org/software/gawk/manual/gawk.html#SEC_Contents
https://unix.stackexchange.com/questions/29576/difference-between-gawk-vs-awk

Differences	between	gawk,	nawk,	mawk,	and	POSIX	awk
cheat	sheet	for	awk/nawk/gawk

Tutorials	and	Q&A
code.snipcademy	-	gentle	intro
funtoo	-	using	examples
grymoire	-	detailed	tutorial	-	covers	information	about	different		awk		versions	as	well
catonmat	-	one	liners	explained
awk	Q&A	on	stackoverflow
awk	Q&A	on	unix.stackexchange

Alternatives
GNU	datamash
bioawk
hawk	-	based	on	Haskell
miller	-	similar	to	awk/sed/cut/join/sort	for	name-indexed	data	such	as	CSV,	TSV,	and	tabular
JSON

See	this	ycombinator	news	for	other	tools	like	this
unix.stackexchange	-	When	to	use	grep,	sed,	awk,	perl,	etc
awkaster	-	Pseudo-3D	shooter	written	completely	in	awk	using	raycasting	technique
examples	for	some	of	the	stuff	not	covered	in	this	tutorial

unix.stackexchange	-	rand/srand
unix.stackexchange	-	strftime
unix.stackexchange	-	ARGC	and	ARGV
stackoverflow	-	arbitrary	precision	integer	extension
unix.stackexchange	-	sprintf	and	close
unix.stackexchange	-	user	defined	functions	and	array	passing

GNU	awk

195

https://www.reddit.com/r/awk/comments/4omosp/differences_between_gawk_nawk_mawk_and_posix_awk/
http://www.catonmat.net/download/awk.cheat.sheet.txt
https://code.snipcademy.com/tutorials/shell-scripting/awk/introduction
https://www.funtoo.org/Awk_by_Example,_Part_1
http://www.grymoire.com/Unix/Awk.html
http://www.catonmat.net/series/awk-one-liners-explained
https://stackoverflow.com/questions/tagged/awk?sort=votes&pageSize=15
https://unix.stackexchange.com/questions/tagged/awk?sort=votes&pageSize=15
https://www.gnu.org/software/datamash/alternatives/
https://github.com/lh3/bioawk
https://github.com/gelisam/hawk/blob/master/doc/README.md
https://github.com/johnkerl/miller
https://news.ycombinator.com/item?id=10066742
https://unix.stackexchange.com/questions/303044/when-to-use-grep-less-awk-sed
https://github.com/TheMozg/awk-raycaster
https://unix.stackexchange.com/questions/372816/awk-get-random-lines-of-file-satisfying-a-condition
https://unix.stackexchange.com/questions/224969/current-date-in-awk
https://unix.stackexchange.com/questions/222146/awk-does-not-end/222150#222150
https://stackoverflow.com/questions/46904447/strange-output-while-comparing-engineering-numbers-in-awk
https://unix.stackexchange.com/questions/223727/splitting-file-for-every-10000-numbers-not-lines/223739#223739
https://unix.stackexchange.com/questions/72469/gawk-passing-arrays-to-functions

Sorting	stuff
Table	of	Contents

sort
Default	sort
Reverse	sort
Various	number	sorting
Random	sort
Specifying	output	file
Unique	sort
Column	based	sorting
Further	reading	for	sort

uniq
Default	uniq
Only	duplicates
Only	unique
Prefix	count
Ignoring	case
Combining	multiple	files
Column	options
Further	reading	for	uniq

comm
Default	three	column	output
Suppressing	columns
Files	with	duplicates
Further	reading	for	comm

shuf
Random	lines
Random	integer	numbers
Further	reading	for	shuf

sort

Sorting	stuff

196

$	sort	--version	|	head	-n1

sort	(GNU	coreutils)	8.25

$	man	sort

SORT(1)																										User	Commands																									SORT(1)

NAME

							sort	-	sort	lines	of	text	files

SYNOPSIS

							sort	[OPTION]...	[FILE]...

							sort	[OPTION]...	--files0-from=F

DESCRIPTION

							Write	sorted	concatenation	of	all	FILE(s)	to	standard	output.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

Note:	All	examples	shown	here	assumes	ASCII	encoded	input	file

Default	sort

$	cat	poem.txt	

Roses	are	red,

Violets	are	blue,

Sugar	is	sweet,

And	so	are	you.

$	sort	poem.txt	

And	so	are	you.

Roses	are	red,

Sugar	is	sweet,

Violets	are	blue,

Well,	that	was	easy.	The	lines	were	sorted	alphabetically	(ascending	order	by	default)	and	it	so
happened	that	first	letter	alone	was	enough	to	decide	the	order
For	next	example,	let's	extract	all	the	words	and	sort	them

also	allows	to	showcase		sort		accepting	stdin
See	GNU	grep	chapter	if	the		grep		command	used	below	looks	alien

Sorting	stuff

197

$	#	output	might	differ	depending	on	locale	settings

$	#	note	the	case-insensitiveness	of	output

$	grep	-oi	'[a-z]*'	poem.txt	|	sort

And

are

are

are

blue

is

red

Roses

so

Sugar

sweet

Violets

you

heed	hereunto
See	also

arch	wiki	-	locale
Linux:	Define	Locale	and	Language	Settings

$	info	sort	|	tail

			(1)	If	you	use	a	non-POSIX	locale	(e.g.,	by	setting	‘LC_ALL’	to

‘en_US’),	then	‘sort’	may	produce	output	that	is	sorted	differently	than

you’re	accustomed	to.		In	that	case,	set	the	‘LC_ALL’	environment

variable	to	‘C’.		Note	that	setting	only	‘LC_COLLATE’	has	two	problems.

First,	it	is	ineffective	if	‘LC_ALL’	is	also	set.		Second,	it	has

undefined	behavior	if	‘LC_CTYPE’	(or	‘LANG’,	if	‘LC_CTYPE’	is	unset)	is

set	to	an	incompatible	value.		For	example,	you	get	undefined	behavior

if	‘LC_CTYPE’	is	‘ja_JP.PCK’	but	‘LC_COLLATE’	is	‘en_US.UTF-8’.

Example	to	help	show	effect	of	locale	setting

Sorting	stuff

198

https://wiki.archlinux.org/index.php/locale
https://www.shellhacks.com/linux-define-locale-language-settings/

$	#	note	how	uppercase	is	sorted	before	lowercase

$	grep	-oi	'[a-z]*'	poem.txt	|	LC_ALL=C	sort

And

Roses

Sugar

Violets

are

are

are

blue

is

red

so

sweet

you

Reverse	sort

This	is	simply	reversing	from	default	ascending	order	to	descending	order

$	sort	-r	poem.txt	

Violets	are	blue,

Sugar	is	sweet,

Roses	are	red,

And	so	are	you.

Various	number	sorting

$	cat	numbers.txt	

20

53

3

101

$	sort	numbers.txt	

101

20

3

53

Sorting	stuff

199

Whoops,	what	happened	there?		sort		won't	know	to	treat	them	as	numbers	unless	specified
Depending	on	format	of	numbers,	different	options	have	to	be	used
First	up	is		-n		option,	which	sorts	based	on	numerical	value

$	sort	-n	numbers.txt	

3

20

53

101

$	sort	-nr	numbers.txt	

101

53

20

3

The		-n		option	can	handle	negative	numbers
As	well	as	thousands	separator	and	decimal	point	(depends	on	locale)
The		<()		syntax	is	Process	Substitution

to	put	it	simply	-	allows	output	of	command	to	be	passed	as	input	file	to	another	command
without	needing	to	manually	create	a	temporary	file

$	#	multiple	files	are	merged	as	single	input	by	default

$	sort	-n	numbers.txt	<(echo	'-4')

-4

3

20

53

101

$	sort	-n	numbers.txt	<(echo	'1,234')

3

20

53

101

1,234

$	sort	-n	numbers.txt	<(echo	'31.24')

3

20

31.24

53

101

Use		-g		if	input	contains	numbers	prefixed	by		+		or	E	scientific	notation

Sorting	stuff

200

http://mywiki.wooledge.org/ProcessSubstitution
https://en.wikipedia.org/wiki/Scientific_notation#E_notation

$	cat	generic_numbers.txt	

+120

-1.53

3.14e+4

42.1e-2

$	sort	-g	generic_numbers.txt	

-1.53

42.1e-2

+120

3.14e+4

Commands	like		du		have	options	to	display	numbers	in	human	readable	formats
	sort		supports	sorting	such	numbers	using	the		-h		option

$	du	-sh	*

104K				power.log

746M				projects

316K				report.log

20K					sample.txt

$	du	-sh	*	|	sort	-h

20K					sample.txt

104K				power.log

316K				report.log

746M				projects

$	#	--si	uses	powers	of	1000	instead	of	1024

$	du	-s	--si	*

107k				power.log

782M				projects

324k				report.log

21k					sample.txt

$	du	-s	--si	*	|	sort	-h

21k					sample.txt

107k				power.log

324k				report.log

782M				projects

Version	sort	-	dealing	with	numbers	mixed	with	other	characters
If	this	sorting	is	needed	simply	while	displaying	directory	contents,	use		ls	-v		instead	of	piping	to
	sort	-V	

Sorting	stuff

201

$	cat	versions.txt	

foo_v1.2

bar_v2.1.3

foobar_v2

foo_v1.2.1

foo_v1.3

$	sort	-V	versions.txt	

bar_v2.1.3

foobar_v2

foo_v1.2

foo_v1.2.1

foo_v1.3

Another	common	use	case	is	when	there	are	multiple	filenames	differentiated	by	numbers

$	cat	files.txt	

file0

file10

file3

file4

$	sort	-V	files.txt	

file0

file3

file4

file10

Can	be	used	when	dealing	with	numbers	reported	by		time		command	as	well

Sorting	stuff

202

$	#	different	solving	durations

$	cat	rubik_time.txt	

5m35.363s

3m20.058s

4m5.099s

4m1.130s

3m42.833s

4m33.083s

$	#	assuming	consistent	min/sec	format

$	sort	-V	rubik_time.txt	

3m20.058s

3m42.833s

4m1.130s

4m5.099s

4m33.083s

5m35.363s

Random	sort

Note	that	duplicate	lines	will	always	end	up	next	to	each	other
might	be	useful	as	a	feature	for	some	cases	;)
Use		shuf		if	this	is	not	desirable

See	also	How	can	I	shuffle	the	lines	of	a	text	file	on	the	Unix	command	line	or	in	a	shell	script?

Sorting	stuff

203

https://stackoverflow.com/questions/2153882/how-can-i-shuffle-the-lines-of-a-text-file-on-the-unix-command-line-or-in-a-shel

$	cat	nums.txt	

1

10

10

12

23

563

$	#	the	two	10s	will	always	be	next	to	each	other

$	sort	-R	nums.txt	

563

12

1

10

10

23

$	#	duplicates	can	end	up	anywhere

$	shuf	nums.txt	

10

23

1

10

563

12

Specifying	output	file

The		-o		option	can	be	used	to	specify	output	file
Useful	for	in	place	editing

Sorting	stuff

204

$	sort	-R	nums.txt	-o	rand_nums.txt	

$	cat	rand_nums.txt

23

1

10

10

563

12

$	sort	-R	nums.txt	-o	nums.txt

$	cat	nums.txt

563

23

10

10

1

12

Use	shell	script	looping	if	there	multiple	files	to	be	sorted	in	place
Below	snippet	is	for		bash		shell

$	for	f	in	*.txt;	do	echo	sort	-V	"$f"	-o	"$f";	done

sort	-V	files.txt	-o	files.txt

sort	-V	rubik_time.txt	-o	rubik_time.txt

sort	-V	versions.txt	-o	versions.txt

$	#	remove	echo	once	commands	look	fine

$	for	f	in	*.txt;	do	sort	-V	"$f"	-o	"$f";	done

Unique	sort

Keep	only	first	copy	of	lines	that	are	deemed	to	be	same	according	to		sort		option	used

Sorting	stuff

205

$	cat	duplicates.txt	

foo

12	carrots

foo

12	apples

5	guavas

$	#	only	one	copy	of	foo	in	output

$	sort	-u	duplicates.txt	

12	apples

12	carrots

5	guavas

foo

According	to	option	used,	definition	of	duplicate	will	vary
For	example,	when		-n		is	used,	matching	numbers	are	deemed	same	even	if	rest	of	line	differs

Pipe	the	output	to		uniq		if	this	is	not	desirable

$	#	note	how	first	copy	of	line	starting	with	12	is	retained

$	sort	-nu	duplicates.txt	

foo

5	guavas

12	carrots

$	#	use	uniq	when	entire	line	should	be	compared	to	find	duplicates

$	sort	-n	duplicates.txt	|	uniq

foo

5	guavas

12	apples

12	carrots

Use		-f		option	to	ignore	case	of	alphabets	while	determining	duplicates

Sorting	stuff

206

$	cat	words.txt	

CAR

are

car

Are

foot

are

$	#	only	the	two	'are'	were	considered	duplicates

$	sort	-u	words.txt	

are

Are

car

CAR

foot

$	#	note	again	that	first	copy	of	duplicate	is	retained

$	sort	-fu	words.txt	

are

CAR

foot

Column	based	sorting

From		info	sort	

‘-k	POS1[,POS2]’

‘--key=POS1[,POS2]’

					Specify	a	sort	field	that	consists	of	the	part	of	the	line	between

					POS1	and	POS2	(or	the	end	of	the	line,	if	POS2	is	omitted),

					inclusive.

					Each	POS	has	the	form	‘F[.C][OPTS]’,	where	F	is	the	number	of	the

					field	to	use,	and	C	is	the	number	of	the	first	character	from	the

					beginning	of	the	field.		Fields	and	character	positions	are

					numbered	starting	with	1;	a	character	position	of	zero	in	POS2

					indicates	the	field’s	last	character.		If	‘.C’	is	omitted	from

					POS1,	it	defaults	to	1	(the	beginning	of	the	field);	if	omitted

					from	POS2,	it	defaults	to	0	(the	end	of	the	field).		OPTS	are

					ordering	options,	allowing	individual	keys	to	be	sorted	according

					to	different	rules;	see	below	for	details.		Keys	can	span	multiple

					fields.

By	default,	blank	characters	(space	and	tab)	serve	as	field	separators

Sorting	stuff

207

$	cat	fruits.txt	

apple			42

guava			6

fig					90

banana		31

$	sort	fruits.txt	

apple			42

banana		31

fig					90

guava			6

$	#	sort	based	on	2nd	column	numbers

$	sort	-k2,2n	fruits.txt	

guava			6

banana		31

apple			42

fig					90

Using	a	different	field	separator
Consider	the	following	sample	input	file	having	fields	separated	by		:	

$	#	name:pet_name:no_of_pets

$	cat	pets.txt	

foo:dog:2

xyz:cat:1

baz:parrot:5

abcd:cat:3

joe:dog:1

bar:fox:1

temp_var:squirrel:4

boss:dog:10

Sorting	based	on	particular	column	or	column	to	end	of	line
In	case	of	multiple	entries,	by	default		sort		would	use	content	of	remaining	parts	of	line	to	resolve

Sorting	stuff

208

$	#	only	2nd	column

$	#	-k2,4	would	mean	2nd	column	to	4th	column

$	sort	-t:	-k2,2	pets.txt	

abcd:cat:3

xyz:cat:1

boss:dog:10

foo:dog:2

joe:dog:1

bar:fox:1

baz:parrot:5

temp_var:squirrel:4

$	#	from	2nd	column	to	end	of	line

$	sort	-t:	-k2	pets.txt	

xyz:cat:1

abcd:cat:3

joe:dog:1

boss:dog:10

foo:dog:2

bar:fox:1

baz:parrot:5

temp_var:squirrel:4

Multiple	keys	can	be	specified	to	resolve	ties
Note	that	if	there	are	still	multiple	entries	with	specified	keys,	remaining	parts	of	lines	would	be	used

Sorting	stuff

209

$	#	default	sort	for	2nd	column,	numeric	sort	on	3rd	column	to	resolve	ties

$	sort	-t:	-k2,2	-k3,3n	pets.txt	

xyz:cat:1

abcd:cat:3

joe:dog:1

foo:dog:2

boss:dog:10

bar:fox:1

baz:parrot:5

temp_var:squirrel:4

$	#	numeric	sort	on	3rd	column,	default	sort	for	2nd	column	to	resolve	ties

$	sort	-t:	-k3,3n	-k2,2	pets.txt	

xyz:cat:1

joe:dog:1

bar:fox:1

foo:dog:2

abcd:cat:3

temp_var:squirrel:4

baz:parrot:5

boss:dog:10

Use		-s		option	to	retain	original	order	of	lines	in	case	of	tie

$	sort	-s	-t:	-k2,2	pets.txt	

xyz:cat:1

abcd:cat:3

foo:dog:2

joe:dog:1

boss:dog:10

bar:fox:1

baz:parrot:5

temp_var:squirrel:4

The		-u		option,	as	seen	earlier,	will	retain	only	first	match

Sorting	stuff

210

$	sort	-u	-t:	-k2,2	pets.txt	

xyz:cat:1

foo:dog:2

bar:fox:1

baz:parrot:5

temp_var:squirrel:4

$	sort	-u	-t:	-k3,3n	pets.txt	

xyz:cat:1

foo:dog:2

abcd:cat:3

temp_var:squirrel:4

baz:parrot:5

boss:dog:10

Sometimes,	the	input	has	to	be	sorted	first	and	then		-u		used	on	the	sorted	output
See	also	remove	duplicates	based	on	the	value	of	another	column

$	#	sort	by	number	in	3rd	column

$	sort	-t:	-k3,3n	pets.txt

bar:fox:1

joe:dog:1

xyz:cat:1

foo:dog:2

abcd:cat:3

temp_var:squirrel:4

baz:parrot:5

boss:dog:10

$	#	then	get	unique	entry	based	on	2nd	column

$	sort	-t:	-k3,3n	pets.txt	|	sort	-t:	-u	-k2,2

xyz:cat:1

joe:dog:1

bar:fox:1

baz:parrot:5

temp_var:squirrel:4

Specifying	particular	characters	within	fields
If	character	position	is	not	specified,	defaults	to		1		for	starting	column	and		0		(last	character)	for
ending	column

Sorting	stuff

211

https://unix.stackexchange.com/questions/379835/remove-duplicates-based-on-the-value-of-another-column

$	cat	marks.txt	

fork,ap_12,54

flat,up_342,1.2

fold,tn_48,211

more,ap_93,7

rest,up_5,63

$	#	for	2nd	column,	sort	numerically	only	from	4th	character	to	end

$	sort	-t,	-k2.4,2n	marks.txt	

rest,up_5,63

fork,ap_12,54

fold,tn_48,211

more,ap_93,7

flat,up_342,1.2

$	#	sort	uniquely	based	on	first	two	characters	of	line

$	sort	-u	-k1.1,1.2	marks.txt	

flat,up_342,1.2

fork,ap_12,54

more,ap_93,7

rest,up_5,63

If	there	are	headers

$	cat	header.txt	

fruit			qty

apple			42

guava			6

fig					90

banana		31

$	#	separate	and	combine	header	and	content	to	be	sorted

$	cat	<(head	-n1	header.txt)	<(tail	-n	+2	header.txt	|	sort	-k2nr)

fruit			qty

fig					90

apple			42

banana		31

guava			6

See	also	sort	by	last	field	value	when	number	of	fields	varies

Further	reading	for	sort

There	are	many	other	options	apart	from	handful	presented	above.	See		man	sort		and		info

Sorting	stuff

212

https://stackoverflow.com/questions/3832068/bash-sort-text-file-by-last-field-value

sort		for	detailed	documentation	and	more	examples
sort	like	a	master
When	-b	to	ignore	leading	blanks	is	needed
sort	Q&A	on	unix	stackexchange
sort	on	multiple	columns	using	-k	option
sort	a	string	character	wise
Scalability	of	'sort	-u'	for	gigantic	files

uniq

$	uniq	--version	|	head	-n1

uniq	(GNU	coreutils)	8.25

$	man	uniq

UNIQ(1)																										User	Commands																									UNIQ(1)

NAME

							uniq	-	report	or	omit	repeated	lines

SYNOPSIS

							uniq	[OPTION]...	[INPUT	[OUTPUT]]

DESCRIPTION

							Filter		adjacent	matching	lines	from	INPUT	(or	standard	input),	writing

							to	OUTPUT	(or	standard	output).

							With	no	options,	matching	lines	are	merged	to	the	first	occurrence.

...

Default	uniq

Sorting	stuff

213

http://www.skorks.com/2010/05/sort-files-like-a-master-with-the-linux-sort-command-bash/
https://unix.stackexchange.com/a/104527/109046
https://unix.stackexchange.com/questions/tagged/sort?sort=votes&pageSize=15
https://unix.stackexchange.com/questions/249452/unix-multiple-column-sort-issue
https://stackoverflow.com/questions/2373874/how-to-sort-characters-in-a-string
https://unix.stackexchange.com/questions/279096/scalability-of-sort-u-for-gigantic-files

$	cat	word_list.txt	

are

are

to

good

bad

bad

bad

good

are

bad

$	#	adjacent	duplicate	lines	are	removed,	leaving	one	copy

$	uniq	word_list.txt

are

to

good

bad

good

are

bad

$	#	To	remove	duplicates	from	entire	file,	input	has	to	be	sorted	first

$	#	also	showcases	that	uniq	accepts	stdin	as	input

$	sort	word_list.txt	|	uniq

are

bad

good

to

Only	duplicates

$	#	duplicates	adjacent	to	each	other

$	uniq	-d	word_list.txt	

are

bad

$	#	duplicates	in	entire	file

$	sort	word_list.txt	|	uniq	-d

are

bad

good

Sorting	stuff

214

To	get	only	duplicates	as	well	as	show	all	duplicates

$	uniq	-D	word_list.txt	

are

are

bad

bad

bad

$	sort	word_list.txt	|	uniq	-D

are

are

are

bad

bad

bad

bad

good

good

To	distinguish	the	different	groups

$	#	using	--all-repeated=prepend	will	add	a	newline	before	the	first	group	as	well

$	sort	word_list.txt	|	uniq	--all-repeated=separate

are

are

are

bad

bad

bad

bad

good

good

Only	unique

Sorting	stuff

215

$	#	lines	with	no	adjacent	duplicates

$	uniq	-u	word_list.txt

to

good

good

are

bad

$	#	unique	lines	in	entire	file

$	sort	word_list.txt	|	uniq	-u

to

Prefix	count

$	#	adjacent	lines

$	uniq	-c	word_list.txt

						2	are

						1	to

						1	good

						3	bad

						1	good

						1	are

						1	bad

$	#	entire	file

$	sort	word_list.txt	|	uniq	-c

						3	are

						4	bad

						2	good

						1	to

$	#	entire	file,	only	duplicates

$	sort	word_list.txt	|	uniq	-cd

						3	are

						4	bad

						2	good

Sorting	by	count

Sorting	stuff

216

$	#	sort	by	count

$	sort	word_list.txt	|	uniq	-c	|	sort	-n

						1	to

						2	good

						3	are

						4	bad

$	#	reverse	the	order,	highest	count	first

$	sort	word_list.txt	|	uniq	-c	|	sort	-nr

						4	bad

						3	are

						2	good

						1	to

To	get	only	entries	with	min/max	count,	bit	of	awk	magic	would	help

$	#	consider	this	result

$	sort	colors.txt	|	uniq	-c	|	sort	-nr

						3	Red

						3	Blue

						2	Yellow

						1	Green

						1	Black

$	#	to	get	all	max	count

$	#	save	1st	line	1st	column	value	to	c	and	then	print	if	1st	column	equals	c

$	sort	colors.txt	|	uniq	-c	|	sort	-nr	|	awk	'NR==1{c=$1}	$1==c'

						3	Red

						3	Blue

$	#	to	get	all	min	count

$	sort	colors.txt	|	uniq	-c	|	sort	-n	|	awk	'NR==1{c=$1}	$1==c'

						1	Black

						1	Green

Get	rough	count	of	most	used	commands	from		history		file

Sorting	stuff

217

$	#	awk	'{print	$1}'	will	get	the	1st	column	alone

$	awk	'{print	$1}'	"$HISTFILE"	|	sort	|	uniq	-c	|	sort	-nr	|	head

			1465	echo

			1180	grep

				552	cd

				531	awk

				451	sed

				423	vi

				418	cat

				392	perl

				325	printf

				320	sort

$	#	extract	command	name	from	start	of	line	or	preceded	by	'spaces|spaces'

$	#	won't	catch	commands	in	other	places	like	command	substitution	though

$	grep	-oP	'(^|	+\|	+)\K[^]+'	"$HISTFILE"	|	sort	|	uniq	-c	|	sort	-nr	|	head

			2006	grep

			1469	echo

				933	sed

				698	awk

				552	cd

				513	perl

				510	cat

				453	sort

				423	vi

				327	printf

Ignoring	case

Sorting	stuff

218

$	cat	another_list.txt

food

Food

good

are

bad

Are

$	#	note	how	first	copy	is	retained

$	uniq	-i	another_list.txt	

food

good

are

bad

Are

$	uniq	-iD	another_list.txt	

food

Food

Combining	multiple	files

Sorting	stuff

219

$	sort	-f	word_list.txt	another_list.txt	|	uniq	-i

are

bad

food

good

to

$	sort	-f	word_list.txt	another_list.txt	|	uniq	-c

						4	are

						1	Are

						5	bad

						1	food

						1	Food

						3	good

						1	to

$	sort	-f	word_list.txt	another_list.txt	|	uniq	-ic

						5	are

						5	bad

						2	food

						3	good

						1	to

If	only	adjacent	lines	(not	sorted)	is	required,	need	to	concatenate	files	using	another	command

$	uniq	-id	word_list.txt

are

bad

$	uniq	-id	another_list.txt

food

$	cat	word_list.txt	another_list.txt	|	uniq	-id

are

bad

food

Column	options

	uniq		has	few	options	dealing	with	column	manipulations.	Not	extensive	as		sort	-k		but	handy
for	some	cases
First	up,	skipping	fields

No	option	to	specify	different	delimiter

Sorting	stuff

220

From		info	uniq	:	Fields	are	sequences	of	non-space	non-tab	characters	that	are	separated
from	each	other	by	at	least	one	space	or	tab
Number	of	spaces/tabs	between	fields	should	be	same

$	cat	shopping.txt	

lemon	5

mango	5

banana	8

bread	1

orange	5

$	#	skips	first	field

$	uniq	-f1	shopping.txt	

lemon	5

banana	8

bread	1

orange	5

$	#	use	-f3	to	skip	first	three	fields	and	so	on

Skipping	characters

$	cat	text	

glue

blue

black

stack

stuck

$	#	don't	consider	first	2	characters

$	uniq	-s2	text	

glue

black

stuck

$	#	to	visualize	the	above	example

$	#	assume	there	are	two	fields	and	uniq	is	applied	on	2nd	column

$	sed	's/^../&	/'	text	

gl	ue

bl	ue

bl	ack

st	ack

st	uck

Upto	specified	characters

Sorting	stuff

221

$	#	consider	only	first	2	characters

$	uniq	-w2	text	

glue

blue

stack

$	#	to	visualize	the	above	example

$	#	assume	there	are	two	fields	and	uniq	is	applied	on	1st	column

$	sed	's/^../&	/'	text	

gl	ue

bl	ue

bl	ack

st	ack

st	uck

Combining		-s		and		-w	
Can	be	combined	with		-f		as	well

$	#	skip	first	3	characters	and	then	use	next	2	characters

$	uniq	-s3	-w2	text	

glue

black

Further	reading	for	uniq

Do	check	out		man	uniq		and		info	uniq		for	other	options	and	more	detailed	documentation
uniq	Q&A	on	unix	stackexchange
process	duplicate	lines	only	based	on	certain	fields

comm

Sorting	stuff

222

http://unix.stackexchange.com/questions/tagged/uniq?sort=votes&pageSize=15
https://unix.stackexchange.com/questions/387590/print-the-duplicate-lines-only-on-fields-1-2-from-csv-file

$	comm	--version	|	head	-n1

comm	(GNU	coreutils)	8.25

$	man	comm

COMM(1)																										User	Commands																									COMM(1)

NAME

							comm	-	compare	two	sorted	files	line	by	line

SYNOPSIS

							comm	[OPTION]...	FILE1	FILE2

DESCRIPTION

							Compare	sorted	files	FILE1	and	FILE2	line	by	line.

							When	FILE1	or	FILE2	(not	both)	is	-,	read	standard	input.

							With		no		options,		produce		three-column		output.		Column	one	contains

							lines	unique	to	FILE1,	column	two	contains	lines	unique	to		FILE2,		and

							column	three	contains	lines	common	to	both	files.

...

Default	three	column	output

Consider	below	sample	input	files

$	#	sorted	input	files	viewed	side	by	side

$	paste	colors_1.txt	colors_2.txt

Blue				Black

Brown			Blue

Purple		Green

Red					Red

Teal				White

Yellow

Without	any	option,		comm		gives	3	column	output
lines	unique	to	first	file
lines	unique	to	second	file
lines	common	to	both	files

Sorting	stuff

223

$	comm	colors_1.txt	colors_2.txt

								Black

																Blue

Brown

								Green

Purple

																Red

Teal

								White

Yellow

Suppressing	columns

	-1		suppress	lines	unique	to	first	file
	-2		suppress	lines	unique	to	second	file
	-3		suppress	lines	common	to	both	files

$	#	suppressing	column	3

$	comm	-3	colors_1.txt	colors_2.txt

								Black

Brown

								Green

Purple

Teal

								White

Yellow

Combining	options	gives	three	distinct	and	useful	constructs
First,	getting	only	common	lines	to	both	files

$	comm	-12	colors_1.txt	colors_2.txt

Blue

Red

Second,	lines	unique	to	first	file

$	comm	-23	colors_1.txt	colors_2.txt

Brown

Purple

Teal

Yellow

Sorting	stuff

224

And	the	third,	lines	unique	to	second	file

$	comm	-13	colors_1.txt	colors_2.txt

Black

Green

White

See	also	how	the	above	three	cases	can	be	done	using	grep	alone
Note	input	files	do	not	need	to	be	sorted	for		grep		solution

If	different		sort		order	than	default	is	required,	use		--nocheck-order		to	ignore	error	message

$	comm	-23	<(sort	-n	numbers.txt)	<(sort	-n	nums.txt)

3

comm:	file	1	is	not	in	sorted	order

20

53

101

$	comm	--nocheck-order	-23	<(sort	-n	numbers.txt)	<(sort	-n	nums.txt)

3

20

53

101

Files	with	duplicates

As	many	duplicate	lines	match	in	both	files,	they'll	be	considered	as	common
Rest	will	be	unique	to	respective	files
This	is	useful	for	cases	like	finding	lines	present	in	first	but	not	in	second	taking	in	to	consideration
count	of	duplicates	as	well

This	solution	won't	be	possible	with		grep	

Sorting	stuff

225

$	paste	list1	list2

a							a

a							b

a							c

b							c

b							d

c

$	comm	list1	list2

																a

a

a

																b

b

																c

								c

								d

$	comm	-23	list1	list2

a

a

b

Further	reading	for	comm

	man	comm		and		info	comm		for	more	options	and	detailed	documentation
comm	Q&A	on	unix	stackexchange

shuf

Sorting	stuff

226

http://unix.stackexchange.com/questions/tagged/comm?sort=votes&pageSize=15

$	shuf	--version	|	head	-n1

shuf	(GNU	coreutils)	8.25

$	man	shuf

SHUF(1)																										User	Commands																									SHUF(1)

NAME

							shuf	-	generate	random	permutations

SYNOPSIS

							shuf	[OPTION]...	[FILE]

							shuf	-e	[OPTION]...	[ARG]...

							shuf	-i	LO-HI	[OPTION]...

DESCRIPTION

							Write	a	random	permutation	of	the	input	lines	to	standard	output.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

Random	lines

Without	repeating	input	lines

Sorting	stuff

227

$	cat	nums.txt	

1

10

10

12

23

563

$	#	duplicates	can	end	up	anywhere

$	#	all	lines	are	part	of	output

$	shuf	nums.txt	

10

23

1

10

563

12

$	#	limit	max	number	of	output	lines

$	shuf	-n2	nums.txt	

563

23

Use		-o		option	to	specify	output	file	name	instead	of	displaying	on	stdout
Helpful	for	inplace	editing

$	shuf	nums.txt	-o	nums.txt	

$	cat	nums.txt	

10

12

23

10

563

1

With	repeated	input	lines

Sorting	stuff

228

$	#	-n3	for	max	3	lines,	-r	allows	input	lines	to	be	repeated

$	shuf	-n3	-r	nums.txt	

1

1

563

$	seq	3	|	shuf	-n5	-r

2

1

2

1

2

$	#	if	a	limit	using	-n	is	not	specified,	shuf	will	output	lines	indefinitely

use		-e		option	to	specify	multiple	input	lines	from	command	line	itself

$	shuf	-e	red	blue	green

green

blue

red

$	shuf	-e	'hi	there'	'hello	world'	foo	bar

bar

hi	there

foo

hello	world

$	shuf	-n2	-e	'hi	there'	'hello	world'	foo	bar

foo

hi	there

$	shuf	-r	-n4	-e	foo	bar

foo

foo

bar

foo

Random	integer	numbers

The		-i		option	accepts	integer	range	as	input	to	be	shuffled

Sorting	stuff

229

$	shuf	-i	3-8

3

7

6

4

8

5

Combine	with	other	options	as	needed

$	shuf	-n3	-i	3-8

5

4

7

$	shuf	-r	-n4	-i	3-8

5

5

7

8

$	shuf	-r	-n5	-i	0-1

1

0

0

1

1

Use	seq	input	if	negative	numbers,	floating	point,	etc	are	needed

$	seq	2	-1	-2	|	shuf

2

-1

-2

0

1

$	seq	0.3	0.1	0.7	|	shuf	-n3

0.4

0.5

0.7

Further	reading	for	shuf

Sorting	stuff

230

	man	shuf		and		info	shuf		for	more	options	and	detailed	documentation
Generate	random	numbers	in	specific	range
Variable	-	randomly	choose	among	three	numbers
Related	to	'random'	stuff:

How	to	generate	a	random	string?
How	can	I	populate	a	file	with	random	data?
Run	commands	at	random

Sorting	stuff

231

https://unix.stackexchange.com/questions/140750/generate-random-numbers-in-specific-range
https://unix.stackexchange.com/questions/330689/variable-randomly-chosen-among-three-numbers-10-100-and-1000
https://unix.stackexchange.com/questions/230673/how-to-generate-a-random-string
https://unix.stackexchange.com/questions/33629/how-can-i-populate-a-file-with-random-data
https://unix.stackexchange.com/questions/81566/run-commands-at-random

Restructure	text
Table	of	Contents

paste
Concatenating	files	column	wise
Interleaving	lines
Lines	to	multiple	columns
Different	delimiters	between	columns
Multiple	lines	to	single	row
Further	reading	for	paste

column
Pretty	printing	tables
Specifying	different	input	delimiter
Further	reading	for	column

pr
Converting	lines	to	columns
Changing	PAGE_WIDTH
Combining	multiple	input	files
Transposing	a	table
Further	reading	for	pr

fold
Examples
Further	reading	for	fold

paste

Restructure	text

232

$	paste	--version	|	head	-n1

paste	(GNU	coreutils)	8.25

$	man	paste	

PASTE(1)																									User	Commands																								PASTE(1)

NAME

							paste	-	merge	lines	of	files

SYNOPSIS

							paste	[OPTION]...	[FILE]...

DESCRIPTION

							Write		lines		consisting		of		the	sequentially	corresponding	lines	from

							each	FILE,	separated	by	TABs,	to	standard	output.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

Concatenating	files	column	wise

By	default,		paste		adds	a	TAB	between	corresponding	lines	of	input	files

$	paste	colors_1.txt	colors_2.txt

Blue				Black

Brown			Blue

Purple		Green

Red					Red

Teal				White

Specifying	a	different	delimiter	using		-d	
The		<()		syntax	is	Process	Substitution

to	put	it	simply	-	allows	output	of	command	to	be	passed	as	input	file	to	another	command
without	needing	to	manually	create	a	temporary	file

Restructure	text

233

http://mywiki.wooledge.org/ProcessSubstitution

$	paste	-d,	<(seq	5)	<(seq	6	10)

1,6

2,7

3,8

4,9

5,10

$	#	empty	cells	if	number	of	lines	is	not	same	for	all	input	files

$	#	-d\|	can	also	be	used

$	paste	-d'|'	<(seq	3)	<(seq	4	6)	<(seq	7	10)

1|4|7

2|5|8

3|6|9

||10

Interleaving	lines

Interleave	lines	by	using	newline	as	delimiter

$	paste	-d'\n'	<(seq	11	13)	<(seq	101	103)

11

101

12

102

13

103

Lines	to	multiple	columns

Number	of		-		specified	determines	number	of	output	columns
Input	lines	can	be	passed	only	as	stdin

Restructure	text

234

$	#	single	column	to	two	columns

$	seq	10	|	paste	-d,	-	-

1,2

3,4

5,6

7,8

9,10

$	#	single	column	to	five	columns

$	seq	10	|	paste	-d:	-	-	-	-	-

1:2:3:4:5

6:7:8:9:10

$	#	input	redirection	for	file	input

$	paste	-d,	-	-	<	colors_1.txt	

Blue,Brown

Purple,Red

Teal,

Use		printf		trick	if	number	of	columns	to	specify	is	too	large

$	#	prompt	at	end	of	line	not	shown	for	simplicity

$	printf	--	"-	%.s"	{1..5}

-	-	-	-	-	

$	seq	10	|	paste	-d,	$(printf	--	"-	%.s"	{1..5})

1,2,3,4,5

6,7,8,9,10

Different	delimiters	between	columns

For	more	than	2	columns,	different	delimiter	character	can	be	specified	-	passed	as	list	to		-d	
option

Restructure	text

235

$	#	,	is	used	between	1st	and	2nd	column

$	#	-	is	used	between	2nd	and	3rd	column

$	paste	-d',-'	<(seq	3)	<(seq	4	6)	<(seq	7	9)

1,4-7

2,5-8

3,6-9

$	#	re-use	list	from	beginning	if	not	specified	for	all	columns

$	paste	-d',-'	<(seq	3)	<(seq	4	6)	<(seq	7	9)	<(seq	10	12)

1,4-7,10

2,5-8,11

3,6-9,12

$	#	another	example

$	seq	10	|	paste	-d':,'	-	-	-	-	-

1:2,3:4,5

6:7,8:9,10

$	#	so,	with	single	delimiter,	it	is	just	re-used	for	all	columns

$	paste	-d,	<(seq	3)	<(seq	4	6)	<(seq	7	9)	<(seq	10	12)

1,4,7,10

2,5,8,11

3,6,9,12

combination	of		-d		and		/dev/null		(empty	file)	can	give	multi-character	separation	between
columns
If	this	is	too	confusing	to	use,	consider	pr	instead

Restructure	text

236

$	paste	-d'	:	'	<(seq	3)	/dev/null	/dev/null	<(seq	4	6)	/dev/null	/dev/null	<(seq	7	

9)

1	:	4	:	7

2	:	5	:	8

3	:	6	:	9

$	#	or	just	use	pr	instead

$	pr	-mts'	:	'	<(seq	3)	<(seq	4	6)	<(seq	7	9)

1	:	4	:	7

2	:	5	:	8

3	:	6	:	9

$	#	but	paste	would	allow	different	delimiters	;)

$	paste	-d'	:		-	'	<(seq	3)	/dev/null	/dev/null	<(seq	4	6)	/dev/null	/dev/null	<(seq

	7	9)

1	:	4	-	7

2	:	5	-	8

3	:	6	-	9

$	#	pr	would	need	two	invocations

$	pr	-mts'	:	'	<(seq	3)	<(seq	4	6)	|	pr	-mts'	-	'	-	<(seq	7	9)

1	:	4	-	7

2	:	5	-	8

3	:	6	-	9

example	to	show	using	empty	file	instead	of		/dev/null	

$	#	assuming	file	named	e	doesn't	exist

$	touch	e

$	#	or	use	this,	will	empty	contents	even	if	file	named	e	already	exists	:P

$	>	e

$	paste	-d'	:		-	'	<(seq	3)	e	e	<(seq	4	6)	e	e	<(seq	7	9)

1	:	4	-	7

2	:	5	-	8

3	:	6	-	9

Multiple	lines	to	single	row

Restructure	text

237

$	paste	-sd,	colors_1.txt

Blue,Brown,Purple,Red,Teal

$	#	multiple	files	each	gets	a	row

$	paste	-sd:	colors_1.txt	colors_2.txt	

Blue:Brown:Purple:Red:Teal

Black:Blue:Green:Red:White

$	#	multiple	input	files	need	not	have	same	number	of	lines

$	paste	-sd,	<(seq	3)	<(seq	5	9)

1,2,3

5,6,7,8,9

Often	used	to	serialize	multiple	line	output	from	another	command

$	sort	-u	colors_1.txt	colors_2.txt	|	paste	-sd,

Black,Blue,Brown,Green,Purple,Red,Teal,White

For	multiple	character	delimiter,	post-process	if	separator	is	unique	or	use	another	tool	like		perl	

$	seq	10	|	paste	-sd,

1,2,3,4,5,6,7,8,9,10

$	#	post-process

$	seq	10	|	paste	-sd,	|	sed	's/,/	:	/g'

1	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10

$	#	using	perl	alone

$	seq	10	|	perl	-pe	's/\n/	:	/	if(!eof)'

1	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10

Further	reading	for	paste

	man	paste		and		info	paste		for	more	options	and	detailed	documentation
paste	Q&A	on	unix	stackexchange

column

Restructure	text

238

https://unix.stackexchange.com/questions/tagged/paste?sort=votes&pageSize=15

COLUMN(1)																	BSD	General	Commands	Manual																COLUMN(1)

NAME

					column	—	columnate	lists

SYNOPSIS

					column	[-entx]	[-c	columns]	[-s	sep]	[file	...]

DESCRIPTION

					The	column	utility	formats	its	input	into	multiple	columns.		Rows	are

					filled	before	columns.		Input	is	taken	from	file	operands,	or,	by

					default,	from	the	standard	input.		Empty	lines	are	ignored	unless	the	-e

					option	is	used.

...

Pretty	printing	tables

by	default	whitespace	is	input	delimiter

$	cat	dishes.txt	

North	alootikki	baati	khichdi	makkiroti	poha

South	appam	bisibelebath	dosa	koottu	sevai

West	dhokla	khakhra	modak	shiro	vadapav

East	handoguri	litti	momo	rosgulla	shondesh

$	column	-t	dishes.txt	

North		alootikki		baati									khichdi		makkiroti		poha

South		appam						bisibelebath		dosa					koottu					sevai

West			dhokla					khakhra							modak				shiro						vadapav

East			handoguri		litti									momo					rosgulla			shondesh

often	useful	to	get	neatly	aligned	columns	from	output	of	another	command

Restructure	text

239

$	paste	fruits.txt	price.txt

Fruits		Price

apple			182

guava			90

watermelon						35

banana		72

pomegranate					280

$	paste	fruits.txt	price.txt	|	column	-t

Fruits							Price

apple								182

guava								90

watermelon			35

banana							72

pomegranate		280

Specifying	different	input	delimiter

Use		-s		to	specify	input	delimiter
Use		-n		to	prevent	merging	empty	cells

From		man	column		"This	option	is	a	Debian	GNU/Linux	extension"

$	paste	-d,	<(seq	3)	<(seq	5	9)	<(seq	11	13)

1,5,11

2,6,12

3,7,13

,8,

,9,

$	paste	-d,	<(seq	3)	<(seq	5	9)	<(seq	11	13)	|	column	-s,	-t

1		5		11

2		6		12

3		7		13

8

9

$	paste	-d,	<(seq	3)	<(seq	5	9)	<(seq	11	13)	|	column	-s,	-nt

1		5		11

2		6		12

3		7		13

			8		

			9

Restructure	text

240

Further	reading	for	column

	man	column		for	more	options	and	detailed	documentation
column	Q&A	on	unix	stackexchange
More	examples	here

pr

$	pr	--version	|	head	-n1

pr	(GNU	coreutils)	8.25

$	man	pr

PR(1)																												User	Commands																											PR(1)

NAME

							pr	-	convert	text	files	for	printing

SYNOPSIS

							pr	[OPTION]...	[FILE]...

DESCRIPTION

							Paginate	or	columnate	FILE(s)	for	printing.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

	Paginate		is	not	covered,	examples	related	only	to		columnate	
For	example,	default	invocation	on	a	file	would	add	a	header,	etc

Restructure	text

241

https://unix.stackexchange.com/questions/tagged/columns?sort=votes&pageSize=15
http://www.commandlinefu.com/commands/using/column/sort-by-votes

$	#	truncated	output	shown

$	pr	fruits.txt	

2017-04-21	17:49																				fruits.txt																				Page	1

Fruits

apple

guava

watermelon

banana

pomegranate

Following	sections	will	use		-t		to	omit	page	headers	and	trailers

Converting	lines	to	columns

With	paste,	changing	input	file	rows	to	column(s)	is	possible	only	with	consecutive	lines
	pr		can	do	that	as	well	as	split	entire	file	itself	according	to	number	of	columns	needed
And		-s		option	in		pr		allows	multi-character	output	delimiter
As	usual,	examples	to	better	show	the	functionalities

$	#	note	how	the	input	got	split	into	two	and	resulting	splits	joined	by	,

$	seq	6	|	pr	-2ts,

1,4

2,5

3,6

$	#	note	how	two	consecutive	lines	gets	joined	by	,

$	seq	6	|	paste	-d,	-	-

1,2

3,4

5,6

Default	PAGE_WIDTH	is	72	characters,	so	each	column	gets	72	divided	by	number	of	columns
unless		-s		is	used

Restructure	text

242

$	#	3	columns,	so	each	column	width	is	24	characters

$	seq	9	|	pr	-3t

1																							4																							7

2																							5																							8

3																							6																							9

$	#	using	-s,	desired	delimiter	can	be	specified

$	seq	9	|	pr	-3ts'	'

1	4	7

2	5	8

3	6	9

$	seq	9	|	pr	-3ts'	:	'

1	:	4	:	7

2	:	5	:	8

3	:	6	:	9

$	#	default	is	TAB	when	using	-s	option	with	no	arguments

$	seq	9	|	pr	-3ts

1							4							7

2							5							8

3							6							9

Using		-a		to	change	consecutive	rows,	similar	to		paste	

$	seq	8	|	pr	-4ats:

1:2:3:4

5:6:7:8

$	#	no	output	delimiter	for	empty	cells

$	seq	22	|	pr	-5ats,

1,2,3,4,5

6,7,8,9,10

11,12,13,14,15

16,17,18,19,20

21,22

$	#	note	output	delimiter	even	for	empty	cells

$	seq	22	|	paste	-d,	-	-	-	-	-

1,2,3,4,5

6,7,8,9,10

11,12,13,14,15

16,17,18,19,20

21,22,,,

Restructure	text

243

Changing	PAGE_WIDTH

The	default	PAGE_WIDTH	is	72
The	formula		(col-1)*len(delimiter)	+	col		seems	to	work	in	determining	minimum
PAGE_WIDTH	required	for	multiple	column	output

	col		is	number	of	columns	required

$	#	(36-1)*1	+	36	=	71,	so	within	PAGE_WIDTH	limit

$	seq	74	|	pr	-36ats,

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36

37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,

65,66,67,68,69,70,71,72

73,74

$	#	(37-1)*1	+	37	=	73,	more	than	default	PAGE_WIDTH	limit

$	seq	74	|	pr	-37ats,

pr:	page	width	too	narrow

Use		-w		to	specify	a	different	PAGE_WIDTH
The		-J		option	turns	off	truncation

$	#	(37-1)*1	+	37	=	73

$	seq	74	|	pr	-J	-w73	-37ats,

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36,37

38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,

66,67,68,69,70,71,72,73,74

$	#	(3-1)*4	+	3	=	11

$	seq	6	|	pr	-J	-w10	-3ats'::::'

pr:	page	width	too	narrow

$	seq	6	|	pr	-J	-w11	-3ats'::::'

1::::2::::3

4::::5::::6

$	#	if	calculating	is	difficult,	simply	use	a	large	number

$	seq	6	|	pr	-J	-w500	-3ats'::::'

1::::2::::3

4::::5::::6

Combining	multiple	input	files

Use		-m		option	to	combine	multiple	files	in	parallel,	similar	to		paste	

Restructure	text

244

$	#	2	columns,	so	each	column	width	is	36	characters

$	pr	-mt	fruits.txt	price.txt

Fruits																														Price

apple																															182

guava																															90

watermelon																										35

banana																														72

pomegranate																									280

$	#	default	is	TAB	when	using	-s	option	with	no	arguments

$	pr	-mts	<(seq	3)	<(seq	4	6)	<(seq	7	10)

1							4							7

2							5							8

3							6							9

																10

$	#	double	TAB	as	separator

$	#	shell	expands	$'\t\t'	before	command	is	executed

$	pr	-mts$'\t\t'	colors_1.txt	colors_2.txt

Blue												Black

Brown											Blue

Purple										Green

Red													Red

Teal												White

For	interleaving,	specify	newline	as	separator

$	pr	-mts$'\n'	fruits.txt	price.txt

Fruits

Price

apple

182

guava

90

watermelon

35

banana

72

pomegranate

280

Transposing	a	table

Restructure	text

245

$	#	delimiter	is	single	character,	so	easy	to	use	tr	to	change	it	to	newline

$	cat	dishes.txt	

North	alootikki	baati	khichdi	makkiroti	poha

South	appam	bisibelebath	dosa	koottu	sevai

West	dhokla	khakhra	modak	shiro	vadapav

East	handoguri	litti	momo	rosgulla	shondesh

$	#	4	columns,	so	each	column	width	is	18	characters

$	#	$(wc	-l	<	dishes.txt)	gives	number	of	columns	required

$	tr	'	'	'\n'	<	dishes.txt	|	pr	-$(wc	-l	<	dishes.txt)t

North													South													West														East

alootikki									appam													dhokla												handoguri

baati													bisibelebath						khakhra											litti

khichdi											dosa														modak													momo

makkiroti									koottu												shiro													rosgulla

poha														sevai													vadapav											shondesh

Pipe	the	output	to		column		if	spacing	is	too	much

$	tr	'	'	'\n'	<	dishes.txt	|	pr	-$(wc	-l	<	dishes.txt)t	|	column	-t

North						South									West					East

alootikki		appam									dhokla			handoguri

baati						bisibelebath		khakhra		litti

khichdi				dosa										modak				momo

makkiroti		koottu								shiro				rosgulla

poha							sevai									vadapav		shondesh

Further	reading	for	pr

	man	pr		and		info	pr		for	more	options	and	detailed	documentation
More	examples	here

fold

Restructure	text

246

http://docstore.mik.ua/orelly/unix3/upt/ch21_15.htm

$	fold	--version	|	head	-n1

fold	(GNU	coreutils)	8.25

$	man	fold

FOLD(1)																										User	Commands																									FOLD(1)

NAME

							fold	-	wrap	each	input	line	to	fit	in	specified	width

SYNOPSIS

							fold	[OPTION]...	[FILE]...

DESCRIPTION

							Wrap	input	lines	in	each	FILE,	writing	to	standard	output.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

Examples

$	nl	story.txt

					1				The	princess	of	a	far	away	land	fought	bravely	to	rescue	a	travelling	grou

p	from	bandits.	And	the	happy	story	ends	here.	Have	a	nice	day.

					2				Still	here?	okay,	read	on:	The	prince	of	Happalakkahuhu	wished	he	could	be

	as	brave	as	his	sister	and	vowed	to	train	harder

$	#	default	folding	width	is	80

$	fold	story.txt	

The	princess	of	a	far	away	land	fought	bravely	to	rescue	a	travelling	group	from

	bandits.	And	the	happy	story	ends	here.	Have	a	nice	day.

Still	here?	okay,	read	on:	The	prince	of	Happalakkahuhu	wished	he	could	be	as	br

ave	as	his	sister	and	vowed	to	train	harder

$	fold	story.txt	|	nl

					1				The	princess	of	a	far	away	land	fought	bravely	to	rescue	a	travelling	grou

p	from

					2					bandits.	And	the	happy	story	ends	here.	Have	a	nice	day.

					3				Still	here?	okay,	read	on:	The	prince	of	Happalakkahuhu	wished	he	could	be

	as	br

					4				ave	as	his	sister	and	vowed	to	train	harder

	-s		option	breaks	at	spaces	to	avoid	word	splitting

Restructure	text

247

$	fold	-s	story.txt	

The	princess	of	a	far	away	land	fought	bravely	to	rescue	a	travelling	group	

from	bandits.	And	the	happy	story	ends	here.	Have	a	nice	day.

Still	here?	okay,	read	on:	The	prince	of	Happalakkahuhu	wished	he	could	be	as	

brave	as	his	sister	and	vowed	to	train	harder

Use		-w		to	change	default	width

$	fold	-s	-w60	story.txt	

The	princess	of	a	far	away	land	fought	bravely	to	rescue	a	

travelling	group	from	bandits.	And	the	happy	story	ends	

here.	Have	a	nice	day.

Still	here?	okay,	read	on:	The	prince	of	Happalakkahuhu	

wished	he	could	be	as	brave	as	his	sister	and	vowed	to	

train	harder

Further	reading	for	fold

	man	fold		and		info	fold		for	more	options	and	detailed	documentation

Restructure	text

248

File	attributes
Table	of	Contents

wc
Various	counts
subtle	differences
Further	reading	for	wc

du
Default	size
Various	size	formats
Dereferencing	links
Filtering	options
Further	reading	for	du

df
Examples
Further	reading	for	df

touch
Creating	empty	file
Updating	timestamps
Preserving	timestamp
Further	reading	for	touch

file
File	type	examples
Further	reading	for	file

wc

File	attributes

249

$	wc	--version	|	head	-n1

wc	(GNU	coreutils)	8.25

$	man	wc

WC(1)																												User	Commands																											WC(1)

NAME

							wc	-	print	newline,	word,	and	byte	counts	for	each	file

SYNOPSIS

							wc	[OPTION]...	[FILE]...

							wc	[OPTION]...	--files0-from=F

DESCRIPTION

							Print	newline,	word,	and	byte	counts	for	each	FILE,	and	a	total	line	if

							more	than	one	FILE	is	specified.		A	word	is	a	non-zero-length		sequence

							of	characters	delimited	by	white	space.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

Various	counts

File	attributes

250

$	cat	sample.txt	

Hello	World

Good	day

No	doubt	you	like	it	too

Much	ado	about	nothing

He	he	he

$	#	by	default,	gives	newline/word/byte	count	(in	that	order)

$	wc	sample.txt	

	5	17	78	sample.txt

$	#	options	to	get	individual	numbers

$	wc	-l	sample.txt	

5	sample.txt

$	wc	-w	sample.txt	

17	sample.txt

$	wc	-c	sample.txt	

78	sample.txt

$	#	use	shell	input	redirection	if	filename	is	not	needed

$	wc	-l	<	sample.txt	

5

multiple	file	input
automatically	displays	total	at	end

$	cat	greeting.txt	

Hello	there

Have	a	safe	journey

$	cat	fruits.txt	

Fruit			Price

apple			42

banana		31

fig					90

guava			6

$	wc	*.txt

		5		10		57	fruits.txt

		2			6		32	greeting.txt

		5		17		78	sample.txt

	12		33	167	total

use		-L		to	get	length	of	longest	line

File	attributes

251

$	wc	-L	<	sample.txt	

24

$	echo	'foo	bar	baz'	|	wc	-L

11

$	echo	'hi	there!'	|	wc	-L

9

$	#	last	line	will	show	max	value,	not	sum	of	all	input

$	wc	-L	*.txt

	13	fruits.txt

	19	greeting.txt

	24	sample.txt

	24	total

subtle	differences

byte	count	vs	character	count

$	#	when	input	is	ASCII

$	printf	'hi	there'	|	wc	-c

8

$	printf	'hi	there'	|	wc	-m

8

$	#	when	input	has	multi-byte	characters

$	printf	'hi' 	|	od	-x

0000000	6968	9ff0	8d91

0000006

$	printf	'hi' 	|	wc	-m

3

$	printf	'hi' 	|	wc	-c

6

	-l		option	gives	only	the	count	of	number	of	newline	characters

File	attributes

252

$	printf	'hi	there\ngood	day'	|	wc	-l

1

$	printf	'hi	there\ngood	day\n'	|	wc	-l

2

$	printf	'hi	there\n\n\nfoo\n'	|	wc	-l

4

From		man	wc		"A	word	is	a	non-zero-length	sequence	of	characters	delimited	by	white	space"

$	echo	'foo								bar	;-*'	|	wc	-w

3

$	#	use	other	text	processing	as	needed

$	echo	'foo								bar	;-*'	|	grep	-iowE	'[a-z]+'

foo

bar

$	echo	'foo								bar	;-*'	|	grep	-iowE	'[a-z]+'	|	wc	-l

2

	-L		won't	count	non-printable	characters	and	tabs	are	converted	to	equivalent	spaces

$	printf	'food\tgood'	|	wc	-L

12

$	printf	'food\tgood'	|	wc	-m

9

$	printf	'food\tgood'	|	awk	'{print	length()}'

9

$	printf	'foo\0bar\0baz'	|	wc	-L

9

$	printf	'foo\0bar\0baz'	|	wc	-m

11

$	printf	'foo\0bar\0baz'	|	awk	'{print	length()}'

11

Further	reading	for	wc

	man	wc		and		info	wc		for	more	options	and	detailed	documentation
wc	Q&A	on	unix	stackexchange
wc	Q&A	on	stackoverflow

File	attributes

253

https://unix.stackexchange.com/questions/tagged/wc?sort=votes&pageSize=15
https://stackoverflow.com/questions/tagged/wc?sort=votes&pageSize=15

du

$	du	--version	|	head	-n1

du	(GNU	coreutils)	8.25

$	man	du

DU(1)																												User	Commands																											DU(1)

NAME

							du	-	estimate	file	space	usage

SYNOPSIS

							du	[OPTION]...	[FILE]...

							du	[OPTION]...	--files0-from=F

DESCRIPTION

							Summarize	disk	usage	of	the	set	of	FILEs,	recursively	for	directories.

...

Default	size

By	default,	size	is	given	in	size	of	1024	bytes
Files	are	ignored,	all	directories	and	sub-directories	are	recursively	reported

$	ls	-F

projs/		py_learn@		words.txt

$	du

17920			./projs/full_addr

14316			./projs/half_addr

32952			./projs

33880			.

use		-a		to	recursively	show	both	files	and	directories
use		-s		to	show	total	directory	size	without	descending	into	its	sub-directories

File	attributes

254

$	du	-a

712					./projs/report.log

17916			./projs/full_addr/faddr.v

17920			./projs/full_addr

14312			./projs/half_addr/haddr.v

14316			./projs/half_addr

32952			./projs

0							./py_learn

924					./words.txt

33880			.

$	du	-s

33880			.

$	du	-s	projs	words.txt

32952			projs

924					words.txt

use		-S		to	show	directory	size	without	taking	into	account	size	of	its	sub-directories

$	du	-S

17920			./projs/full_addr

14316			./projs/half_addr

716					./projs

928					.

Various	size	formats

File	attributes

255

$	#	number	of	bytes

$	stat	-c	%s	words.txt	

938848

$	du	-b	words.txt

938848		words.txt

$	#	kilobytes	=	1024	bytes

$	du	-sk	projs

32952			projs

$	#	megabytes	=	1024	kilobytes

$	du	-sm	projs

33						projs

$	#	-B	to	specify	custom	byte	scale	size

$	du	-sB	5000	projs

6749				projs

$	du	-sB	1048576	projs

33						projs

human	readable	and	si	units

$	#	in	terms	of	powers	of	1024

$	#	M	=	1048576	bytes	and	so	on

$	du	-sh	projs/*	words.txt

18M					projs/full_addr

14M					projs/half_addr

712K				projs/report.log

924K				words.txt

$	#	in	terms	of	powers	of	1000

$	#	M	=	1000000	bytes	and	so	on

$	du	-s	--si	projs/*	words.txt

19M					projs/full_addr

15M					projs/half_addr

730k				projs/report.log

947k				words.txt

sorting

File	attributes

256

$	du	-sh	projs/*	words.txt	|	sort	-h

712K				projs/report.log

924K				words.txt

14M					projs/half_addr

18M					projs/full_addr

$	du	-sk	projs/*	|	sort	-nr

17920			projs/full_addr

14316			projs/half_addr

712					projs/report.log

to	get	size	based	on	number	of	characters	in	file	rather	than	disk	space	alloted

$	du	-b	words.txt

938848		words.txt

$	du	-h	words.txt

924K				words.txt

$	#	938848/1024	=	916.84

$	du	--apparent-size	-h	words.txt

917K				words.txt

Dereferencing	links

See		man		and		info		pages	for	other	related	options

$	#	-D	to	dereference	command	line	argument

$	du	py_learn

0							py_learn

$	du	-shD	py_learn

503M				py_learn

$	#	-L	to	dereference	links	found	by	du

$	du	-sh

34M					.

$	du	-shL

536M				.

Filtering	options

File	attributes

257

	-d		to	specify	maximum	depth

$	du	-ah	projs

712K				projs/report.log

18M					projs/full_addr/faddr.v

18M					projs/full_addr

14M					projs/half_addr/haddr.v

14M					projs/half_addr

33M					projs

$	du	-ah	-d1	projs

712K				projs/report.log

18M					projs/full_addr

14M					projs/half_addr

33M					projs

	-c		to	also	show	total	size	at	end

$	du	-cshD	projs	py_learn

33M					projs

503M				py_learn

535M				total

	-t		to	provide	a	threshold	comparison

$	#	>=	15M

$	du	-Sh	-t	15M

18M					./projs/full_addr

$	#	<=	1M

$	du	-ah	-t	-1M

712K				./projs/report.log

0							./py_learn

924K				./words.txt

excluding	files/directories	based	on	glob	pattern
see	also		--exclude-from=FILE		and		--files0-from=FILE		options

File	attributes

258

$	#	note	that	excluded	files	affect	directory	size	reported

$	du	-ah	--exclude='*addr*'	projs

712K				projs/report.log

716K				projs

$	#	depending	on	shell,	brace	expansion	can	be	used

$	du	-ah	--exclude='*.'{v,log}	projs

4.0K				projs/full_addr

4.0K				projs/half_addr

12K					projs

Further	reading	for	du

	man	du		and		info	du		for	more	options	and	detailed	documentation
du	Q&A	on	unix	stackexchange
du	Q&A	on	stackoverflow

df

$	df	--version	|	head	-n1

df	(GNU	coreutils)	8.25

$	man	df

DF(1)																												User	Commands																											DF(1)

NAME

							df	-	report	file	system	disk	space	usage

SYNOPSIS

							df	[OPTION]...	[FILE]...

DESCRIPTION

							This		manual		page		documents		the		GNU	version	of	df.		df	displays	the

							amount	of	disk	space	available	on	the	file	system	containing	each		file

							name		argument.			If		no	file	name	is	given,	the	space	available	on	all

							currently	mounted	file	systems	is	shown.

...

File	attributes

259

https://unix.stackexchange.com/questions/tagged/disk-usage?sort=votes&pageSize=15
https://stackoverflow.com/questions/tagged/du?sort=votes&pageSize=15

Examples

$	#	use	df	without	arguments	to	get	information	on	all	currently	mounted	file	systems

$	df	.

Filesystem					1K-blocks					Used	Available	Use%	Mounted	on

/dev/sda1							98298500	58563816		34734748		63%	/

$	#	use	-B	option	for	custom	size

$	#	use	--si	for	size	in	powers	of	1000	instead	of	1024

$	df	-h	.

Filesystem						Size		Used	Avail	Use%	Mounted	on

/dev/sda1								94G			56G			34G		63%	/

Use		--output		to	report	only	specific	fields	of	interest

$	df	-h	--output=size,used,file	/	/media/learnbyexample/projs

	Size		Used	File

		94G			56G	/

		92G			35G	/media/learnbyexample/projs

$	df	-h	--output=pcent	.

Use%

	63%

$	df	-h	--output=pcent,fstype	|	awk	-F'%'	'NR>2	&&	$1>=40'

	63%	ext3

	40%	ext4

	51%	ext4

Further	reading	for	df

	man	df		and		info	df		for	more	options	and	detailed	documentation
df	Q&A	on	stackoverflow
Parsing	df	command	output	with	awk
processing	df	output

touch

File	attributes

260

https://stackoverflow.com/questions/tagged/df?sort=votes&pageSize=15
https://unix.stackexchange.com/questions/360865/parsing-df-command-output-with-awk
https://www.reddit.com/r/bash/comments/68dbml/using_an_array_variable_in_an_awk_command/

$	touch	--version	|	head	-n1

touch	(GNU	coreutils)	8.25

$	man	touch	

TOUCH(1)																									User	Commands																								TOUCH(1)

NAME

							touch	-	change	file	timestamps

SYNOPSIS

							touch	[OPTION]...	FILE...

DESCRIPTION

							Update		the		access		and	modification	times	of	each	FILE	to	the	current

							time.

							A	FILE	argument	that	does	not	exist	is	created	empty,	unless	-c		or		-h

							is	supplied.

...

Creating	empty	file

$	ls	foo.txt

ls:	cannot	access	'foo.txt':	No	such	file	or	directory

$	touch	foo.txt

$	ls	foo.txt

foo.txt

$	#	use	-c	if	new	file	shouldn't	be	created

$	rm	foo.txt	

$	touch	-c	foo.txt

$	ls	foo.txt

ls:	cannot	access	'foo.txt':	No	such	file	or	directory

Updating	timestamps

Updating	both	access	and	modification	timestamp	to	current	time

File	attributes

261

$	#	last	access	time

$	stat	-c	%x	fruits.txt

2017-07-19	17:06:01.523308599	+0530

$	#	last	modification	time

$	stat	-c	%y	fruits.txt

2017-07-13	13:54:03.576055933	+0530

$	touch	fruits.txt	

$	stat	-c	%x	fruits.txt

2017-07-21	10:11:44.241921229	+0530

$	stat	-c	%y	fruits.txt

2017-07-21	10:11:44.241921229	+0530

Updating	only	access	or	modification	timestamp

$	touch	-a	greeting.txt

$	stat	-c	%x	greeting.txt

2017-07-21	10:14:08.457268564	+0530

$	stat	-c	%y	greeting.txt

2017-07-13	13:54:26.004499660	+0530

$	touch	-m	sample.txt

$	stat	-c	%x	sample.txt

2017-07-13	13:48:24.945450646	+0530

$	stat	-c	%y	sample.txt

2017-07-21	10:14:40.770006144	+0530

Using	timestamp	from	another	file	to	update

$	stat	-c	$'%x\n%y'	power.log	report.log

2017-07-19	10:48:03.978295434	+0530

2017-07-14	20:50:42.850887578	+0530

2017-06-24	13:00:31.773583923	+0530

2017-06-24	12:59:53.316751651	+0530

$	#	copy	both	access	and	modification	timestamp	from	power.log	to	report.log

$	touch	-r	power.log	report.log

$	stat	-c	$'%x\n%y'	report.log

2017-07-19	10:48:03.978295434	+0530

2017-07-14	20:50:42.850887578	+0530

$	#	add	-a	or	-m	options	to	limit	to	only	access	or	modification	timestamp

Using	date	string	to	update
See	also		-t		option

File	attributes

262

$	#	add	-a	or	-m	as	needed

$	touch	-d	'2010-03-17	17:04:23'	report.log

$	stat	-c	$'%x\n%y'	report.log

2010-03-17	17:04:23.000000000	+0530

2010-03-17	17:04:23.000000000	+0530

Preserving	timestamp

Text	processing	on	files	would	update	the	timestamps

$	stat	-c	$'%x\n%y'	power.log

2017-07-21	11:11:42.862874240	+0530

2017-07-13	21:31:53.496323704	+0530

$	sed	-i	's/foo/bar/g'	power.log

$	stat	-c	$'%x\n%y'	power.log

2017-07-21	11:12:20.303504336	+0530

2017-07-21	11:12:20.303504336	+0530

	touch		can	be	used	to	restore	timestamps	after	processing

$	#	first	copy	the	timestamps	using	touch	-r

$	stat	-c	$'%x\n%y'	story.txt

2017-06-24	13:00:31.773583923	+0530

2017-06-24	12:59:53.316751651	+0530

$	#	tmp.txt	is	temporary	empty	file

$	touch	-r	story.txt	tmp.txt

$	stat	-c	$'%x\n%y'	tmp.txt	

2017-06-24	13:00:31.773583923	+0530

2017-06-24	12:59:53.316751651	+0530

$	#	after	text	processing,	copy	back	the	timestamps	and	remove	temporary	file

$	sed	-i	's/cat/dog/g'	story.txt

$	touch	-r	tmp.txt	story.txt	&&	rm	tmp.txt	

$	stat	-c	$'%x\n%y'	story.txt	

2017-06-24	13:00:31.773583923	+0530

2017-06-24	12:59:53.316751651	+0530

Further	reading	for	touch

	man	touch		and		info	touch		for	more	options	and	detailed	documentation

File	attributes

263

touch	Q&A	on	unix	stackexchange

file

$	file	--version	|	head	-n1

file-5.25

$	man	file

FILE(1)																			BSD	General	Commands	Manual																		FILE(1)

NAME

					file	—	determine	file	type

SYNOPSIS

					file	[-bcEhiklLNnprsvzZ0]	[--apple]	[--extension]	[--mime-encoding]

										[--mime-type]	[-e	testname]	[-F	separator]	[-f	namefile]

										[-m	magicfiles]	[-P	name=value]	file	...

					file	-C	[-m	magicfiles]

					file	[--help]

DESCRIPTION

					This	manual	page	documents	version	5.25	of	the	file	command.

					file	tests	each	argument	in	an	attempt	to	classify	it.		There	are	three

					sets	of	tests,	performed	in	this	order:	filesystem	tests,	magic	tests,

					and	language	tests.		The	first	test	that	succeeds	causes	the	file	type	to

					be	printed.

...

File	type	examples

File	attributes

264

https://unix.stackexchange.com/questions/tagged/touch?sort=votes&pageSize=15

$	file	sample.txt	

sample.txt:	ASCII	text

$	#	without	file	name	in	output

$	file	-b	sample.txt	

ASCII	text

$	printf	'hi\n' 	|	file	-

/dev/stdin:	UTF-8	Unicode	text

$	printf	'hi\n' 	|	file	-i	-

/dev/stdin:	text/plain;	charset=utf-8

$	file	ch

ch:		Bourne-Again	shell	script,	ASCII	text	executable

$	file	sunset.jpg	moon.png

sunset.jpg:	JPEG	image	data

moon.png:	PNG	image	data,	32	x	32,	8-bit/color	RGBA,	non-interlaced

different	line	terminators

$	printf	'hi'	|	file	-

/dev/stdin:	ASCII	text,	with	no	line	terminators

$	printf	'hi\r'	|	file	-

/dev/stdin:	ASCII	text,	with	CR	line	terminators

$	printf	'hi\r\n'	|	file	-

/dev/stdin:	ASCII	text,	with	CRLF	line	terminators

$	printf	'hi\n'	|	file	-

/dev/stdin:	ASCII	text

find	all	files	of	particular	type	in	current	directory,	for	example		image		files

$	find	-type	f	-exec	bash	-c	'(file	-b	"$0"	|	grep	-wq	"image	data")	&&	echo	"$0"'	{

}	\;

./sunset.jpg

./moon.png

$	#	if	filenames	do	not	contain	:	or	newline	characters

$	find	-type	f	-exec	file	{}	+	|	awk	-F:	'/\<image	data\>/{print	$1}'

./sunset.jpg

./moon.png

File	attributes

265

Further	reading	for	file

	man	file		and		info	file		for	more	options	and	detailed	documentation
See	also		identify		command	which		describes	the	format	and	characteristics	of	one	or
more	image	files	

File	attributes

266

Miscellaneous
Table	of	Contents

cut
select	specific	fields
suppressing	lines	without	delimiter
specifying	delimiters
complement
select	specific	characters
Further	reading	for	cut

tr
translation
escape	sequences	and	character	classes
deletion
squeeze
Further	reading	for	tr

basename
dirname
xargs
seq

integer	sequences
specifying	separator
floating	point	sequences
Further	reading	for	seq

cut

Miscellaneous

267

$	cut	--version	|	head	-n1

cut	(GNU	coreutils)	8.25

$	man	cut

CUT(1)																											User	Commands																										CUT(1)

NAME

							cut	-	remove	sections	from	each	line	of	files

SYNOPSIS

							cut	OPTION...	[FILE]...

DESCRIPTION

							Print	selected	parts	of	lines	from	each	FILE	to	standard	output.

							With	no	FILE,	or	when	FILE	is	-,	read	standard	input.

...

select	specific	fields

Default	delimiter	is	tab	character
	-f		option	allows	to	print	specific	field(s)	from	each	input	line

Miscellaneous

268

$	printf	'foo\tbar\t123\tbaz\n'

foo					bar					123					baz

$	#	single	field

$	printf	'foo\tbar\t123\tbaz\n'	|	cut	-f2

bar

$	#	multiple	fields	can	be	specified	by	using	,

$	printf	'foo\tbar\t123\tbaz\n'	|	cut	-f2,4

bar					baz

$	#	output	is	always	ascending	order	of	field	numbers

$	printf	'foo\tbar\t123\tbaz\n'	|	cut	-f3,1

foo					123

$	#	range	can	be	specified	using	-

$	printf	'foo\tbar\t123\tbaz\n'	|	cut	-f1-3

foo					bar					123

$	#	if	ending	number	is	omitted,	select	till	last	field

$	printf	'foo\tbar\t123\tbaz\n'	|	cut	-f3-

123					baz

suppressing	lines	without	delimiter

$	cat	marks.txt

jan	2017

foobar		12						45						23

feb	2017

foobar		18						38						19

$	#	by	default	lines	without	delimiter	will	be	printed

$	cut	-f2-	marks.txt

jan	2017

12						45						23

feb	2017

18						38						19

$	#	use	-s	option	to	suppress	such	lines

$	cut	-s	-f2-	marks.txt

12						45						23

18						38						19

Miscellaneous

269

specifying	delimiters

use		-d		option	to	specify	input	delimiter	other	than	default	tab	character
only	single	character	can	be	used,	for	multi-character/regex	based	delimiter	use		awk		or		perl	

$	echo	'foo:bar:123:baz'	|	cut	-d:	-f3

123

$	#	by	default	output	delimiter	is	same	as	input

$	echo	'foo:bar:123:baz'	|	cut	-d:	-f1,4

foo:baz

$	#	quote	the	delimiter	character	if	it	clashes	with	shell	special	characters

$	echo	'one;two;three;four'	|	cut	-d;	-f3

cut:	option	requires	an	argument	--	'd'

Try	'cut	--help'	for	more	information.

-f3:	command	not	found

$	echo	'one;two;three;four'	|	cut	-d';'	-f3

three

use		--output-delimiter		option	to	specify	different	output	delimiter
since	this	option	accepts	a	string,	more	than	one	character	can	be	specified
See	also	using	$	prefixed	string

$	printf	'foo\tbar\t123\tbaz\n'	|	cut	--output-delimiter=:	-f1-3

foo:bar:123

$	echo	'one;two;three;four'	|	cut	-d';'	--output-delimiter='	'	-f1,3-

one	three	four

$	#	tested	on	bash,	might	differ	with	other	shells

$	echo	'one;two;three;four'	|	cut	-d';'	--output-delimiter=$'\t'	-f1,3-

one					three			four

$	echo	'one;two;three;four'	|	cut	-d';'	--output-delimiter='	-	'	-f1,3-

one	-	three	-	four

complement

Miscellaneous

270

https://unix.stackexchange.com/questions/48106/what-does-it-mean-to-have-a-dollarsign-prefixed-string-in-a-script

$	echo	'one;two;three;four'	|	cut	-d';'	-f1,3-

one;three;four

$	#	to	print	other	than	specified	fields

$	echo	'one;two;three;four'	|	cut	-d';'	--complement	-f2

one;three;four

select	specific	characters

similar	to		-f		for	field	selection,	use		-c		for	character	selection
See	manual	for	what	defines	a	character	and	differences	between		-b		and		-c	

$	echo	'foo:bar:123:baz'	|	cut	-c4

:

$	printf	'foo\tbar\t123\tbaz\n'	|	cut	-c1,4,7

f							r

$	echo	'foo:bar:123:baz'	|	cut	-c8-

:123:baz

$	echo	'foo:bar:123:baz'	|	cut	--complement	-c8-

foo:bar

$	echo	'foo:bar:123:baz'	|	cut	-c1,6,7	--output-delimiter='	'

f	a	r

$	echo	'abcdefghij'	|	cut	--output-delimiter='-'	-c1-3,4-7,8-

abc-defg-hij

$	cut	-c1-3	marks.txt

jan

foo

feb

foo

Further	reading	for	cut

	man	cut		and		info	cut		for	more	options	and	detailed	documentation
cut	Q&A	on	unix	stackexchange

Miscellaneous

271

https://unix.stackexchange.com/questions/tagged/cut?sort=votes&pageSize=15

tr

$	tr	--version	|	head	-n1

tr	(GNU	coreutils)	8.25

$	man	tr

TR(1)																												User	Commands																											TR(1)

NAME

							tr	-	translate	or	delete	characters

SYNOPSIS

							tr	[OPTION]...	SET1	[SET2]

DESCRIPTION

							Translate,	squeeze,	and/or	delete	characters	from	standard	input,	writ‐
							ing	to	standard	output.

...

translation

one-to-one	mapping	of	characters,	all	occurrences	are	translated
as	good	practice,	enclose	the	arguments	in	single	quotes	to	avoid	issues	due	to	shell	interpretation

Miscellaneous

272

$	echo	'foo	bar	cat	baz'	|	tr	'abc'	'123'

foo	21r	31t	21z

$	#	use	-	to	represent	a	range	in	ascending	order

$	echo	'foo	bar	cat	baz'	|	tr	'a-f'	'1-6'

6oo	21r	31t	21z

$	#	changing	case

$	echo	'foo	bar	cat	baz'	|	tr	'a-z'	'A-Z'

FOO	BAR	CAT	BAZ

$	echo	'Hello	World'	|	tr	'a-zA-Z'	'A-Za-z'

hELLO	wORLD

$	echo	'foo;bar;baz'	|	tr	;	:

tr:	missing	operand

Try	'tr	--help'	for	more	information.

$	echo	'foo;bar;baz'	|	tr	';'	':'

foo:bar:baz

rot13	example

$	echo	'foo	bar	cat	baz'	|	tr	'a-z'	'n-za-m'

sbb	one	png	onm

$	echo	'sbb	one	png	onm'	|	tr	'a-z'	'n-za-m'

foo	bar	cat	baz

$	echo	'Hello	World'	|	tr	'a-zA-Z'	'n-za-mN-ZA-M'

Uryyb	Jbeyq

$	echo	'Uryyb	Jbeyq'	|	tr	'a-zA-Z'	'n-za-mN-ZA-M'

Hello	World

use	shell	input	redirection	for	file	input

$	cat	marks.txt

jan	2017

foobar		12						45						23

feb	2017

foobar		18						38						19

$	tr	'a-z'	'A-Z'	<	marks.txt

JAN	2017

FOOBAR		12						45						23

FEB	2017

FOOBAR		18						38						19

Miscellaneous

273

if	arguments	are	of	different	lengths

$	#	when	second	argument	is	longer,	the	extra	characters	are	ignored

$	echo	'foo	bar	cat	baz'	|	tr	'abc'	'1-9'

foo	21r	31t	21z

$	#	when	first	argument	is	longer

$	#	the	last	character	of	second	argument	gets	re-used

$	echo	'foo	bar	cat	baz'	|	tr	'a-z'	'123'

333	213	313	213

$	#	use	-t	option	to	truncate	first	argument	to	same	length	as	second

$	echo	'foo	bar	cat	baz'	|	tr	-t	'a-z'	'123'

foo	21r	31t	21z

escape	sequences	and	character	classes

Certain	characters	like	newline,	tab,	etc	can	be	represented	using	escape	sequences	or	octal
representation
Certain	commonly	useful	groups	of	characters	like	alphabets,	digits,	punctuations	etc	have
character	class	as	shortcuts
See	gnu	tr	manual	for	all	escape	sequences	and	character	classes

$	printf	'foo\tbar\t123\tbaz\n'	|	tr	'\t'	':'

foo:bar:123:baz

$	echo	'foo:bar:123:baz'	|	tr	':'	'\n'

foo

bar

123

baz

$	#	makes	it	easier	to	transform

$	echo	'foo:bar:123:baz'	|	tr	':'	'\n'	|	pr	-2ats'-'

foo-bar

123-baz

$	echo	'foo	bar	cat	baz'	|	tr	'[:lower:]'	'[:upper:]'

FOO	BAR	CAT	BAZ

since		-		is	used	for	character	ranges,	place	it	at	the	end	to	represent	it	literally
cannot	be	used	at	start	of	argument	as	it	would	get	treated	as	option
or	use		--		to	indicate	end	of	option	processing

similarly,	to	represent		\		literally,	use		\\	

Miscellaneous

274

http://www.gnu.org/software/coreutils/manual/html_node/Character-sets.html#Character-sets

$	echo	'/foo-bar/baz/report'	|	tr	'-a-z'	'_A-Z'

tr:	invalid	option	--	'a'

Try	'tr	--help'	for	more	information.

$	echo	'/foo-bar/baz/report'	|	tr	'a-z-'	'A-Z_'

/FOO_BAR/BAZ/REPORT

$	echo	'/foo-bar/baz/report'	|	tr	--	'-a-z'	'_A-Z'

/FOO_BAR/BAZ/REPORT

$	echo	'/foo-bar/baz/report'	|	tr	'/-'	'_'

\foo_bar\baz\report

deletion

use		-d		option	to	specify	characters	to	be	deleted
add	complement	option		-c		if	it	is	easier	to	define	which	characters	are	to	be	retained

$	echo	'2017-03-21'	|	tr	-d	'-'

20170321

$	echo	'Hi123	there.	How	a32re	you'	|	tr	-d	'1-9'

Hi	there.	How	are	you

$	#	delete	all	punctuation	characters

$	echo	'"Foo1!",	"Bar.",	":Baz:"'	|	tr	-d	'[:punct:]'

Foo1	Bar	Baz

$	#	deleting	carriage	return	character

$	cat	-v	greeting.txt	

Hi	there^M

How	are	you^M

$	tr	-d	'\r'	<	greeting.txt	|	cat	-v

Hi	there

How	are	you

$	#	retain	only	alphabets,	comma	and	newline	characters

$	echo	'"Foo1!",	"Bar.",	":Baz:"'	|	tr	-cd	'[:alpha:],\n'

Foo,Bar,Baz

squeeze

Miscellaneous

275

to	change	consecutive	repeated	characters	to	single	copy	of	that	character

$	#	only	lower	case	alphabets

$	echo	'FFoo	seed	11233'	|	tr	-s	'a-z'

FFo	sed	11233

$	#	alphabets	and	digits

$	echo	'FFoo	seed	11233'	|	tr	-s	'[:alnum:]'

Fo	sed	123

$	#	squeeze	other	than	alphabets

$	echo	'FFoo	seed	11233'	|	tr	-sc	'[:alpha:]'

FFoo	seed	123

$	#	only	characters	present	in	second	argument	is	used	for	squeeze

$	echo	'FFoo	seed	11233'	|	tr	-s	'A-Z'	'a-z'

fo	sed	11233

$	#	multiple	consecutive	horizontal	spaces	to	single	space

$	printf	'foo\t\tbar	\t123					baz\n'

foo													bar					123					baz

$	printf	'foo\t\tbar	\t123					baz\n'	|	tr	-s	'[:blank:]'	'	'

foo	bar	123	baz

Further	reading	for	tr

	man	tr		and		info	tr		for	more	options	and	detailed	documentation
tr	Q&A	on	unix	stackexchange

basename

Miscellaneous

276

http://unix.stackexchange.com/questions/tagged/tr?sort=votes&pageSize=15

$	basename	--version	|	head	-n1

basename	(GNU	coreutils)	8.25

$	man	basename

BASENAME(1)																						User	Commands																					BASENAME(1)

NAME

							basename	-	strip	directory	and	suffix	from	filenames

SYNOPSIS

							basename	NAME	[SUFFIX]

							basename	OPTION...	NAME...

DESCRIPTION

							Print		NAME		with		any	leading	directory	components	removed.		If	speci‐
							fied,	also	remove	a	trailing	SUFFIX.

...

Examples

$	#	same	as	using	pwd	command

$	echo	"$PWD"

/home/learnbyexample

$	basename	"$PWD"

learnbyexample

$	#	use	-a	option	if	there	are	multiple	arguments

$	basename	-a	foo/a/report.log	bar/y/power.log

report.log

power.log

$	#	use	single	quotes	if	arguments	contain	space	and	other	special	shell	characters

$	#	use	suffix	option	-s	to	strip	file	extension	from	filename

$	basename	-s	'.log'	'/home/learnbyexample/proj	adder/power.log'

power

$	#	-a	is	implied	when	using	-s	option

$	basename	-s'.log'	foo/a/report.log	bar/y/power.log

report

power

Can	also	use	Parameter	expansion	if	working	on	file	paths	saved	in	variables
assumes		bash		shell	and	similar	that	support	this	feature

Miscellaneous

277

http://mywiki.wooledge.org/BashFAQ/073

$	#	remove	from	start	of	string	up	to	last	/

$	file='/home/learnbyexample/proj	adder/power.log'

$	basename	"$file"

power.log

$	echo	"${file##*/}"

power.log

$	t="${file##*/}"

$	#	remove	.log	from	end	of	string

$	echo	"${t%.log}"

power

See		man	basename		and		info	basename		for	detailed	documentation

dirname

$	dirname	--version	|	head	-n1

dirname	(GNU	coreutils)	8.25

$	man	dirname

DIRNAME(1)																							User	Commands																						DIRNAME(1)

NAME

							dirname	-	strip	last	component	from	file	name

SYNOPSIS

							dirname	[OPTION]	NAME...

DESCRIPTION

							Output	each	NAME	with	its	last	non-slash	component	and	trailing	slashes

							removed;	if	NAME	contains	no		/'s,		output		'.'		(meaning		the		current

							directory).

...

Examples

Miscellaneous

278

$	echo	"$PWD"

/home/learnbyexample

$	dirname	"$PWD"

/home

$	#	use	single	quotes	if	arguments	contain	space	and	other	special	shell	characters

$	dirname	'/home/learnbyexample/proj	adder/power.log'

/home/learnbyexample/proj	adder

$	#	unlike	basename,	by	default	dirname	handles	multiple	arguments

$	dirname	foo/a/report.log	bar/y/power.log

foo/a

bar/y

$	#	if	no	/	in	argument,	output	is	.	to	indicate	current	directory

$	dirname	power.log

.

Use		$()		command	substitution	to	further	process	output	as	needed

$	dirname	'/home/learnbyexample/proj	adder/power.log'

/home/learnbyexample/proj	adder

$	dirname	"$(dirname	'/home/learnbyexample/proj	adder/power.log')"

/home/learnbyexample

$	basename	"$(dirname	'/home/learnbyexample/proj	adder/power.log')"

proj	adder

Can	also	use	Parameter	expansion	if	working	on	file	paths	saved	in	variables
assumes		bash		shell	and	similar	that	support	this	feature

Miscellaneous

279

http://mywiki.wooledge.org/BashFAQ/073

$	#	remove	from	last	/	in	the	string	to	end	of	string

$	file='/home/learnbyexample/proj	adder/power.log'

$	dirname	"$file"

/home/learnbyexample/proj	adder

$	echo	"${file%/*}"

/home/learnbyexample/proj	adder

$	#	remove	from	second	last	/	to	end	of	string

$	echo	"${file%/*/*}"

/home/learnbyexample

$	#	apply	basename	trick	to	get	just	directory	name	instead	of	full	path

$	t="${file%/*}"

$	echo	"${t##*/}"

proj	adder

See		man	dirname		and		info	dirname		for	detailed	documentation

xargs

$	xargs	--version	|	head	-n1

xargs	(GNU	findutils)	4.7.0-git

$	whatis	xargs

xargs	(1)												-	build	and	execute	command	lines	from	standard	input

$	#	from	'man	xargs'

							This	manual	page	documents	the	GNU	version	of	xargs.		xargs	reads	items

							from		the		standard		input,	delimited	by	blanks	(which	can	be	protected

							with	double	or	single	quotes	or	a	backslash)	or	newlines,	and		executes

							the		command	(default	is	/bin/echo)	one	or	more	times	with	any	initial-

							arguments	followed	by	items	read	from	standard	input.		Blank		lines		on

							the	standard	input	are	ignored.

While		xargs		is	primarily	used	for	passing	output	of	command	or	file	contents	to	another	command	as
input	arguments	and/or	parallel	processing,	it	can	be	quite	handy	for	certain	text	processing	stuff	with
default		echo		command

Miscellaneous

280

https://unix.stackexchange.com/questions/24954/when-is-xargs-needed

$	printf	'	foo\t\tbar	\t123					baz	\n'	|	cat	-e

	foo								bar					123					baz	$

$	#	tr	helps	to	change	consecutive	blanks	to	single	space

$	#	but	what	if	blanks	at	start	and	end	have	to	be	removed	as	well?

$	printf	'	foo\t\tbar	\t123					baz	\n'	|	tr	-s	'[:blank:]'	'	'	|	cat	-e

	foo	bar	123	baz	$

$	#	xargs	does	this	by	default

$	printf	'	foo\t\tbar	\t123					baz	\n'	|	xargs	|	cat	-e

foo	bar	123	baz$

$	#	-n	option	limits	number	of	arguments	per	line

$	printf	'	foo\t\tbar	\t123					baz	\n'	|	xargs	-n2

foo	bar

123	baz

$	#	same	as	using:	paste	-d'	'	-	-	-

$	#	or:	pr	-3ats'	'

$	seq	6	|	xargs	-n3

1	2	3

4	5	6

use		-a		option	to	specify	file	input	instead	of	stdin

$	cat	marks.txt

jan	2017

foobar		12						45						23

feb	2017

foobar		18						38						19

$	xargs	-a	marks.txt

jan	2017	foobar	12	45	23	feb	2017	foobar	18	38	19

$	#	use	-L	option	to	limit	max	number	of	lines	per	command	line

$	xargs	-L2	-a	marks.txt

jan	2017	foobar	12	45	23

feb	2017	foobar	18	38	19

Note	since		echo		is	the	command	being	executed,	it	will	cause	issue	with	option	interpretation

Miscellaneous

281

$	printf	'	-e	foo\t\tbar	\t123					baz	\n'	|	xargs	-n2

foo

bar	123

baz

$	#	use	-t	option	to	see	what	is	happening	(verbose	output)

$	printf	'	-e	foo\t\tbar	\t123					baz	\n'	|	xargs	-n2	-t

echo	-e	foo	

foo

echo	bar	123	

bar	123

echo	baz	

baz

See		man	xargs		and		info	xargs		for	detailed	documentation

seq

$	seq	--version	|	head	-n1

seq	(GNU	coreutils)	8.25

$	man	seq

SEQ(1)																											User	Commands																										SEQ(1)

NAME

							seq	-	print	a	sequence	of	numbers

SYNOPSIS

							seq	[OPTION]...	LAST

							seq	[OPTION]...	FIRST	LAST

							seq	[OPTION]...	FIRST	INCREMENT	LAST

DESCRIPTION

							Print	numbers	from	FIRST	to	LAST,	in	steps	of	INCREMENT.

...

integer	sequences

see		info	seq		for	details	of	how	large	numbers	are	handled
for	ex:		seq	50000000000000000000	2	50000000000000000004		may	not	work

Miscellaneous

282

$	#	default	start=1	and	increment=1

$	seq	3

1

2

3

$	#	default	increment=1

$	seq	25434	25437

25434

25435

25436

25437

$	seq	-5	-3

-5

-4

-3

$	#	different	increment	value

$	seq	1000	5	1011

1000

1005

1010

$	#	use	negative	increment	for	descending	order

$	seq	10	-5	-7

10

5

0

-5

use		-w		option	for	leading	zeros
largest	length	of	start/end	value	is	used	to	determine	padding

Miscellaneous

283

$	seq	008	010

8

9

10

$	#	or:	seq	-w	8	010

$	seq	-w	008	010

008

009

010

$	seq	-w	0003

0001

0002

0003

specifying	separator

As	seen	already,	default	is	newline	separator	between	numbers
	-s		option	allows	to	use	custom	string	between	numbers
A	newline	is	always	added	at	end

$	seq	-s:	4

1:2:3:4

$	seq	-s'	'	4

1	2	3	4

$	seq	-s'	-	'	4

1	-	2	-	3	-	4

floating	point	sequences

Miscellaneous

284

$	#	default	increment=1

$	seq	0.5	2.5

0.5

1.5

2.5

$	seq	-s':'	-2	0.75	3

-2.00:-1.25:-0.50:0.25:1.00:1.75:2.50

$	#	Scientific	notation	is	supported

$	seq	1.2e2	1.22e2

120

121

122

formatting	numbers,	see		info	seq		for	details

$	seq	-f'%.3f'	-s':'	-2	0.75	3

-2.000:-1.250:-0.500:0.250:1.000:1.750:2.500

$	seq	-f'%.3e'	1.2e2	1.22e2

1.200e+02

1.210e+02

1.220e+02

Further	reading	for	seq

	man	seq		and		info	seq		for	more	options,	corner	cases	and	detailed	documentation
seq	Q&A	on	unix	stackexchange

Miscellaneous

285

https://unix.stackexchange.com/questions/tagged/seq?sort=votes&pageSize=15

	Introduction
	Cat, Less, Tail and Head
	GNU grep
	GNU sed
	GNU awk
	Sorting stuff
	Restructure text
	File attributes
	Miscellaneous

