
AWK Language Programming

A User's Guide for GNU AWK
Edition 1.0

January 1996

Arnold D. Robbins

Based on The GAWK Manual,
by Robbins, Close, Rubin, and Stallman

\To boldly go where no man has gone before" is a Registered Trademark of
Paramount Pictures Corporation.

Copyright c
 1989, 1991 - 1996 Free Software Foundation, Inc.

This is Edition 1.0 of AWK Language Programming,
for the 3.0 (or later) version of the GNU implementation of AWK.

Published by the Free Software Foundation
59 Temple Place | Suite 330
Boston, MA 02111-1307 USA
Phone: +1-617-542-5942
Fax (including Japan): +1-617-542-2652
Printed copies are available for $25 each.
ISBN 1-882114-26-4

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modi�ed versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modi�ed versions, except
that this permission notice may be stated in a translation approved by the
Foundation.

Cover art by Etienne Suvasa.

To Miriam, for making me complete.

To Chana, for the joy you bring us.

To Rivka, for the exponential increase.

Preface 1

Preface

This book teaches you about the awk language and how you can use it
e�ectively. You should already be familiar with basic system commands,
such as cat and ls,1 and basic shell facilities, such as Input/Output (I/O)
redirection and pipes.

Implementations of the awk language are available for many di�erent
computing environments. This book, while describing the awk language in
general, also describes a particular implementation of awk called gawk (which
stands for \GNU Awk"). gawk runs on a broad range of Unix systems,
ranging from 80386 PC-based computers, up through large scale systems,
such as Crays. gawk has also been ported to MS-DOS and OS/2 PC's, Atari
and Amiga micro-computers, and VMS.

History of awk and gawk

The name awk comes from the initials of its designers: Alfred V. Aho,
Peter J. Weinberger, and Brian W. Kernighan. The original version of awk
was written in 1977 at AT&T Bell Laboratories. In 1985 a new version
made the programming language more powerful, introducing user-de�ned
functions, multiple input streams, and computed regular expressions. This
new version became generally available with Unix System V Release 3.1. The
version in System V Release 4 added some new features and also cleaned up
the behavior in some of the \dark corners" of the language. The speci�cation
for awk in the POSIX Command Language and Utilities standard further
clari�ed the language based on feedback from both the gawk designers, and
the original Bell Labs awk designers.

The GNU implementation, gawk, was written in 1986 by Paul Rubin and
Jay Fenlason, with advice from Richard Stallman. John Woods contributed
parts of the code as well. In 1988 and 1989, David Trueman, with help from
Arnold Robbins, thoroughly reworked gawk for compatibility with the newer
awk. Current development focuses on bug �xes, performance improvements,
standards compliance, and occasionally, new features.

The GNU Project and This Book

The Free Software Foundation (FSF) is a non-pro�t organization ded-
icated to the production and distribution of freely distributable software.

1 These commands are available on POSIX compliant systems, as well as
on traditional Unix based systems. If you are using some other operating
system, you still need to be familiar with the ideas of I/O redirection and
pipes

2 AWK Language Programming

It was founded by Richard M. Stallman, the author of the original Emacs
editor. GNU Emacs is the most widely used version of Emacs today.

The GNU project is an on-going e�ort on the part of the Free Software
Foundation to create a complete, freely distributable, POSIX compliant com-
puting environment. (GNU stands for \GNU's not Unix".) The FSF uses
the \GNU General Public License" (or GPL) to ensure that source code
for their software is always available to the end user. A copy of the GPL
is included for your reference (see [GNU GENERAL PUBLIC LICENSE],
page 311). The GPL applies to the C language source code for gawk.

As of this writing (1995), the only major component of the GNU environ-
ment still uncompleted is the operating system kernel, and work proceeds
apace on that. A shell, an editor (Emacs), highly portable optimizing C,
C++, and Objective-C compilers, a symbolic debugger, and dozens of large
and small utilities (such as gawk), have all been completed and are freely
available.

Until the GNU operating system is released, the FSF recommends the
use of Linux, a freely distributable, Unix-like operating system for 80386
and other systems. There are many books on Linux. One freely available
one is Linux Installation and Getting Started, by Matt Welsh. Many Linux
distributions are available, often in computer stores or bundled on CD-ROM
with books about Linux. Also, the FSF provides a Linux distribution (\De-
bian"); contact them for more information. See Section B.1.1 [Getting the
gawk Distribution], page 279, for the FSF's contact information. (There are
two other freely available, Unix-like operating systems for 80386 and other
systems, NetBSD and FreeBSD. Both are based on the 4.4-Lite Berkeley
Software Distribution, and both use recent versions of gawk for their ver-
sions of awk.)

This book you are reading now is actually free. The information in it is
freely available to anyone, the machine readable source code for the book
comes with gawk, and anyone may take this book to a copying machine and
make as many copies of it as they like. (Take a moment to check the copying
permissions on the Copyright page.)

If you paid money for this book, what you actually paid for was the book's
nice printing and binding, and the publisher's associated costs to produce it.
We have made an e�ort to keep these costs reasonable; most people would
prefer a bound book to over 300 pages of photo-copied text that would then
have to be held in a loose-leaf binder (not to mention the time and labor
involved in doing the copying). The same is true of producing this book
from the machine readable source; the retail price is only slightly more than
the cost per page of printing it on a laser printer.

This book itself has gone through several previous, preliminary editions.
I started working on a preliminary draft of The GAWK Manual, by Diane
Close, Paul Rubin, and Richard Stallman in the fall of 1988. It was around

Preface 3

90 pages long, and barely described the original, \old" version of awk. Af-
ter substantial revision, the �rst version of the The GAWK Manual to be
released was Edition 0.11 Beta in October of 1989. The manual then un-
derwent more substantial revision for Edition 0.13 of December 1991. David
Trueman, Pat Rankin, and Michal Jaegermann contributed sections of the
manual for Edition 0.13. That edition was published by the FSF as a bound
book early in 1992. Since then there have been several minor revisions,
notably Edition 0.14 of November 1992 that was published by the FSF in
January of 1993, and Edition 0.16 of August 1993.

Edition 1.0 of AWK Language Programming represents a signi�cant re-
working of The GAWK Manual, with much additional material. The FSF
and I agree that I am now the primary author. I also felt that it needed a
more descriptive title.

AWK Language Programming will undoubtedly continue to evolve. An
electronic version comes with the gawk distribution from the FSF. If you
�nd an error in this book, please report it! See Section B.7 [Reporting Prob-
lems and Bugs], page 292, for information on submitting problem reports
electronically, or write to me in care of the FSF.

Acknowledgements

I would like to acknowledge Richard M. Stallman, for his vision of a
better world, and for his courage in founding the FSF and starting the GNU
project.

The initial draft of The GAWK Manual had the following acknowledge-
ments:

Many people need to be thanked for their assistance in produc-
ing this manual. Jay Fenlason contributed many ideas and sam-
ple programs. Richard Mlynarik and Robert Chassell gave helpful
comments on drafts of this manual. The paper A Supplemental
Document for awk by John W. Pierce of the Chemistry Depart-
ment at UC San Diego, pinpointed several issues relevant both to
awk implementation and to this manual, that would otherwise have
escaped us.

The following people provided many helpful comments on Edition 0.13 of
The GAWK Manual: Rick Adams, Michael Brennan, Rich Burridge, Diane
Close, Christopher (\Topher") Eliot, Michael Lijewski, Pat Rankin, Miriam
Robbins, and Michal Jaegermann.

The following people provided many helpful comments for Edition 1.0 of
AWK Language Programming : Karl Berry, Michael Brennan, Darrel Han-
kerson, Michal Jaegermann, Michael Lijewski, and Miriam Robbins. Pat

4 AWK Language Programming

Rankin, Michal Jaegermann, Darrel Hankerson and Scott Dei�k updated
their respective sections for Edition 1.0.

Robert J. Chassell provided much valuable advice on the use of Texinfo.
He also deserves special thanks for convincing me not to title this book How
To Gawk Politely. Karl Berry helped signi�cantly with the TEX part of
Texinfo.

David Trueman deserves special credit; he has done a yeoman job of
evolving gawk so that it performs well, and without bugs. Although he is no
longer involved with gawk, working with him on this project was a signi�cant
pleasure.

Scott Dei�k, Darrel Hankerson, Kai Uwe Rommel, Pat Rankin, and
Michal Jaegermann (in no particular order) are long time members of the
gawk \crack portability team." Without their hard work and help, gawk
would not be nearly the �ne program it is today. It has been and continues
to be a pleasure working with this team of �ne people.

Je�rey Friedl provided invaluable help in tracking down a number of last
minute problems with regular expressions in gawk 3.0.

David and I would like to thank Brian Kernighan of Bell Labs for in-
valuable assistance during the testing and debugging of gawk, and for help
in clarifying numerous points about the language. We could not have done
nearly as good a job on either gawk or its documentation without his help.

I would like to thank Marshall and Elaine Hartholz of Seattle, and Dr.
Bert and Rita Schreiber of Detroit for large amounts of quiet vacation time
in their homes, which allowed me to make signi�cant progress on this book
and on gawk itself. Phil Hughes of SSC contributed in a very important way
by loaning me his laptop Linux system, not once, but twice, allowing me to
do a lot of work while away from home.

Finally, I must thank my wonderful wife, Miriam, for her patience through
the many versions of this project, for her proof-reading, and for sharing me
with the computer. I would like to thank my parents for their love, and for
the grace with which they raised and educated me. I also must acknowledge
my gratitude to G-d, for the many opportunities He has sent my way, as
well as for the gifts He has given me with which to take advantage of those
opportunities.

Arnold Robbins
Atlanta, Georgia
January, 1996

Chapter 1: Introduction 5

1 Introduction

If you are like many computer users, you would frequently like to make
changes in various text �les wherever certain patterns appear, or extract data
from parts of certain lines while discarding the rest. To write a program to
do this in a language such as C or Pascal is a time-consuming inconvenience
that may take many lines of code. The job may be easier with awk.

The awk utility interprets a special-purpose programming language that
makes it possible to handle simple data-reformatting jobs with just a few
lines of code.

The GNU implementation of awk is called gawk; it is fully upward com-
patible with the System V Release 4 version of awk. gawk is also upward
compatible with the POSIX speci�cation of the awk language. This means
that all properly written awk programs should work with gawk. Thus, we
usually don't distinguish between gawk and other awk implementations.

Using awk you can:

� manage small, personal databases

� generate reports

� validate data

� produce indexes, and perform other document preparation tasks

� even experiment with algorithms that can be adapted later to other
computer languages

1.1 Using This Book

The term awk refers to a particular program, and to the language you
use to tell this program what to do. When we need to be careful, we call the
program \the awk utility" and the language \the awk language." The term
gawk refers to a version of awk developed as part the GNU project. The
purpose of this book is to explain both the awk language and how to run the
awk utility.

The main purpose of the book is to explain the features of awk, as de�ned
in the POSIX standard. It does so in the context of one particular imple-
mentation, gawk. While doing so, it will also attempt to describe important
di�erences between gawk and other awk implementations. Finally, any gawk

features that are not in the POSIX standard for awk will be noted.

This book has the di�cult task of being both tutorial and reference. If
you are a novice, feel free to skip over details that seem too complex. You
should also ignore the many cross references; they are for the expert user,
and for the on-line Info version of the document.

6 AWK Language Programming

The term awk program refers to a program written by you in the awk

programming language.

See Chapter 2 [Getting Started with awk], page 9, for the bare essentials
you need to know to start using awk.

Some useful \one-liners" are included to give you a feel for the awk lan-
guage (see Chapter 3 [Useful One Line Programs], page 21).

Many sample awk programs have been provided for you (see Chapter 15
[A Library of awk Functions], page 169; also see Chapter 16 [Practical awk
Programs], page 203).

The entire awk language is summarized for quick reference in Appendix A
[gawk Summary], page 257. Look there if you just need to refresh your
memory about a particular feature.

If you �nd terms that you aren't familiar with, try looking them up in
the glossary (see Appendix D [Glossary], page 303).

Most of the time complete awk programs are used as examples, but in
some of the more advanced sections, only the part of the awk program that
illustrates the concept being described is shown.

While this book is aimed principally at people who have not been ex-
posed to awk, there is a lot of information here that even the awk expert
should �nd useful. In particular, the description of POSIX awk, and the
example programs in Chapter 15 [A Library of awk Functions], page 169,
and Chapter 16 [Practical awk Programs], page 203, should be of interest.

Dark Corners

Until the POSIX standard (and The Gawk Manual), many features of
awk were either poorly documented, or not documented at all. Descriptions
of such features (often called \dark corners") are noted in this book with
\(d.c.)". They also appear in the index under the heading \dark corner."

1.2 Typographical Conventions

This book is written using Texinfo, the GNU documentation formatting
language. A single Texinfo source �le is used to produce both the printed
and on-line versions of the documentation. Because of this, the typographical
conventions are slightly di�erent than in other books you may have read.

Examples you would type at the command line are preceded by the com-
mon shell primary and secondary prompts, `$' and `>'. Output from the
command is preceded by the glyph \a ". This typically represents the com-
mand's standard output. Error messages, and other output on the com-
mand's standard error, are preceded by the glyph \ error ". For example:

Chapter 1: Introduction 7

$ echo hi on stdout

a hi on stdout

$ echo hello on stderr 1>&2

error hello on stderr

In the text, command names appear in this font, while code segments
appear in the same font and quoted, `like this'. Some things will be em-
phasized like this, and if a point needs to be made strongly, it will be done
like this. The �rst occurrence of a new term is usually its de�nition, and
appears in the same font as the previous occurrence of \de�nition" in this
sentence. File names are indicated like this: `/path/to/ourfile'.

Characters that you type at the keyboard look like this. In particular,
there are special characters called \control characters." These are characters
that you type by holding down both the CONTROL key and another key, at
the same time. For example, a Control-d is typed by �rst pressing and
holding the CONTROL key, next pressing the d key, and �nally releasing both
keys.

1.3 Data Files for the Examples

Many of the examples in this book take their input from two sample data
�les. The �rst, called `BBS-list', represents a list of computer bulletin board
systems together with information about those systems. The second data
�le, called `inventory-shipped', contains information about shipments on
a monthly basis. In both �les, each line is considered to be one record.

In the �le `BBS-list', each record contains the name of a computer bul-
letin board, its phone number, the board's baud rate(s), and a code for the
number of hours it is operational. An `A' in the last column means the board
operates 24 hours a day. A `B' in the last column means the board operates
evening and weekend hours, only. A `C' means the board operates only on
weekends.

aardvark 555-5553 1200/300 B

alpo-net 555-3412 2400/1200/300 A

barfly 555-7685 1200/300 A

bites 555-1675 2400/1200/300 A

camelot 555-0542 300 C

core 555-2912 1200/300 C

fooey 555-1234 2400/1200/300 B

foot 555-6699 1200/300 B

macfoo 555-6480 1200/300 A

sdace 555-3430 2400/1200/300 A

sabafoo 555-2127 1200/300 C

8 AWK Language Programming

The second data �le, called `inventory-shipped', represents informa-
tion about shipments during the year. Each record contains the month
of the year, the number of green crates shipped, the number of red boxes
shipped, the number of orange bags shipped, and the number of blue pack-
ages shipped, respectively. There are 16 entries, covering the 12 months of
one year and four months of the next year.

Jan 13 25 15 115

Feb 15 32 24 226

Mar 15 24 34 228

Apr 31 52 63 420

May 16 34 29 208

Jun 31 42 75 492

Jul 24 34 67 436

Aug 15 34 47 316

Sep 13 55 37 277

Oct 29 54 68 525

Nov 20 87 82 577

Dec 17 35 61 401

Jan 21 36 64 620

Feb 26 58 80 652

Mar 24 75 70 495

Apr 21 70 74 514

Chapter 2: Getting Started with awk 9

2 Getting Started with awk

The basic function of awk is to search �les for lines (or other units of text)
that contain certain patterns. When a line matches one of the patterns, awk
performs speci�ed actions on that line. awk keeps processing input lines in
this way until the end of the input �les are reached.

Programs in awk are di�erent from programs in most other languages,
because awk programs are data-driven; that is, you describe the data you
wish to work with, and then what to do when you �nd it. Most other
languages are procedural; you have to describe, in great detail, every step
the program is to take. When working with procedural languages, it is
usually much harder to clearly describe the data your program will process.
For this reason, awk programs are often refreshingly easy to both write and
read.

When you run awk, you specify an awk program that tells awk what to
do. The program consists of a series of rules. (It may also contain function
de�nitions, an advanced feature which we will ignore for now. See Chapter 13
[User-de�ned Functions], page 153.) Each rule speci�es one pattern to search
for, and one action to perform when that pattern is found.

Syntactically, a rule consists of a pattern followed by an action. The
action is enclosed in curly braces to separate it from the pattern. Rules are
usually separated by newlines. Therefore, an awk program looks like this:

pattern { action }

pattern { action }

: : :

2.1 A Rose By Any Other Name

The awk language has evolved over the years. Full details are provided in
Chapter 17 [The Evolution of the awk Language], page 251. The language
described in this book is often referred to as \new awk."

Because of this, many systems have multiple versions of awk. Some sys-
tems have an awk utility that implements the original version of the awk

language, and a nawk utility for the new version. Others have an oawk for
the \old awk" language, and plain awk for the new one. Still others only
have one version, usually the new one.1

All in all, this makes it di�cult for you to know which version of awk you
should run when writing your programs. The best advice we can give here
is to check your local documentation. Look for awk, oawk, and nawk, as well
as for gawk. Chances are, you will have some version of new awk on your

1 Often, these systems use gawk for their awk implementation!

10 AWK Language Programming

system, and that is what you should use when running your programs. (Of
course, if you're reading this book, chances are good that you have gawk!)

Throughout this book, whenever we refer to a language feature that
should be available in any complete implementation of POSIX awk, we sim-
ply use the term awk. When referring to a feature that is speci�c to the
GNU implementation, we use the term gawk.

2.2 How to Run awk Programs

There are several ways to run an awk program. If the program is short,
it is easiest to include it in the command that runs awk, like this:

awk 'program' input-�le1 input-�le2 : : :

where program consists of a series of patterns and actions, as described
earlier. (The reason for the single quotes is described below, in Section 2.2.1
[One-shot Throw-away awk Programs], page 10.)

When the program is long, it is usually more convenient to put it in a
�le and run it with a command like this:

awk -f program-�le input-�le1 input-�le2 : : :

2.2.1 One-shot Throw-away awk Programs

Once you are familiar with awk, you will often type in simple programs
the moment you want to use them. Then you can write the program as the
�rst argument of the awk command, like this:

awk 'program' input-�le1 input-�le2 : : :

where program consists of a series of patterns and actions, as described
earlier.

This command format instructs the shell, or command interpreter, to
start awk and use the program to process records in the input �le(s). There
are single quotes around program so that the shell doesn't interpret any awk

characters as special shell characters. They also cause the shell to treat all
of program as a single argument for awk and allow program to be more than
one line long.

This format is also useful for running short or medium-sized awk programs
from shell scripts, because it avoids the need for a separate �le for the awk

program. A self-contained shell script is more reliable since there are no
other �les to misplace.

Chapter 3 [Useful One Line Programs], page 21, presents several short,
self-contained programs.

Chapter 2: Getting Started with awk 11

As an interesting side point, the command

awk '/foo/' �les : : :

is essentially the same as

egrep foo �les : : :

2.2.2 Running awk without Input Files

You can also run awk without any input �les. If you type the command
line:

awk 'program'

then awk applies the program to the standard input, which usually means
whatever you type on the terminal. This continues until you indicate end-
of-�le by typing Control-d. (On other operating systems, the end-of-�le
character may be di�erent. For example, on OS/2 and MS-DOS, it is
Control-z.)

For example, the following program prints a friendly piece of advice (from
Douglas Adams' The Hitchhiker's Guide to the Galaxy), to keep you from
worrying about the complexities of computer programming (`BEGIN' is a
feature we haven't discussed yet).

$ awk "BEGIN { print \"Don't Panic!\" }"

a Don't Panic!

This program does not read any input. The `\' before each of the inner
double quotes is necessary because of the shell's quoting rules, in particular
because it mixes both single quotes and double quotes.

This next simple awk program emulates the cat utility; it copies what-
ever you type at the keyboard to its standard output. (Why this works is
explained shortly.)

$ awk '{ print }'

Now is the time for all good men

a Now is the time for all good men

to come to the aid of their country.

a to come to the aid of their country.

Four score and seven years ago, ...

a Four score and seven years ago, ...

What, me worry?

a What, me worry?

Control-d

12 AWK Language Programming

2.2.3 Running Long Programs

Sometimes your awk programs can be very long. In this case it is more
convenient to put the program into a separate �le. To tell awk to use that
�le for its program, you type:

awk -f source-�le input-�le1 input-�le2 : : :

The `-f' instructs the awk utility to get the awk program from the �le
source-�le. Any �le name can be used for source-�le. For example, you could
put the program:

BEGIN { print "Don't Panic!" }

into the �le `advice'. Then this command:

awk -f advice

does the same thing as this one:

awk "BEGIN { print \"Don't Panic!\" }"

which was explained earlier (see Section 2.2.2 [Running awk without Input
Files], page 11). Note that you don't usually need single quotes around
the �le name that you specify with `-f', because most �le names don't
contain any of the shell's special characters. Notice that in `advice', the
awk program did not have single quotes around it. The quotes are only
needed for programs that are provided on the awk command line.

If you want to identify your awk program �les clearly as such, you can
add the extension `.awk' to the �le name. This doesn't a�ect the execution
of the awk program, but it does make \housekeeping" easier.

2.2.4 Executable awk Programs

Once you have learned awk, you may want to write self-contained awk

scripts, using the `#!' script mechanism. You can do this on many Unix
systems1 (and someday on the GNU system).

For example, you could update the �le `advice' to look like this:

#! /bin/awk -f

BEGIN { print "Don't Panic!" }

After making this �le executable (with the chmod utility), you can simply
type `advice' at the shell, and the system will arrange to run awk2 as if you
had typed `awk -f advice'.

1 The `#!' mechanism works on Linux systems, Unix systems derived from
Berkeley Unix, System V Release 4, and some System V Release 3
systems.

2 The line beginning with `#!' lists the full �le name of an interpreter to
be run, and an optional initial command line argument to pass to that

Chapter 2: Getting Started with awk 13

$ advice

a Don't Panic!

Self-contained awk scripts are useful when you want to write a program which
users can invoke without their having to know that the program is written
in awk.

Some older systems do not support the `#!' mechanism. You can get a
similar e�ect using a regular shell script. It would look something like this:

: The colon ensures execution by the standard shell.

awk 'program' "$@"

Using this technique, it is vital to enclose the program in single quotes
to protect it from interpretation by the shell. If you omit the quotes, only a
shell wizard can predict the results.

The "$@" causes the shell to forward all the command line arguments to
the awk program, without interpretation. The �rst line, which starts with
a colon, is used so that this shell script will work even if invoked by a user
who uses the C shell. (Not all older systems obey this convention, but many
do.)

2.2.5 Comments in awk Programs

A comment is some text that is included in a program for the sake of
human readers; it is not really part of the program. Comments can explain
what the program does, and how it works. Nearly all programming lan-
guages have provisions for comments, because programs are typically hard
to understand without their extra help.

In the awk language, a comment starts with the sharp sign character, `#',
and continues to the end of the line. The `#' does not have to be the �rst
character on the line. The awk language ignores the rest of a line following
a sharp sign. For example, we could have put the following into `advice':

This program prints a nice friendly message. It helps

keep novice users from being afraid of the computer.

BEGIN { print "Don't Panic!" }

You can put comment lines into keyboard-composed throw-away awk pro-
grams also, but this usually isn't very useful; the purpose of a comment is
to help you or another person understand the program at a later time.

interpreter. The operating system then runs the interpreter with the
given argument and the full argument list of the executed program. The
�rst argument in the list is the full �le name of the awk program. The
rest of the argument list will either be options to awk, or data �les, or
both.

14 AWK Language Programming

2.3 A Very Simple Example

The following command runs a simple awk program that searches the in-
put �le `BBS-list' for the string of characters: `foo'. (A string of characters
is usually called a string. The term string is perhaps based on similar usage
in English, such as \a string of pearls," or, \a string of cars in a train.")

awk '/foo/ { print $0 }' BBS-list

When lines containing `foo' are found, they are printed, because `print $0'
means print the current line. (Just `print' by itself means the same thing,
so we could have written that instead.)

You will notice that slashes, `/', surround the string `foo' in the awk

program. The slashes indicate that `foo' is a pattern to search for. This
type of pattern is called a regular expression, and is covered in more detail
later (see Chapter 4 [Regular Expressions], page 23). The pattern is allowed
to match parts of words. There are single-quotes around the awk program
so that the shell won't interpret any of it as special shell characters.

Here is what this program prints:

$ awk '/foo/ { print $0 }' BBS-list

a fooey 555-1234 2400/1200/300 B

a foot 555-6699 1200/300 B

a macfoo 555-6480 1200/300 A

a sabafoo 555-2127 1200/300 C

In an awk rule, either the pattern or the action can be omitted, but not
both. If the pattern is omitted, then the action is performed for every input
line. If the action is omitted, the default action is to print all lines that
match the pattern.

Thus, we could leave out the action (the print statement and the curly
braces) in the above example, and the result would be the same: all lines
matching the pattern `foo' would be printed. By comparison, omitting the
print statement but retaining the curly braces makes an empty action that
does nothing; then no lines would be printed.

2.4 An Example with Two Rules

The awk utility reads the input �les one line at a time. For each line, awk
tries the patterns of each of the rules. If several patterns match then several
actions are run, in the order in which they appear in the awk program. If no
patterns match, then no actions are run.

After processing all the rules (perhaps none) that match the line, awk
reads the next line (however, see Section 9.7 [The next Statement], page 111,
and also see Section 9.8 [The nextfile Statement], page 112). This contin-
ues until the end of the �le is reached.

Chapter 2: Getting Started with awk 15

For example, the awk program:

/12/ { print $0 }

/21/ { print $0 }

contains two rules. The �rst rule has the string `12' as the pattern and
`print $0' as the action. The second rule has the string `21' as the pattern
and also has `print $0' as the action. Each rule's action is enclosed in its
own pair of braces.

This awk program prints every line that contains the string `12' or the
string `21'. If a line contains both strings, it is printed twice, once by each
rule.

This is what happens if we run this program on our two sample data �les,
`BBS-list' and `inventory-shipped', as shown here:

$ awk '/12/ { print $0 }

> /21/ { print $0 }' BBS-list inventory-shipped

a aardvark 555-5553 1200/300 B

a alpo-net 555-3412 2400/1200/300 A

a barfly 555-7685 1200/300 A

a bites 555-1675 2400/1200/300 A

a core 555-2912 1200/300 C

a fooey 555-1234 2400/1200/300 B

a foot 555-6699 1200/300 B

a macfoo 555-6480 1200/300 A

a sdace 555-3430 2400/1200/300 A

a sabafoo 555-2127 1200/300 C

a sabafoo 555-2127 1200/300 C

a Jan 21 36 64 620

a Apr 21 70 74 514

Note how the line in `BBS-list' beginning with `sabafoo' was printed twice,
once for each rule.

2.5 AMore Complex Example

Here is an example to give you an idea of what typical awk programs
do. This example shows how awk can be used to summarize, select, and
rearrange the output of another utility. It uses features that haven't been
covered yet, so don't worry if you don't understand all the details.

ls -lg | awk '$6 == "Nov" { sum += $5 }

END { print sum }'

This command prints the total number of bytes in all the �les in the
current directory that were last modi�ed in November (of any year). (In
the C shell you would need to type a semicolon and then a backslash at the

16 AWK Language Programming

end of the �rst line; in a POSIX-compliant shell, such as the Bourne shell or
Bash, the GNU Bourne-Again shell, you can type the example as shown.)

The `ls -lg' part of this example is a system command that gives you a
listing of the �les in a directory, including �le size and the date the �le was
last modi�ed. Its output looks like this:

-rw-r--r-- 1 arnold user 1933 Nov 7 13:05 Makefile

-rw-r--r-- 1 arnold user 10809 Nov 7 13:03 gawk.h

-rw-r--r-- 1 arnold user 983 Apr 13 12:14 gawk.tab.h

-rw-r--r-- 1 arnold user 31869 Jun 15 12:20 gawk.y

-rw-r--r-- 1 arnold user 22414 Nov 7 13:03 gawk1.c

-rw-r--r-- 1 arnold user 37455 Nov 7 13:03 gawk2.c

-rw-r--r-- 1 arnold user 27511 Dec 9 13:07 gawk3.c

-rw-r--r-- 1 arnold user 7989 Nov 7 13:03 gawk4.c

The �rst �eld contains read-write permissions, the second �eld contains the
number of links to the �le, and the third �eld identi�es the owner of the
�le. The fourth �eld identi�es the group of the �le. The �fth �eld contains
the size of the �le in bytes. The sixth, seventh and eighth �elds contain the
month, day, and time, respectively, that the �le was last modi�ed. Finally,
the ninth �eld contains the name of the �le.

The `$6 == "Nov"' in our awk program is an expression that tests whether
the sixth �eld of the output from `ls -lg' matches the string `Nov'. Each
time a line has the string `Nov' for its sixth �eld, the action `sum += $5' is
performed. This adds the �fth �eld (the �le size) to the variable sum. As a
result, when awk has �nished reading all the input lines, sum is the sum of
the sizes of �les whose lines matched the pattern. (This works because awk

variables are automatically initialized to zero.)

After the last line of output from ls has been processed, the END rule is
executed, and the value of sum is printed. In this example, the value of sum
would be 80600.

These more advanced awk techniques are covered in later sections (see
Section 8.2 [Overview of Actions], page 102). Before you can move on to
more advanced awk programming, you have to know how awk interprets
your input and displays your output. By manipulating �elds and using
print statements, you can produce some very useful and impressive looking
reports.

2.6 awk Statements Versus Lines

Most often, each line in an awk program is a separate statement or sepa-
rate rule, like this:

awk '/12/ { print $0 }

/21/ { print $0 }' BBS-list inventory-shipped

Chapter 2: Getting Started with awk 17

However, gawk will ignore newlines after any of the following:

, { ? : || && do else

A newline at any other point is considered the end of the statement. (Split-
ting lines after `?' and `:' is a minor gawk extension. The `?' and `:' referred
to here is the three operand conditional expression described in Section 7.12
[Conditional Expressions], page 93.)

If you would like to split a single statement into two lines at a point where
a newline would terminate it, you can continue it by ending the �rst line
with a backslash character, `\'. The backslash must be the �nal character
on the line to be recognized as a continuation character. This is allowed
absolutely anywhere in the statement, even in the middle of a string or
regular expression. For example:

awk '/This regular expression is too long, so continue it\

on the next line/ { print $1 }'

We have generally not used backslash continuation in the sample programs
in this book. Since in gawk there is no limit on the length of a line, it
is never strictly necessary; it just makes programs more readable. For this
same reason, as well as for clarity, we have kept most statements short in the
sample programs presented throughout the book. Backslash continuation is
most useful when your awk program is in a separate source �le, instead
of typed in on the command line. You should also note that many awk

implementations are more particular about where you may use backslash
continuation. For example, they may not allow you to split a string constant
using backslash continuation. Thus, for maximal portability of your awk

programs, it is best not to split your lines in the middle of a regular expression
or a string.

Caution: backslash continuation does not work as described above with
the C shell. Continuation with backslash works for awk programs in �les,
and also for one-shot programs provided you are using a POSIX-compliant
shell, such as the Bourne shell or Bash, the GNU Bourne-Again shell. But
the C shell (csh) behaves di�erently! There, you must use two backslashes
in a row, followed by a newline. Note also that when using the C shell,
every newline in your awk program must be escaped with a backslash. To
illustrate:

% awk 'BEGIN { \

? print \\

? "hello, world" \

? }'

a hello, world

Here, the `%' and `?' are the C shell's primary and secondary prompts, anal-
ogous to the standard shell's `$' and `>'.

18 AWK Language Programming

awk is a line-oriented language. Each rule's action has to begin on the
same line as the pattern. To have the pattern and action on separate lines,
you must use backslash continuation|there is no other way.

When awk statements within one rule are short, you might want to put
more than one of them on a line. You do this by separating the statements
with a semicolon, `;'.

This also applies to the rules themselves. Thus, the previous program
could have been written:

/12/ { print $0 } ; /21/ { print $0 }

Note: the requirement that rules on the same line must be separated with a
semicolon was not in the original awk language; it was added for consistency
with the treatment of statements within an action.

2.7 Other Features of awk

The awk language provides a number of prede�ned, or built-in variables,
which your programs can use to get information from awk. There are other
variables your program can set to control how awk processes your data.

In addition, awk provides a number of built-in functions for doing common
computational and string related operations.

As we develop our presentation of the awk language, we introduce most
of the variables and many of the functions. They are de�ned systemati-
cally in Chapter 10 [Built-in Variables], page 115, and Chapter 12 [Built-in
Functions], page 135.

2.8 When to Use awk

You might wonder how awk might be useful for you. Using utility pro-
grams, advanced patterns, �eld separators, arithmetic statements, and other
selection criteria, you can produce much more complex output. The awk lan-
guage is very useful for producing reports from large amounts of raw data,
such as summarizing information from the output of other utility programs
like ls. (See Section 2.5 [A More Complex Example], page 15.)

Programs written with awk are usually much smaller than they would be
in other languages. This makes awk programs easy to compose and use. Of-
ten, awk programs can be quickly composed at your terminal, used once, and
thrown away. Since awk programs are interpreted, you can avoid the (usu-
ally lengthy) compilation part of the typical edit-compile-test-debug cycle of
software development.

Complex programs have been written in awk, including a complete retar-
getable assembler for eight-bit microprocessors (see Appendix D [Glossary],

Chapter 2: Getting Started with awk 19

page 303, for more information) and a microcode assembler for a special
purpose Prolog computer. However, awk's capabilities are strained by tasks
of such complexity.

If you �nd yourself writing awk scripts of more than, say, a few hundred
lines, you might consider using a di�erent programming language. Emacs
Lisp is a good choice if you need sophisticated string or pattern matching ca-
pabilities. The shell is also good at string and pattern matching; in addition,
it allows powerful use of the system utilities. More conventional languages,
such as C, C++, and Lisp, o�er better facilities for system programming and
for managing the complexity of large programs. Programs in these languages
may require more lines of source code than the equivalent awk programs, but
they are easier to maintain and usually run more e�ciently.

20 AWK Language Programming

Chapter 3: Useful One Line Programs 21

3 Useful One Line Programs

Many useful awk programs are short, just a line or two. Here is a collection
of useful, short programs to get you started. Some of these programs contain
constructs that haven't been covered yet. The description of the program
will give you a good idea of what is going on, but please read the rest of the
book to become an awk expert!

Most of the examples use a data �le named `data'. This is just a place-
holder; if you were to use these programs yourself, you would substitute your
own �le names for `data'.

awk '{ if (length($0) > max) max = length($0) }

END { print max }' data

This program prints the length of the longest input line.

awk 'length($0) > 80' data

This program prints every line that is longer than 80 characters.
The sole rule has a relational expression as its pattern, and has
no action (so the default action, printing the record, is used).

expand data | awk '{ if (x < length()) x = length() }

END { print "maximum line length is " x }'

This program prints the length of the longest line in `data'. The
input is processed by the expand program to change tabs into
spaces, so the widths compared are actually the right-margin
columns.

awk 'NF > 0' data

This program prints every line that has at least one �eld. This
is an easy way to delete blank lines from a �le (or rather, to
create a new �le similar to the old �le but from which the blank
lines have been deleted).

awk 'BEGIN { for (i = 1; i <= 7; i++)

print int(101 * rand()) }'

This program prints seven random numbers from zero to 100,
inclusive.

ls -lg �les | awk '{ x += $5 } ; END { print "total bytes: " x }'

This program prints the total number of bytes used by �les.

ls -lg �les | awk '{ x += $5 }

END { print "total K-bytes: " (x + 1023)/1024 }'

This program prints the total number of kilobytes used by �les.

awk -F: '{ print $1 }' /etc/passwd | sort

This program prints a sorted list of the login names of all users.

awk 'END { print NR }' data

This program counts lines in a �le.

22 AWK Language Programming

awk 'NR % 2' data

This program prints the even numbered lines in the data �le. If
you were to use the expression `NR % 2 == 1' instead, it would
print the odd number lines.

Chapter 4: Regular Expressions 23

4 Regular Expressions

A regular expression, or regexp, is a way of describing a set of strings. Be-
cause regular expressions are such a fundamental part of awk programming,
their format and use deserve a separate chapter.

A regular expression enclosed in slashes (`/') is an awk pattern that
matches every input record whose text belongs to that set.

The simplest regular expression is a sequence of letters, numbers, or both.
Such a regexp matches any string that contains that sequence. Thus, the
regexp `foo' matches any string containing `foo'. Therefore, the pattern
/foo/ matches any input record containing the three characters `foo', any-
where in the record. Other kinds of regexps let you specify more complicated
classes of strings.

Initially, the examples will be simple. As we explain more about how
regular expressions work, we will present more complicated examples.

4.1 How to Use Regular Expressions

A regular expression can be used as a pattern by enclosing it in slashes.
Then the regular expression is tested against the entire text of each record.
(Normally, it only needs to match some part of the text in order to succeed.)
For example, this prints the second �eld of each record that contains the
three characters `foo' anywhere in it:

$ awk '/foo/ { print $2 }' BBS-list

a 555-1234

a 555-6699

a 555-6480

a 555-2127

Regular expressions can also be used in matching expressions. These
expressions allow you to specify the string to match against; it need not be
the entire current input record. The two operators, `~' and `!~', perform
regular expression comparisons. Expressions using these operators can be
used as patterns or in if, while, for, and do statements.

exp ~ /regexp/
This is true if the expression exp (taken as a string) is matched
by regexp. The following example matches, or selects, all input
records with the upper-case letter `J' somewhere in the �rst �eld:

$ awk '$1 ~ /J/' inventory-shipped

a Jan 13 25 15 115

a Jun 31 42 75 492

a Jul 24 34 67 436

a Jan 21 36 64 620

24 AWK Language Programming

So does this:

awk '{ if ($1 ~ /J/) print }' inventory-shipped

exp !~ /regexp/
This is true if the expression exp (taken as a character string)
is not matched by regexp. The following example matches, or
selects, all input records whose �rst �eld does not contain the
upper-case letter `J':

$ awk '$1 !~ /J/' inventory-shipped

a Feb 15 32 24 226

a Mar 15 24 34 228

a Apr 31 52 63 420

a May 16 34 29 208

: : :

When a regexp is written enclosed in slashes, like /foo/, we call it a
regexp constant, much like 5.27 is a numeric constant, and "foo" is a string
constant.

4.2 Escape Sequences

Some characters cannot be included literally in string constants ("foo")
or regexp constants (/foo/). You represent them instead with escape se-
quences, which are character sequences beginning with a backslash (`\').

One use of an escape sequence is to include a double-quote character in a
string constant. Since a plain double-quote would end the string, you must
use `\"' to represent an actual double-quote character as a part of the string.
For example:

$ awk 'BEGIN { print "He said \"hi!\" to her." }'

a He said "hi!" to her.

The backslash character itself is another character that cannot be in-
cluded normally; you write `\\' to put one backslash in the string or regexp.
Thus, the string whose contents are the two characters `"' and `\' must be
written "\"\\".

Another use of backslash is to represent unprintable characters such as
tab or newline. While there is nothing to stop you from entering most
unprintable characters directly in a string constant or regexp constant, they
may look ugly.

Here is a table of all the escape sequences used in awk, and what they
represent. Unless noted otherwise, all of these escape sequences apply to
both string constants and regexp constants.

Chapter 4: Regular Expressions 25

\\ A literal backslash, `\'.

\a The \alert" character, Control-g, ASCII code 7 (BEL).

\b Backspace, Control-h, ASCII code 8 (BS).

\f Formfeed, Control-l, ASCII code 12 (FF).

\n Newline, Control-j, ASCII code 10 (LF).

\r Carriage return, Control-m, ASCII code 13 (CR).

\t Horizontal tab, Control-i, ASCII code 9 (HT).

\v Vertical tab, Control-k, ASCII code 11 (VT).

\nnn The octal value nnn, where nnn are one to three digits between
`0' and `7'. For example, the code for the ASCII ESC (escape)
character is `\033'.

\xhh: : : The hexadecimal value hh, where hh are hexadecimal digits (`0'
through `9' and either `A' through `F' or `a' through `f'). Like
the same construct in ANSI C, the escape sequence continues
until the �rst non-hexadecimal digit is seen. However, using
more than two hexadecimal digits produces unde�ned results.
(The `\x' escape sequence is not allowed in POSIX awk.)

\/ A literal slash (necessary for regexp constants only). You use
this when you wish to write a regexp constant that contains
a slash. Since the regexp is delimited by slashes, you need to
escape the slash that is part of the pattern, in order to tell awk
to keep processing the rest of the regexp.

\" A literal double-quote (necessary for string constants only). You
use this when you wish to write a string constant that contains
a double-quote. Since the string is delimited by double-quotes,
you need to escape the quote that is part of the string, in order
to tell awk to keep processing the rest of the string.

In gawk, there are additional two character sequences that begin with
backslash that have special meaning in regexps. See Section 4.4 [Additional
Regexp Operators Only in gawk], page 31.

In a string constant, what happens if you place a backslash before some-
thing that is not one of the characters listed above? POSIX awk purposely
leaves this case unde�ned. There are two choices.

� Strip the backslash out. This is what Unix awk and gawk both do. For
example, "a\qc" is the same as "aqc".

� Leave the backslash alone. Some other awk implementations do this. In
such implementations, "a\qc" is the same as if you had typed "a\\qc".

26 AWK Language Programming

In a regexp, a backslash before any character that is not in the above
table, and not listed in Section 4.4 [Additional Regexp Operators Only in
gawk], page 31, means that the next character should be taken literally, even
if it would normally be a regexp operator. E.g., /a\+b/ matches the three
characters `a+b'.

For complete portability, do not use a backslash before any character not
listed in the table above.

Another interesting question arises. Suppose you use an octal or hexadec-
imal escape to represent a regexp metacharacter (see Section 4.3 [Regular
Expression Operators], page 26). Does awk treat the character as literal
character, or as a regexp operator?

It turns out that historically, such characters were taken literally (d.c.).
However, the POSIX standard indicates that they should be treated as real
metacharacters, and this is what gawk does. However, in compatibility mode
(see Section 14.1 [Command Line Options], page 161), gawk treats the char-
acters represented by octal and hexadecimal escape sequences literally when
used in regexp constants. Thus, /a\52b/ is equivalent to /a*b/.

To summarize:

1. The escape sequences in the table above are always processed �rst, for
both string constants and regexp constants. This happens very early,
as soon as awk reads your program.

2. gawk processes both regexp constants and dynamic regexps (see Sec-
tion 4.7 [Using Dynamic Regexps], page 35), for the special opera-
tors listed in Section 4.4 [Additional Regexp Operators Only in gawk],
page 31.

3. A backslash before any other character means to treat that character
literally.

4.3 Regular Expression Operators

You can combine regular expressions with the following characters, called
regular expression operators, or metacharacters, to increase the power and
versatility of regular expressions.

The escape sequences described above in Section 4.2 [Escape Sequences],
page 24, are valid inside a regexp. They are introduced by a `\'. They are
recognized and converted into the corresponding real characters as the very
�rst step in processing regexps.

Here is a table of metacharacters. All characters that are not escape
sequences and that are not listed in the table stand for themselves.

Chapter 4: Regular Expressions 27

\ This is used to suppress the special meaning of a character when
matching. For example:

\$

matches the character `$'.

^ This matches the beginning of a string. For example:

^@chapter

matches the `@chapter' at the beginning of a string, and can
be used to identify chapter beginnings in Texinfo source �les.
The `^' is known as an anchor, since it anchors the pattern to
matching only at the beginning of the string.

It is important to realize that `^' does not match the beginning
of a line embedded in a string. In this example the condition is
not true:

if ("line1\nLINE 2" ~ /^L/) : : :

$ This is similar to `^', but it matches only at the end of a string.
For example:

p$

matches a record that ends with a `p'. The `$' is also an anchor,
and also does not match the end of a line embedded in a string.
In this example the condition is not true:

if ("line1\nLINE 2" ~ /1$/) : : :

. The period, or dot, matches any single character, including the
newline character. For example:

.P

matches any single character followed by a `P' in a string. Using
concatenation we can make a regular expression like `U.A', which
matches any three-character sequence that begins with `U' and
ends with `A'.

In strict POSIX mode (see Section 14.1 [Command Line Op-
tions], page 161), `.' does not match the nul character, which
is a character with all bits equal to zero. Otherwise, nul is just
another character. Other versions of awk may not be able to
match the nul character.

[: : :] This is called a character list. It matches any one of the char-
acters that are enclosed in the square brackets. For example:

[MVX]

matches any one of the characters `M', `V', or `X' in a string.

Ranges of characters are indicated by using a hyphen between
the beginning and ending characters, and enclosing the whole
thing in brackets. For example:

28 AWK Language Programming

[0-9]

matches any digit. Multiple ranges are allowed. E.g., the list
[A-Za-z0-9] is a common way to express the idea of \all al-
phanumeric characters."

To include one of the characters `\', `]', `-' or `^' in a character
list, put a `\' in front of it. For example:

[d\]]

matches either `d', or `]'.

This treatment of `\' in character lists is compatible with other
awk implementations, and is also mandated by POSIX. The reg-
ular expressions in awk are a superset of the POSIX speci�ca-
tion for Extended Regular Expressions (EREs). POSIX EREs
are based on the regular expressions accepted by the traditional
egrep utility.

Character classes are a new feature introduced in the POSIX
standard. A character class is a special notation for describing
lists of characters that have a speci�c attribute, but where the
actual characters themselves can vary from country to country
and/or from character set to character set. For example, the
notion of what is an alphabetic character di�ers in the USA and
in France.

A character class is only valid in a regexp inside the brackets of
a character list. Character classes consist of `[:', a keyword de-
noting the class, and `:]'. Here are the character classes de�ned
by the POSIX standard.

[:alnum:]

Alphanumeric characters.

[:alpha:]

Alphabetic characters.

[:blank:]

Space and tab characters.

[:cntrl:]

Control characters.

[:digit:]

Numeric characters.

[:graph:]

Characters that are printable and are also visible.
(A space is printable, but not visible, while an `a' is
both.)

Chapter 4: Regular Expressions 29

[:lower:]

Lower-case alphabetic characters.

[:print:]

Printable characters (characters that are not control
characters.)

[:punct:]

Punctuation characters (characters that are not let-
ter, digits, control characters, or space characters).

[:space:]

Space characters (such as space, tab, and formfeed,
to name a few).

[:upper:]

Upper-case alphabetic characters.

[:xdigit:]

Characters that are hexadecimal digits.

For example, before the POSIX standard, to match alphanu-
meric characters, you had to write /[A-Za-z0-9]/. If your char-
acter set had other alphabetic characters in it, this would not
match them. With the POSIX character classes, you can write
/[[:alnum:]]/, and this will match all the alphabetic and nu-
meric characters in your character set.

Two additional special sequences can appear in character lists.
These apply to non-ASCII character sets, which can have single
symbols (called collating elements) that are represented with
more than one character, as well as several characters that are
equivalent for collating, or sorting, purposes. (E.g., in French, a
plain \e" and a grave-accented \�e" are equivalent.)

Collating Symbols
A collating symbol is a multi-character collating el-
ement enclosed in `[.' and `.]'. For example, if `ch'
is a collating element, then [[.ch.]] is a regexp
that matches this collating element, while [ch] is a
regexp that matches either `c' or `h'.

Equivalence Classes
An equivalence class is a list of equivalent characters
enclosed in `[=' and `=]'. Thus, [[=e�e=]] is regexp
that matches either `e' or `�e'.

These features are very valuable in non-English speaking locales.

Caution: The library functions that gawk uses for regular expres-
sion matching currently only recognize POSIX character classes;
they do not recognize collating symbols or equivalence classes.

30 AWK Language Programming

[^ : : :] This is a complemented character list. The �rst character after
the `[' must be a `^'. It matches any characters except those in
the square brackets, or newline. For example:

[^0-9]

matches any character that is not a digit.

| This is the alternation operator, and it is used to specify alter-
natives. For example:

^P|[0-9]

matches any string that matches either `^P' or `[0-9]'. This
means it matches any string that starts with `P' or contains a
digit.

The alternation applies to the largest possible regexps on either
side. In other words, `|' has the lowest precedence of all the
regular expression operators.

(: : :) Parentheses are used for grouping in regular expressions as
in arithmetic. They can be used to concatenate regular ex-
pressions containing the alternation operator, `|'. For exam-
ple, `@(samp|code)\{[^}]+\}' matches both `@code{foo}' and
`@samp{bar}'. (These are Texinfo formatting control sequences.)

* This symbol means that the preceding regular expression is to
be repeated as many times as necessary to �nd a match. For
example:

ph*

applies the `*' symbol to the preceding `h' and looks for matches
of one `p' followed by any number of `h's. This will also match
just `p' if no `h's are present.

The `*' repeats the smallest possible preceding expression. (Use
parentheses if you wish to repeat a larger expression.) It �nds
as many repetitions as possible. For example:

awk '/\(c[ad][ad]*r x\)/ { print }' sample

prints every record in `sample' containing a string of the form
`(car x)', `(cdr x)', `(cadr x)', and so on. Notice the escaping
of the parentheses by preceding them with backslashes.

+ This symbol is similar to `*', but the preceding expression must
be matched at least once. This means that:

wh+y

would match `why' and `whhy' but not `wy', whereas `wh*y' would
match all three of these strings. This is a simpler way of writing
the last `*' example:

awk '/\(c[ad]+r x\)/ { print }' sample

Chapter 4: Regular Expressions 31

? This symbol is similar to `*', but the preceding expression can
be matched either once or not at all. For example:

fe?d

will match `fed' and `fd', but nothing else.

{n}
{n,}
{n,m} One or two numbers inside braces denote an interval expres-

sion. If there is one number in the braces, the preceding regexp
is repeated n times. If there are two numbers separated by a
comma, the preceding regexp is repeated n to m times. If there
is one number followed by a comma, then the preceding regexp
is repeated at least n times.

wh{3}y matches `whhhy' but not `why' or `whhhhy'.

wh{3,5}y matches `whhhy' or `whhhhy' or `whhhhhy', only.

wh{2,}y matches `whhy' or `whhhy', and so on.

Interval expressions were not traditionally available in awk. As
part of the POSIX standard they were added, to make awk and
egrep consistent with each other.

However, since old programs may use `{' and `}' in regexp con-
stants, by default gawk does not match interval expressions in
regexps. If either `--posix' or `--re-interval' are speci�ed
(see Section 14.1 [Command Line Options], page 161), then in-
terval expressions are allowed in regexps.

In regular expressions, the `*', `+', and `?' operators, as well as the braces
`{' and `}', have the highest precedence, followed by concatenation, and
�nally by `|'. As in arithmetic, parentheses can change how operators are
grouped.

If gawk is in compatibility mode (see Section 14.1 [Command Line Op-
tions], page 161), character classes and interval expressions are not available
in regular expressions.

The next section discusses the GNU-speci�c regexp operators, and pro-
vides more detail concerning how command line options a�ect the way gawk

interprets the characters in regular expressions.

4.4 Additional Regexp Operators Only in gawk

GNU software that deals with regular expressions provides a number of
additional regexp operators. These operators are described in this section,
and are speci�c to gawk; they are not available in other awk implementations.

32 AWK Language Programming

Most of the additional operators are for dealing with word matching.
For our purposes, a word is a sequence of one or more letters, digits, or
underscores (`_').

\w This operator matches any word-constituent character, i.e. any
letter, digit, or underscore. Think of it as a short-hand for
[[:alnum:]_].

\W This operator matches any character that is not word-
constituent. Think of it as a short-hand for [^[:alnum:]_].

\< This operator matches the empty string at the beginning of
a word. For example, /\<away/ matches `away', but not
`stowaway'.

\> This operator matches the empty string at the end of a word.
For example, /stow\>/ matches `stow', but not `stowaway'.

\y This operator matches the empty string at either the begin-
ning or the end of a word (the word boundary). For exam-
ple, `\yballs?\y' matches either `ball' or `balls' as a separate
word.

\B This operator matches the empty string within a word. In other
words, `\B' matches the empty string that occurs between two
word-constituent characters. For example, /\Brat\B/ matches
`crate', but it does not match `dirty rat'. `\B' is essentially
the opposite of `\y'.

There are two other operators that work on bu�ers. In Emacs, a bu�er is,
naturally, an Emacs bu�er. For other programs, the regexp library routines
that gawk uses consider the entire string to be matched as the bu�er.

For awk, since `^' and `$' always work in terms of the beginning and end
of strings, these operators don't add any new capabilities. They are provided
for compatibility with other GNU software.

\` This operator matches the empty string at the beginning of the
bu�er.

\' This operator matches the empty string at the end of the bu�er.

In other GNU software, the word boundary operator is `\b'. However,
that con
icts with the awk language's de�nition of `\b' as backspace, so gawk
uses a di�erent letter.

An alternative method would have been to require two backslashes in the
GNU operators, but this was deemed to be too confusing, and the current
method of using `\y' for the GNU `\b' appears to be the lesser of two evils.

The various command line options (see Section 14.1 [Command Line Op-
tions], page 161) control how gawk interprets characters in regexps.

Chapter 4: Regular Expressions 33

No options
In the default case, gawk provide all the facilities of POSIX reg-
exps and the GNU regexp operators described above. However,
interval expressions are not supported.

--posix Only POSIX regexps are supported, the GNU operators are not
special (e.g., `\w' matches a literal `w'). Interval expressions are
allowed.

--traditional

Traditional Unix awk regexps are matched. The GNU operators
are not special, interval expressions are not available, and nei-
ther are the POSIX character classes ([[:alnum:]] and so on).
Characters described by octal and hexadecimal escape sequences
are treated literally, even if they represent regexp metacharac-
ters.

--re-interval

Allow interval expressions in regexps, even if `--traditional'
has been provided.

4.5 Case-sensitivity in Matching

Case is normally signi�cant in regular expressions, both when matching
ordinary characters (i.e. not metacharacters), and inside character sets. Thus
a `w' in a regular expression matches only a lower-case `w' and not an upper-
case `W'.

The simplest way to do a case-independent match is to use a character
list: `[Ww]'. However, this can be cumbersome if you need to use it often;
and it can make the regular expressions harder to read. There are two
alternatives that you might prefer.

One way to do a case-insensitive match at a particular point in the pro-
gram is to convert the data to a single case, using the tolower or toupper
built-in string functions (which we haven't discussed yet; see Section 12.3
[Built-in Functions for String Manipulation], page 137). For example:

tolower($1) ~ /foo/ { : : : }

converts the �rst �eld to lower-case before matching against it. This will
work in any POSIX-compliant implementation of awk.

Another method, speci�c to gawk, is to set the variable IGNORECASE to
a non-zero value (see Chapter 10 [Built-in Variables], page 115). When
IGNORECASE is not zero, all regexp and string operations ignore case. Chang-
ing the value of IGNORECASE dynamically controls the case sensitivity of your
program as it runs. Case is signi�cant by default because IGNORECASE (like
most variables) is initialized to zero.

34 AWK Language Programming

x = "aB"

if (x ~ /ab/) : : : # this test will fail

IGNORECASE = 1

if (x ~ /ab/) : : : # now it will succeed

In general, you cannot use IGNORECASE to make certain rules case-
insensitive and other rules case-sensitive, because there is no way to set
IGNORECASE just for the pattern of a particular rule. To do this, you must
use character lists or tolower. However, one thing you can do only with
IGNORECASE is turn case-sensitivity on or o� dynamically for all the rules at
once.

IGNORECASE can be set on the command line, or in a BEGIN rule (see
Section 14.2 [Other Command Line Arguments], page 165; also see Sec-
tion 8.1.5.1 [Startup and Cleanup Actions], page 100). Setting IGNORECASE

from the command line is a way to make a program case-insensitive without
having to edit it.

Prior to version 3.0 of gawk, the value of IGNORECASE only a�ected regexp
operations. It did not a�ect string comparison with `==', `!=', and so on.
Beginning with version 3.0, both regexp and string comparison operations
are a�ected by IGNORECASE.

Beginning with version 3.0 of gawk, the equivalences between upper-case
and lower-case characters are based on the ISO-8859-1 (ISO Latin-1) char-
acter set. This character set is a superset of the traditional 128 ASCII
characters, that also provides a number of characters suitable for use with
European languages.

The value of IGNORECASE has no e�ect if gawk is in compatibility mode
(see Section 14.1 [Command Line Options], page 161). Case is always sig-
ni�cant in compatibility mode.

4.6 HowMuch Text Matches?

Consider the following example:

echo aaaabcd | awk '{ sub(/a+/, "<A>"); print }'

This example uses the sub function (which we haven't discussed yet, see
Section 12.3 [Built-in Functions for String Manipulation], page 137) to make
a change to the input record. Here, the regexp /a+/ indicates \one or more
`a' characters," and the replacement text is `<A>'.

The input contains four `a' characters. What will the output be? In other
words, how many is \one or more"|will awk match two, three, or all four
`a' characters?

Chapter 4: Regular Expressions 35

The answer is, awk (and POSIX) regular expressions always match the
leftmost, longest sequence of input characters that can match. Thus, in this
example, all four `a' characters are replaced with `<A>'.

$ echo aaaabcd | awk '{ sub(/a+/, "<A>"); print }'

a <A>bcd

For simple match/no-match tests, this is not so important. But when do-
ing regexp-based �eld and record splitting, and text matching and substitu-
tions with the match, sub, gsub, and gensub functions, it is very important.
Understanding this principle is also important for regexp-based record and
�eld splitting (see Section 5.1 [How Input is Split into Records], page 37,
and also see Section 5.5 [Specifying How Fields are Separated], page 44).

4.7 Using Dynamic Regexps

The right hand side of a `~' or `!~' operator need not be a regexp constant
(i.e. a string of characters between slashes). It may be any expression. The
expression is evaluated, and converted if necessary to a string; the contents
of the string are used as the regexp. A regexp that is computed in this way
is called a dynamic regexp. For example:

BEGIN { identifier_regexp = "[A-Za-z_][A-Za-z_0-9]+" }

$0 ~ identifier_regexp { print }

sets identifier_regexp to a regexp that describes awk variable names, and
tests if the input record matches this regexp.

Caution: When using the `~' and `!~' operators, there is a di�erence
between a regexp constant enclosed in slashes, and a string constant enclosed
in double quotes. If you are going to use a string constant, you have to
understand that the string is in essence scanned twice; the �rst time when
awk reads your program, and the second time when it goes to match the
string on the left-hand side of the operator with the pattern on the right.
This is true of any string valued expression (such as identifier_regexp

above), not just string constants.

What di�erence does it make if the string is scanned twice? The answer
has to do with escape sequences, and particularly with backslashes. To get
a backslash into a regular expression inside a string, you have to type two
backslashes.

For example, /*/ is a regexp constant for a literal `*'. Only one backslash
is needed. To do the same thing with a string, you would have to type
"*". The �rst backslash escapes the second one, so that the string actually
contains the two characters `\' and `*'.

Given that you can use both regexp and string constants to describe reg-
ular expressions, which should you use? The answer is \regexp constants,"
for several reasons.

36 AWK Language Programming

1. String constants are more complicated to write, and more di�cult to
read. Using regexp constants makes your programs less error-prone.
Not understanding the di�erence between the two kinds of constants is
a common source of errors.

2. It is also more e�cient to use regexp constants: awk can note that you
have supplied a regexp and store it internally in a form that makes
pattern matching more e�cient. When using a string constant, awk
must �rst convert the string into this internal form, and then perform
the pattern matching.

3. Using regexp constants is better style; it shows clearly that you intend
a regexp match.

Chapter 5: Reading Input Files 37

5 Reading Input Files

In the typical awk program, all input is read either from the standard
input (by default the keyboard, but often a pipe from another command) or
from �les whose names you specify on the awk command line. If you specify
input �les, awk reads them in order, reading all the data from one before
going on to the next. The name of the current input �le can be found in the
built-in variable FILENAME (see Chapter 10 [Built-in Variables], page 115).

The input is read in units called records, and processed by the rules of
your program one record at a time. By default, each record is one line. Each
record is automatically split into chunks called �elds. This makes it more
convenient for programs to work on the parts of a record.

On rare occasions you will need to use the getline command. The
getline command is valuable, both because it can do explicit input from any
number of �les, and because the �les used with it do not have to be named
on the awk command line (see Section 5.8 [Explicit Input with getline],
page 54).

5.1 How Input is Split into Records

The awk utility divides the input for your awk program into records and
�elds. Records are separated by a character called the record separator. By
default, the record separator is the newline character. This is why records
are, by default, single lines. You can use a di�erent character for the record
separator by assigning the character to the built-in variable RS.

You can change the value of RS in the awk program, like any other variable,
with the assignment operator, `=' (see Section 7.7 [Assignment Expressions],
page 84). The new record-separator character should be enclosed in quo-
tation marks, which indicate a string constant. Often the right time to do
this is at the beginning of execution, before any input has been processed,
so that the very �rst record will be read with the proper separator. To do
this, use the special BEGIN pattern (see Section 8.1.5 [The BEGIN and END

Special Patterns], page 100). For example:

awk 'BEGIN { RS = "/" } ; { print $0 }' BBS-list

changes the value of RS to "/", before reading any input. This is a string
whose �rst character is a slash; as a result, records are separated by slashes.
Then the input �le is read, and the second rule in the awk program (the
action with no pattern) prints each record. Since each print statement
adds a newline at the end of its output, the e�ect of this awk program is to
copy the input with each slash changed to a newline. Here are the results of
running the program on `BBS-list':

38 AWK Language Programming

$ awk 'BEGIN { RS = "/" } ; { print $0 }' BBS-list

a aardvark 555-5553 1200

a 300 B

a alpo-net 555-3412 2400

a 1200

a 300 A

a barfly 555-7685 1200

a 300 A

a bites 555-1675 2400

a 1200

a 300 A

a camelot 555-0542 300 C

a core 555-2912 1200

a 300 C

a fooey 555-1234 2400

a 1200

a 300 B

a foot 555-6699 1200

a 300 B

a macfoo 555-6480 1200

a 300 A

a sdace 555-3430 2400

a 1200

a 300 A

a sabafoo 555-2127 1200

a 300 C

a

Note that the entry for the `camelot' BBS is not split. In the original data
�le (see Section 1.3 [Data Files for the Examples], page 7), the line looks like
this:

camelot 555-0542 300 C

It only has one baud rate; there are no slashes in the record.

Another way to change the record separator is on the command line,
using the variable-assignment feature (see Section 14.2 [Other Command
Line Arguments], page 165).

awk '{ print $0 }' RS="/" BBS-list

This sets RS to `/' before processing `BBS-list'.

Using an unusual character such as `/' for the record separator produces
correct behavior in the vast majority of cases. However, the following (ex-
treme) pipeline prints a surprising `1'. There is one �eld, consisting of a

Chapter 5: Reading Input Files 39

newline. The value of the built-in variable NF is the number of �elds in the
current record.

$ echo | awk 'BEGIN { RS = "a" } ; { print NF }'

a 1

Reaching the end of an input �le terminates the current input record, even
if the last character in the �le is not the character in RS (d.c.).

The empty string, "" (a string of no characters), has a special meaning
as the value of RS: it means that records are separated by one or more blank
lines, and nothing else. See Section 5.7 [Multiple-Line Records], page 51, for
more details.

If you change the value of RS in the middle of an awk run, the new value is
used to delimit subsequent records, but the record currently being processed
(and records already processed) are not a�ected.

After the end of the record has been determined, gawk sets the variable
RT to the text in the input that matched RS.

The value of RS is in fact not limited to a one-character string. It can
be any regular expression (see Chapter 4 [Regular Expressions], page 23).
In general, each record ends at the next string that matches the regular
expression; the next record starts at the end of the matching string. This
general rule is actually at work in the usual case, where RS contains just a
newline: a record ends at the beginning of the next matching string (the
next newline in the input) and the following record starts just after the end
of this string (at the �rst character of the following line). The newline, since
it matches RS, is not part of either record.

When RS is a single character, RT will contain the same single character.
However, when RS is a regular expression, then RT becomes more useful; it
contains the actual input text that matched the regular expression.

The following example illustrates both of these features. It sets RS equal
to a regular expression that matches either a newline, or a series of one or
more upper-case letters with optional leading and/or trailing white space
(see Chapter 4 [Regular Expressions], page 23).

$ echo record 1 AAAA record 2 BBBB record 3 |

> gawk 'BEGIN { RS = "\n|(*[[:upper:]]+ *)" }

> { print "Record =", $0, "and RT =", RT }'

a Record = record 1 and RT = AAAA

a Record = record 2 and RT = BBBB

a Record = record 3 and RT =

a

The �nal line of output has an extra blank line. This is because the value of
RT is a newline, and then the print statement supplies its own terminating
newline.

40 AWK Language Programming

See Section 16.2.8 [A Simple Stream Editor], page 240, for a more useful
example of RS as a regexp and RT.

The use of RS as a regular expression and the RT variable are gawk exten-
sions; they are not available in compatibility mode (see Section 14.1 [Com-
mand Line Options], page 161). In compatibility mode, only the �rst char-
acter of the value of RS is used to determine the end of the record.

The awk utility keeps track of the number of records that have been read
so far from the current input �le. This value is stored in a built-in variable
called FNR. It is reset to zero when a new �le is started. Another built-in
variable, NR, is the total number of input records read so far from all data
�les. It starts at zero but is never automatically reset to zero.

5.2 Examining Fields

When awk reads an input record, the record is automatically separated
or parsed by the interpreter into chunks called �elds. By default, �elds are
separated by whitespace, like words in a line. Whitespace in awk means any
string of one or more spaces and/or tabs; other characters such as newline,
formfeed, and so on, that are considered whitespace by other languages are
not considered whitespace by awk.

The purpose of �elds is to make it more convenient for you to refer to
these pieces of the record. You don't have to use them|you can operate on
the whole record if you wish|but �elds are what make simple awk programs
so powerful.

To refer to a �eld in an awk program, you use a dollar-sign, `$', followed
by the number of the �eld you want. Thus, $1 refers to the �rst �eld, $2 to
the second, and so on. For example, suppose the following is a line of input:

This seems like a pretty nice example.

Here the �rst �eld, or $1, is `This'; the second �eld, or $2, is `seems'; and
so on. Note that the last �eld, $7, is `example.'. Because there is no space
between the `e' and the `.', the period is considered part of the seventh �eld.

NF is a built-in variable whose value is the number of �elds in the current
record. awk updates the value of NF automatically, each time a record is
read.

No matter how many �elds there are, the last �eld in a record can be
represented by $NF. So, in the example above, $NF would be the same as
$7, which is `example.'. Why this works is explained below (see Section 5.3
[Non-constant Field Numbers], page 41). If you try to reference a �eld
beyond the last one, such as $8 when the record has only seven �elds, you
get the empty string.

Chapter 5: Reading Input Files 41

$0, which looks like a reference to the \zeroth" �eld, is a special case: it
represents the whole input record. $0 is used when you are not interested in
�elds.

Here are some more examples:

$ awk '$1 ~ /foo/ { print $0 }' BBS-list

a fooey 555-1234 2400/1200/300 B

a foot 555-6699 1200/300 B

a macfoo 555-6480 1200/300 A

a sabafoo 555-2127 1200/300 C

This example prints each record in the �le `BBS-list' whose �rst �eld con-
tains the string `foo'. The operator `~' is called a matching operator (see
Section 4.1 [How to Use Regular Expressions], page 23); it tests whether a
string (here, the �eld $1) matches a given regular expression.

By contrast, the following example looks for `foo' in the entire record
and prints the �rst �eld and the last �eld for each input record containing a
match.

$ awk '/foo/ { print $1, $NF }' BBS-list

a fooey B

a foot B

a macfoo A

a sabafoo C

5.3 Non-constant Field Numbers

The number of a �eld does not need to be a constant. Any expression in
the awk language can be used after a `$' to refer to a �eld. The value of the
expression speci�es the �eld number. If the value is a string, rather than a
number, it is converted to a number. Consider this example:

awk '{ print $NR }'

Recall that NR is the number of records read so far: one in the �rst record,
two in the second, etc. So this example prints the �rst �eld of the �rst
record, the second �eld of the second record, and so on. For the twentieth
record, �eld number 20 is printed; most likely, the record has fewer than 20
�elds, so this prints a blank line.

Here is another example of using expressions as �eld numbers:

awk '{ print $(2*2) }' BBS-list

awk must evaluate the expression `(2*2)' and use its value as the number
of the �eld to print. The `*' sign represents multiplication, so the expression
`2*2' evaluates to four. The parentheses are used so that the multiplication
is done before the `$' operation; they are necessary whenever there is a
binary operator in the �eld-number expression. This example, then, prints

42 AWK Language Programming

the hours of operation (the fourth �eld) for every line of the �le `BBS-list'.
(All of the awk operators are listed, in order of decreasing precedence, in
Section 7.14 [Operator Precedence (How Operators Nest)], page 95.)

If the �eld number you compute is zero, you get the entire record. Thus,
$(2-2) has the same value as $0. Negative �eld numbers are not allowed;
trying to reference one will usually terminate your running awk program.
(The POSIX standard does not de�ne what happens when you reference a
negative �eld number. gawk will notice this and terminate your program.
Other awk implementations may behave di�erently.)

As mentioned in Section 5.2 [Examining Fields], page 40, the number
of �elds in the current record is stored in the built-in variable NF (also see
Chapter 10 [Built-in Variables], page 115). The expression $NF is not a
special feature: it is the direct consequence of evaluating NF and using its
value as a �eld number.

5.4 Changing the Contents of a Field

You can change the contents of a �eld as seen by awk within an awk

program; this changes what awk perceives as the current input record. (The
actual input is untouched; awk never modi�es the input �le.)

Consider this example and its output:

$ awk '{ $3 = $2 - 10; print $2, $3 }' inventory-shipped

a 13 3

a 15 5

a 15 5

: : :

The `-' sign represents subtraction, so this program reassigns �eld three, $3,
to be the value of �eld two minus ten, `$2 - 10'. (See Section 7.5 [Arithmetic
Operators], page 82.) Then �eld two, and the new value for �eld three, are
printed.

In order for this to work, the text in �eld $2 must make sense as a
number; the string of characters must be converted to a number in order
for the computer to do arithmetic on it. The number resulting from the
subtraction is converted back to a string of characters which then becomes
�eld three. See Section 7.4 [Conversion of Strings and Numbers], page 81.

When you change the value of a �eld (as perceived by awk), the text of
the input record is recalculated to contain the new �eld where the old one
was. Therefore, $0 changes to re
ect the altered �eld. Thus, this program
prints a copy of the input �le, with 10 subtracted from the second �eld of
each line.

Chapter 5: Reading Input Files 43

$ awk '{ $2 = $2 - 10; print $0 }' inventory-shipped

a Jan 3 25 15 115

a Feb 5 32 24 226

a Mar 5 24 34 228

: : :

You can also assign contents to �elds that are out of range. For example:

$ awk '{ $6 = ($5 + $4 + $3 + $2)

> print $6 }' inventory-shipped

a 168

a 297

a 301

: : :

We've just created $6, whose value is the sum of �elds $2, $3, $4, and
$5. The `+' sign represents addition. For the �le `inventory-shipped', $6
represents the total number of parcels shipped for a particular month.

Creating a new �eld changes awk's internal copy of the current input
record|the value of $0. Thus, if you do `print $0' after adding a �eld, the
record printed includes the new �eld, with the appropriate number of �eld
separators between it and the previously existing �elds.

This recomputation a�ects and is a�ected by NF (the number of �elds;
see Section 5.2 [Examining Fields], page 40), and by a feature that has not
been discussed yet, the output �eld separator, OFS, which is used to separate
the �elds (see Section 6.3 [Output Separators], page 63). For example, the
value of NF is set to the number of the highest �eld you create.

Note, however, that merely referencing an out-of-range �eld does not
change the value of either $0 or NF. Referencing an out-of-range �eld only
produces an empty string. For example:

if ($(NF+1) != "")

print "can't happen"

else

print "everything is normal"

should print `everything is normal', because NF+1 is certain to be out of
range. (See Section 9.1 [The if-else Statement], page 105, for more infor-
mation about awk's if-else statements. See Section 7.10 [Variable Typing
and Comparison Expressions], page 88, for more information about the `!='
operator.)

It is important to note that making an assignment to an existing �eld
will change the value of $0, but will not change the value of NF, even when
you assign the empty string to a �eld. For example:

44 AWK Language Programming

$ echo a b c d | awk '{ OFS = ":"; $2 = ""

> print $0; print NF }'

a a::c:d

a 4

The �eld is still there; it just has an empty value. You can tell because there
are two colons in a row.

This example shows what happens if you create a new �eld.

$ echo a b c d | awk '{ OFS = ":"; $2 = ""; $6 = "new"

> print $0; print NF }'

a a::c:d::new

a 6

The intervening �eld, $5 is created with an empty value (indicated by the
second pair of adjacent colons), and NF is updated with the value six.

5.5 Specifying How Fields are Separated

This section is rather long; it describes one of the most fundamental
operations in awk.

5.5.1 The Basics of Field Separating

The �eld separator, which is either a single character or a regular ex-
pression, controls the way awk splits an input record into �elds. awk scans
the input record for character sequences that match the separator; the �elds
themselves are the text between the matches.

In the examples below, we use the bullet symbol \�" to represent spaces
in the output.

If the �eld separator is `oo', then the following line:

moo goo gai pan

would be split into three �elds: `m', `�g' and `�gai�pan'. Note the leading
spaces in the values of the second and third �elds.

The �eld separator is represented by the built-in variable FS. Shell pro-
grammers take note! awk does not use the name IFS which is used by the
POSIX compatible shells (such as the Bourne shell, sh, or the GNU Bourne-
Again Shell, Bash).

You can change the value of FS in the awk program with the assignment
operator, `=' (see Section 7.7 [Assignment Expressions], page 84). Often the
right time to do this is at the beginning of execution, before any input has
been processed, so that the very �rst record will be read with the proper
separator. To do this, use the special BEGIN pattern (see Section 8.1.5 [The

Chapter 5: Reading Input Files 45

BEGIN and END Special Patterns], page 100). For example, here we set the
value of FS to the string ",":

awk 'BEGIN { FS = "," } ; { print $2 }'

Given the input line,

John Q. Smith, 29 Oak St., Walamazoo, MI 42139

this awk program extracts and prints the string `�29�Oak�St.'.

Sometimes your input data will contain separator characters that don't
separate �elds the way you thought they would. For instance, the person's
name in the example we just used might have a title or su�x attached, such
as `John Q. Smith, LXIX'. From input containing such a name:

John Q. Smith, LXIX, 29 Oak St., Walamazoo, MI 42139

the above program would extract `�LXIX', instead of `�29�Oak�St.'. If you
were expecting the program to print the address, you would be surprised.
The moral is: choose your data layout and separator characters carefully to
prevent such problems.

As you know, normally, �elds are separated by whitespace sequences
(spaces and tabs), not by single spaces: two spaces in a row do not delimit an
empty �eld. The default value of the �eld separator FS is a string containing
a single space, " ". If this value were interpreted in the usual way, each
space character would separate �elds, so two spaces in a row would make an
empty �eld between them. The reason this does not happen is that a single
space as the value of FS is a special case: it is taken to specify the default
manner of delimiting �elds.

If FS is any other single character, such as ",", then each occurrence
of that character separates two �elds. Two consecutive occurrences delimit
an empty �eld. If the character occurs at the beginning or the end of the
line, that too delimits an empty �eld. The space character is the only single
character which does not follow these rules.

5.5.2 Using Regular Expressions to Separate Fields

The previous subsection discussed the use of single characters or simple
strings as the value of FS. More generally, the value of FS may be a string
containing any regular expression. In this case, each match in the record for
the regular expression separates �elds. For example, the assignment:

FS = ", \t"

makes every area of an input line that consists of a comma followed by a
space and a tab, into a �eld separator. (`\t' is an escape sequence that stands
for a tab; see Section 4.2 [Escape Sequences], page 24, for the complete list
of similar escape sequences.)

46 AWK Language Programming

For a less trivial example of a regular expression, suppose you want single
spaces to separate �elds the way single commas were used above. You can
set FS to "[]" (left bracket, space, right bracket). This regular expression
matches a single space and nothing else (see Chapter 4 [Regular Expressions],
page 23).

There is an important di�erence between the two cases of `FS = " "' (a
single space) and `FS = "[\t]+"' (left bracket, space, backslash, \t", right
bracket, which is a regular expression matching one or more spaces or tabs).
For both values of FS, �elds are separated by runs of spaces and/or tabs.
However, when the value of FS is " ", awk will �rst strip leading and trailing
whitespace from the record, and then decide where the �elds are.

For example, the following pipeline prints `b':

$ echo ' a b c d ' | awk '{ print $2 }'

a b

However, this pipeline prints `a' (note the extra spaces around each letter):

$ echo ' a b c d ' | awk 'BEGIN { FS = "[\t]+" }

> { print $2 }'

a a

In this case, the �rst �eld is null, or empty.

The stripping of leading and trailing whitespace also comes into play
whenever $0 is recomputed. For instance, study this pipeline:

$ echo ' a b c d' | awk '{ print; $2 = $2; print }'

a a b c d

a a b c d

The �rst print statement prints the record as it was read, with leading
whitespace intact. The assignment to $2 rebuilds $0 by concatenating $1

through $NF together, separated by the value of OFS. Since the leading
whitespace was ignored when �nding $1, it is not part of the new $0. Finally,
the last print statement prints the new $0.

5.5.3 Making Each Character a Separate Field

There are times when you may want to examine each character of a record
separately. In gawk, this is easy to do, you simply assign the null string ("")
to FS. In this case, each individual character in the record will become a
separate �eld. Here is an example:

echo a b | gawk 'BEGIN { FS = "" }

{

for (i = 1; i <= NF; i = i + 1)

print "Field", i, "is", $i

}'

Chapter 5: Reading Input Files 47

The output from this is:

Field 1 is a

Field 2 is

Field 3 is b

Traditionally, the behavior for FS equal to "" was not de�ned. In this
case, Unix awk would simply treat the entire record as only having one �eld
(d.c.). In compatibility mode (see Section 14.1 [Command Line Options],
page 161), if FS is the null string, then gawk will also behave this way.

5.5.4 Setting FS from the Command Line

FS can be set on the command line. You use the `-F' option to do so. For
example:

awk -F, 'program' input-�les

sets FS to be the `,' character. Notice that the option uses a capital `F'.
Contrast this with `-f', which speci�es a �le containing an awk program.
Case is signi�cant in command line options: the `-F' and `-f' options have
nothing to do with each other. You can use both options at the same time
to set the FS variable and get an awk program from a �le.

The value used for the argument to `-F' is processed in exactly the same
way as assignments to the built-in variable FS. This means that if the �eld
separator contains special characters, they must be escaped appropriately.
For example, to use a `\' as the �eld separator, you would have to type:

same as FS = "\\"

awk -F\\\\ ': : :' files : : :

Since `\' is used for quoting in the shell, awk will see `-F\\'. Then awk

processes the `\\' for escape characters (see Section 4.2 [Escape Sequences],
page 24), �nally yielding a single `\' to be used for the �eld separator.

As a special case, in compatibility mode (see Section 14.1 [Command
Line Options], page 161), if the argument to `-F' is `t', then FS is set to the
tab character. This is because if you type `-F\t' at the shell, without any
quotes, the `\' gets deleted, so awk �gures that you really want your �elds
to be separated with tabs, and not `t's. Use `-v FS="t"' on the command
line if you really do want to separate your �elds with `t's (see Section 14.1
[Command Line Options], page 161).

For example, let's use an awk program �le called `baud.awk' that contains
the pattern /300/, and the action `print $1'. Here is the program:

/300/ { print $1 }

Let's also set FS to be the `-' character, and run the program on the
�le `BBS-list'. The following command prints a list of the names of the

48 AWK Language Programming

bulletin boards that operate at 300 baud and the �rst three digits of their
phone numbers:

$ awk -F- -f baud.awk BBS-list

a aardvark 555

a alpo

a barfly 555

: : :

Note the second line of output. In the original �le (see Section 1.3 [Data
Files for the Examples], page 7), the second line looked like this:

alpo-net 555-3412 2400/1200/300 A

The `-' as part of the system's name was used as the �eld separator,
instead of the `-' in the phone number that was originally intended. This
demonstrates why you have to be careful in choosing your �eld and record
separators.

On many Unix systems, each user has a separate entry in the system
password �le, one line per user. The information in these lines is separated
by colons. The �rst �eld is the user's logon name, and the second is the
user's encrypted password. A password �le entry might look like this:

arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/sh

The following program searches the system password �le, and prints the
entries for users who have no password:

awk -F: '$2 == ""' /etc/passwd

5.5.5 Field Splitting Summary

According to the POSIX standard, awk is supposed to behave as if each
record is split into �elds at the time that it is read. In particular, this means
that you can change the value of FS after a record is read, and the value of
the �elds (i.e. how they were split) should re
ect the old value of FS, not the
new one.

However, many implementations of awk do not work this way. Instead,
they defer splitting the �elds until a �eld is actually referenced. The �elds
will be split using the current value of FS! (d.c.) This behavior can be
di�cult to diagnose. The following example illustrates the di�erence be-
tween the two methods. (The sed1 command prints just the �rst line of
`/etc/passwd'.)

sed 1q /etc/passwd | awk '{ FS = ":" ; print $1 }'

will usually print

1 The sed utility is a \stream editor." Its behavior is also de�ned by the
POSIX standard.

Chapter 5: Reading Input Files 49

root

on an incorrect implementation of awk, while gawk will print something like

root:nSijPlPhZZwgE:0:0:Root:/:

The following table summarizes how �elds are split, based on the value
of FS. (`==' means \is equal to.")

FS == " " Fields are separated by runs of whitespace. Leading and trailing
whitespace are ignored. This is the default.

FS == any other single character
Fields are separated by each occurrence of the character. Mul-
tiple successive occurrences delimit empty �elds, as do leading
and trailing occurrences. The character can even be a regexp
metacharacter; it does not need to be escaped.

FS == regexp
Fields are separated by occurrences of characters that match
regexp. Leading and trailing matches of regexp delimit empty
�elds.

FS == "" Each individual character in the record becomes a separate �eld.

5.6 Reading Fixed-width Data

(This section discusses an advanced, experimental feature. If you are a
novice awk user, you may wish to skip it on the �rst reading.)

gawk version 2.13 introduced a new facility for dealing with �xed-width
�elds with no distinctive �eld separator. Data of this nature arises, for
example, in the input for old FORTRAN programs where numbers are run
together; or in the output of programs that did not anticipate the use of
their output as input for other programs.

An example of the latter is a table where all the columns are lined up
by the use of a variable number of spaces and empty �elds are just spaces.
Clearly, awk's normal �eld splitting based on FS will not work well in this
case. Although a portable awk program can use a series of substr calls on
$0 (see Section 12.3 [Built-in Functions for String Manipulation], page 137),
this is awkward and ine�cient for a large number of �elds.

The splitting of an input record into �xed-width �elds is speci�ed by
assigning a string containing space-separated numbers to the built-in vari-
able FIELDWIDTHS. Each number speci�es the width of the �eld including
columns between �elds. If you want to ignore the columns between �elds,
you can specify the width as a separate �eld that is subsequently ignored.

The following data is the output of the Unix w utility. It is useful to
illustrate the use of FIELDWIDTHS.

50 AWK Language Programming

10:06pm up 21 days, 14:04, 23 users

User tty login idle JCPU PCPU what

hzuo ttyV0 8:58pm 9 5 vi p24.tex

hzang ttyV3 6:37pm 50 -csh

eklye ttyV5 9:53pm 7 1 em thes.tex

dportein ttyV6 8:17pm 1:47 -csh

gierd ttyD3 10:00pm 1 elm

dave ttyD4 9:47pm 4 4 w

brent ttyp0 26Jun91 4:46 26:46 4:41 bash

dave ttyq4 26Jun9115days 46 46 wnewmail

The following program takes the above input, converts the idle time to
number of seconds and prints out the �rst two �elds and the calculated
idle time. (This program uses a number of awk features that haven't been
introduced yet.)

BEGIN { FIELDWIDTHS = "9 6 10 6 7 7 35" }

NR > 2 {

idle = $4

sub(/^ */, "", idle) # strip leading spaces

if (idle == "")

idle = 0

if (idle ~ /:/) {

split(idle, t, ":")

idle = t[1] * 60 + t[2]

}

if (idle ~ /days/)

idle *= 24 * 60 * 60

print $1, $2, idle

}

Here is the result of running the program on the data:

hzuo ttyV0 0

hzang ttyV3 50

eklye ttyV5 0

dportein ttyV6 107

gierd ttyD3 1

dave ttyD4 0

brent ttyp0 286

dave ttyq4 1296000

Another (possibly more practical) example of �xed-width input data
would be the input from a deck of balloting cards. In some parts of the
United States, voters mark their choices by punching holes in computer
cards. These cards are then processed to count the votes for any particular

Chapter 5: Reading Input Files 51

candidate or on any particular issue. Since a voter may choose not to vote
on some issue, any column on the card may be empty. An awk program for
processing such data could use the FIELDWIDTHS feature to simplify reading
the data. (Of course, getting gawk to run on a system with card readers is
another story!)

Assigning a value to FS causes gawk to return to using FS for �eld splitting.
Use `FS = FS' to make this happen, without having to know the current value
of FS.

This feature is still experimental, and may evolve over time. Note that
in particular, gawk does not attempt to verify the sanity of the values used
in the value of FIELDWIDTHS.

5.7 Multiple-Line Records

In some data bases, a single line cannot conveniently hold all the infor-
mation in one entry. In such cases, you can use multi-line records.

The �rst step in doing this is to choose your data format: when records
are not de�ned as single lines, how do you want to de�ne them? What
should separate records?

One technique is to use an unusual character or string to separate records.
For example, you could use the formfeed character (written `\f' in awk, as
in C) to separate them, making each record a page of the �le. To do this,
just set the variable RS to "\f" (a string containing the formfeed character).
Any other character could equally well be used, as long as it won't be part
of the data in a record.

Another technique is to have blank lines separate records. By a special
dispensation, an empty string as the value of RS indicates that records are
separated by one or more blank lines. If you set RS to the empty string, a
record always ends at the �rst blank line encountered. And the next record
doesn't start until the �rst non-blank line that follows|no matter how many
blank lines appear in a row, they are considered one record-separator.

You can achieve the same e�ect as `RS = ""' by assigning the string
"\n\n+" to RS. This regexp matches the newline at the end of the record,
and one or more blank lines after the record. In addition, a regular expres-
sion always matches the longest possible sequence when there is a choice (see
Section 4.6 [How Much Text Matches?], page 34) So the next record doesn't
start until the �rst non-blank line that follows|no matter how many blank
lines appear in a row, they are considered one record-separator.

There is an important di�erence between `RS = ""' and `RS = "\n\n+"'.
In the �rst case, leading newlines in the input data �le are ignored, and if a
�le ends without extra blank lines after the last record, the �nal newline is

52 AWK Language Programming

removed from the record. In the second case, this special processing is not
done (d.c.).

Now that the input is separated into records, the second step is to separate
the �elds in the record. One way to do this is to divide each of the lines into
�elds in the normal manner. This happens by default as the result of a special
feature: when RS is set to the empty string, the newline character always
acts as a �eld separator. This is in addition to whatever �eld separations
result from FS.

The original motivation for this special exception was probably to provide
useful behavior in the default case (i.e. FS is equal to " "). This feature can
be a problem if you really don't want the newline character to separate �elds,
since there is no way to prevent it. However, you can work around this by
using the split function to break up the record manually (see Section 12.3
[Built-in Functions for String Manipulation], page 137).

Another way to separate �elds is to put each �eld on a separate line: to
do this, just set the variable FS to the string "\n". (This simple regular
expression matches a single newline.)

A practical example of a data �le organized this way might be a mailing
list, where each entry is separated by blank lines. If we have a mailing list
in a �le named `addresses', that looks like this:

Jane Doe

123 Main Street

Anywhere, SE 12345-6789

John Smith

456 Tree-lined Avenue

Smallville, MW 98765-4321

: : :

A simple program to process this �le would look like this:

addrs.awk --- simple mailing list program

Records are separated by blank lines.

Each line is one field.

BEGIN { RS = "" ; FS = "\n" }

{

print "Name is:", $1

print "Address is:", $2

print "City and State are:", $3

print ""

}

Chapter 5: Reading Input Files 53

Running the program produces the following output:

$ awk -f addrs.awk addresses

a Name is: Jane Doe

a Address is: 123 Main Street

a City and State are: Anywhere, SE 12345-6789

a

a Name is: John Smith

a Address is: 456 Tree-lined Avenue

a City and State are: Smallville, MW 98765-4321

a
: : :

See Section 16.2.4 [Printing Mailing Labels], page 231, for a more realistic
program that deals with address lists.

The following table summarizes how records are split, based on the value
of RS. (`==' means \is equal to.")

RS == "\n"

Records are separated by the newline character (`\n'). In e�ect,
every line in the data �le is a separate record, including blank
lines. This is the default.

RS == any single character
Records are separated by each occurrence of the character. Mul-
tiple successive occurrences delimit empty records.

RS == "" Records are separated by runs of blank lines. The newline char-
acter always serves as a �eld separator, in addition to whatever
value FS may have. Leading and trailing newlines in a �le are
ignored.

RS == regexp
Records are separated by occurrences of characters that match
regexp. Leading and trailing matches of regexp delimit empty
records.

In all cases, gawk sets RT to the input text that matched the value speci�ed
by RS.

5.8 Explicit Input with getline

So far we have been getting our input data from awk's main input
stream|either the standard input (usually your terminal, sometimes the
output from another program) or from the �les speci�ed on the command
line. The awk language has a special built-in command called getline that
can be used to read input under your explicit control.

54 AWK Language Programming

5.8.1 Introduction to getline

This command is used in several di�erent ways, and should not be used
by beginners. It is covered here because this is the chapter on input. The
examples that follow the explanation of the getline command include ma-
terial that has not been covered yet. Therefore, come back and study the
getline command after you have reviewed the rest of this book and have a
good knowledge of how awk works.

getline returns one if it �nds a record, and zero if the end of the �le is
encountered. If there is some error in getting a record, such as a �le that
cannot be opened, then getline returns �1. In this case, gawk sets the
variable ERRNO to a string describing the error that occurred.

In the following examples, command stands for a string value that rep-
resents a shell command.

5.8.2 Using getline with No Arguments

The getline command can be used without arguments to read input
from the current input �le. All it does in this case is read the next input
record and split it up into �elds. This is useful if you've �nished processing
the current record, but you want to do some special processing right now on
the next record. Here's an example:

awk '{

if ((t = index($0, "/*")) != 0) {

value will be "" if t is 1

tmp = substr($0, 1, t - 1)

u = index(substr($0, t + 2), "*/")

while (u == 0) {

if (getline <= 0) {

m = "unexpected EOF or error"

m = (m ": " ERRNO)

print m > "/dev/stderr"

exit

}

t = -1

u = index($0, "*/")

}

substr expression will be "" if */

occurred at end of line

$0 = tmp substr($0, t + u + 3)

}

print $0

}'

Chapter 5: Reading Input Files 55

This awk program deletes all C-style comments, `/* : : : */', from the
input. By replacing the `print $0' with other statements, you could perform
more complicated processing on the decommented input, like searching for
matches of a regular expression. This program has a subtle problem|it does
not work if one comment ends and another begins on the same line.

This form of the getline command sets NF (the number of �elds; see
Section 5.2 [Examining Fields], page 40), NR (the number of records read
so far; see Section 5.1 [How Input is Split into Records], page 37), FNR (the
number of records read from this input �le), and the value of $0.

Note: the new value of $0 is used in testing the patterns of any subse-
quent rules. The original value of $0 that triggered the rule which executed
getline is lost (d.c.). By contrast, the next statement reads a new record
but immediately begins processing it normally, starting with the �rst rule in
the program. See Section 9.7 [The next Statement], page 111.

5.8.3 Using getline Into a Variable

You can use `getline var' to read the next record from awk's input into
the variable var. No other processing is done.

For example, suppose the next line is a comment, or a special string, and
you want to read it, without triggering any rules. This form of getline
allows you to read that line and store it in a variable so that the main
read-a-line-and-check-each-rule loop of awk never sees it.

The following example swaps every two lines of input. For example, given:

wan

tew

free

phore

it outputs:

tew

wan

phore

free

Here's the program:

awk '{

if ((getline tmp) > 0) {

print tmp

print $0

} else

print $0

}'

56 AWK Language Programming

The getline command used in this way sets only the variables NR and
FNR (and of course, var). The record is not split into �elds, so the values of
the �elds (including $0) and the value of NF do not change.

5.8.4 Using getline from a File

Use `getline < �le' to read the next record from the �le �le. Here �le
is a string-valued expression that speci�es the �le name. `< �le' is called a
redirection since it directs input to come from a di�erent place.

For example, the following program reads its input record from the �le
`secondary.input' when it encounters a �rst �eld with a value equal to 10
in the current input �le.

awk '{

if ($1 == 10) {

getline < "secondary.input"

print

} else

print

}'

Since the main input stream is not used, the values of NR and FNR are not
changed. But the record read is split into �elds in the normal manner, so
the values of $0 and other �elds are changed. So is the value of NF.

5.8.5 Using getline Into a Variable from a File

Use `getline var < �le' to read input the �le �le and put it in the variable
var. As above, �le is a string-valued expression that speci�es the �le from
which to read.

In this version of getline, none of the built-in variables are changed, and
the record is not split into �elds. The only variable changed is var.

For example, the following program copies all the input �les to the output,
except for records that say `@include �lename'. Such a record is replaced
by the contents of the �le �lename.

awk '{

if (NF == 2 && $1 == "@include") {

while ((getline line < $2) > 0)

print line

close($2)

} else

print

}'

Chapter 5: Reading Input Files 57

Note here how the name of the extra input �le is not built into the
program; it is taken directly from the data, from the second �eld on the
`@include' line.

The close function is called to ensure that if two identical `@include'
lines appear in the input, the entire speci�ed �le is included twice. See
Section 6.8 [Closing Input and Output Files and Pipes], page 74.

One de�ciency of this program is that it does not process nested
`@include' statements (`@include' statements in included �les) the way a
true macro preprocessor would. See Section 16.2.9 [An Easy Way to Use Li-
brary Functions], page 242, for a program that does handle nested `@include'
statements.

5.8.6 Using getline from a Pipe

You can pipe the output of a command into getline, using `command |

getline'. In this case, the string command is run as a shell command and
its output is piped into awk to be used as input. This form of getline reads
one record at a time from the pipe.

For example, the following program copies its input to its output, ex-
cept for lines that begin with `@execute', which are replaced by the output
produced by running the rest of the line as a shell command:

awk '{

if ($1 == "@execute") {

tmp = substr($0, 10)

while ((tmp | getline) > 0)

print

close(tmp)

} else

print

}'

The close function is called to ensure that if two identical `@execute' lines
appear in the input, the command is run for each one. See Section 6.8
[Closing Input and Output Files and Pipes], page 74.

Given the input:

foo

bar

baz

@execute who

bletch

the program might produce:

58 AWK Language Programming

foo

bar

baz

arnold ttyv0 Jul 13 14:22

miriam ttyp0 Jul 13 14:23 (murphy:0)

bill ttyp1 Jul 13 14:23 (murphy:0)

bletch

Notice that this program ran the command who and printed the result. (If
you try this program yourself, you will of course get di�erent results, showing
you who is logged in on your system.)

This variation of getline splits the record into �elds, sets the value of NF
and recomputes the value of $0. The values of NR and FNR are not changed.

5.8.7 Using getline Into a Variable from a Pipe

When you use `command | getline var', the output of the command
command is sent through a pipe to getline and into the variable var. For
example, the following program reads the current date and time into the
variable current_time, using the date utility, and then prints it.

awk 'BEGIN {

"date" | getline current_time

close("date")

print "Report printed on " current_time

}'

In this version of getline, none of the built-in variables are changed, and
the record is not split into �elds.

5.8.8 Summary of getline Variants

With all the forms of getline, even though $0 and NF, may be updated,
the record will not be tested against all the patterns in the awk program, in
the way that would happen if the record were read normally by the main pro-
cessing loop of awk. However the new record is tested against any subsequent
rules.

Many awk implementations limit the number of pipelines an awk program
may have open to just one! In gawk, there is no such limit. You can open
as many pipelines as the underlying operating system will permit.

The following table summarizes the six variants of getline, listing which
built-in variables are set by each one.

Chapter 5: Reading Input Files 59

getline sets $0, NF, FNR, and NR.

getline var
sets var, FNR, and NR.

getline < �le
sets $0, and NF.

getline var < �le
sets var.

command | getline

sets $0, and NF.

command | getline var
sets var.

60 AWK Language Programming

Chapter 6: Printing Output 61

6 PrintingOutput

One of the most common actions is to print, or output, some or all of the
input. You use the print statement for simple output. You use the printf
statement for fancier formatting. Both are described in this chapter.

6.1 The print Statement

The print statement does output with simple, standardized formatting.
You specify only the strings or numbers to be printed, in a list separated by
commas. They are output, separated by single spaces, followed by a newline.
The statement looks like this:

print item1, item2, : : :

The entire list of items may optionally be enclosed in parentheses. The
parentheses are necessary if any of the item expressions uses the `>' relational
operator; otherwise it could be confused with a redirection (see Section 6.6
[Redirecting Output of print and printf], page 70).

The items to be printed can be constant strings or numbers, �elds of
the current record (such as $1), variables, or any awk expressions. Numeric
values are converted to strings, and then printed.

The print statement is completely general for computing what values
to print. However, with two exceptions, you cannot specify how to print
them|how many columns, whether to use exponential notation or not, and
so on. (For the exceptions, see Section 6.3 [Output Separators], page 63, and
Section 6.4 [Controlling Numeric Output with print], page 64.) For that,
you need the printf statement (see Section 6.5 [Using printf Statements
for Fancier Printing], page 64).

The simple statement `print' with no items is equivalent to `print $0':
it prints the entire current record. To print a blank line, use `print ""',
where "" is the empty string.

To print a �xed piece of text, use a string constant such as "Don't Panic"

as one item. If you forget to use the double-quote characters, your text will
be taken as an awk expression, and you will probably get an error. Keep in
mind that a space is printed between any two items.

Each print statement makes at least one line of output. But it isn't
limited to one line. If an item value is a string that contains a newline, the
newline is output along with the rest of the string. A single print can make
any number of lines this way.

62 AWK Language Programming

6.2 Examples of print Statements

Here is an example of printing a string that contains embedded newlines
(the `\n' is an escape sequence, used to represent the newline character; see
Section 4.2 [Escape Sequences], page 24):

$ awk 'BEGIN { print "line one\nline two\nline three" }'

a line one

a line two

a line three

Here is an example that prints the �rst two �elds of each input record,
with a space between them:

$ awk '{ print $1, $2 }' inventory-shipped

a Jan 13

a Feb 15

a Mar 15

: : :

A common mistake in using the print statement is to omit the comma
between two items. This often has the e�ect of making the items run together
in the output, with no space. The reason for this is that juxtaposing two
string expressions in awk means to concatenate them. Here is the same
program, without the comma:

$ awk '{ print $1 $2 }' inventory-shipped

a Jan13

a Feb15

a Mar15

: : :

To someone unfamiliar with the �le `inventory-shipped', neither exam-
ple's output makes much sense. A heading line at the beginning would make
it clearer. Let's add some headings to our table of months ($1) and green
crates shipped ($2). We do this using the BEGIN pattern (see Section 8.1.5
[The BEGIN and END Special Patterns], page 100) to force the headings to be
printed only once:

awk 'BEGIN { print "Month Crates"

print "----- ------" }

{ print $1, $2 }' inventory-shipped

Did you already guess what happens? When run, the program prints the
following:

Chapter 6: Printing Output 63

Month Crates

----- ------

Jan 13

Feb 15

Mar 15

: : :

The headings and the table data don't line up! We can �x this by printing
some spaces between the two �elds:

awk 'BEGIN { print "Month Crates"

print "----- ------" }

{ print $1, " ", $2 }' inventory-shipped

You can imagine that this way of lining up columns can get pretty com-
plicated when you have many columns to �x. Counting spaces for two or
three columns can be simple, but more than this and you can get lost quite
easily. This is why the printf statement was created (see Section 6.5 [Using
printf Statements for Fancier Printing], page 64); one of its specialties is
lining up columns of data.

As a side point, you can continue either a print or printf statement sim-
ply by putting a newline after any comma (see Section 2.6 [awk Statements
Versus Lines], page 16).

6.3 Output Separators

As mentioned previously, a print statement contains a list of items,
separated by commas. In the output, the items are normally separated by
single spaces. This need not be the case; a single space is only the default.
You can specify any string of characters to use as the output �eld separator
by setting the built-in variable OFS. The initial value of this variable is the
string " ", that is, a single space.

The output from an entire print statement is called an output record.
Each print statement outputs one output record and then outputs a string
called the output record separator. The built-in variable ORS speci�es this
string. The initial value of ORS is the string "\n", i.e. a newline character;
thus, normally each print statement makes a separate line.

You can change how output �elds and records are separated by assigning
new values to the variables OFS and/or ORS. The usual place to do this is
in the BEGIN rule (see Section 8.1.5 [The BEGIN and END Special Patterns],
page 100), so that it happens before any input is processed. You may also do
this with assignments on the command line, before the names of your input
�les, or using the `-v' command line option (see Section 14.1 [Command
Line Options], page 161).

64 AWK Language Programming

The following example prints the �rst and second �elds of each input
record separated by a semicolon, with a blank line added after each line:

$ awk 'BEGIN { OFS = ";"; ORS = "\n\n" }

> { print $1, $2 }' BBS-list

a aardvark;555-5553

a
a alpo-net;555-3412

a
a barfly;555-7685

: : :

If the value of ORS does not contain a newline, all your output will be run
together on a single line, unless you output newlines some other way.

6.4 Controlling Numeric Output with print

When you use the print statement to print numeric values, awk internally
converts the number to a string of characters, and prints that string. awk

uses the sprintf function to do this conversion (see Section 12.3 [Built-in
Functions for String Manipulation], page 137). For now, it su�ces to say
that the sprintf function accepts a format speci�cation that tells it how to
format numbers (or strings), and that there are a number of di�erent ways
in which numbers can be formatted. The di�erent format speci�cations are
discussed more fully in Section 6.5.2 [Format-Control Letters], page 65.

The built-in variable OFMT contains the default format speci�cation that
print uses with sprintf when it wants to convert a number to a string
for printing. The default value of OFMT is "%.6g". By supplying di�erent
format speci�cations as the value of OFMT, you can change how print will
print your numbers. As a brief example:

$ awk 'BEGIN {

> OFMT = "%.0f" # print numbers as integers (rounds)

> print 17.23 }'

a 17

According to the POSIX standard, awk's behavior will be unde�ned if OFMT
contains anything but a
oating point conversion speci�cation (d.c.).

6.5 Using printf Statements for Fancier Printing

If you want more precise control over the output format than print gives
you, use printf. With printf you can specify the width to use for each
item, and you can specify various formatting choices for numbers (such as
what radix to use, whether to print an exponent, whether to print a sign, and
how many digits to print after the decimal point). You do this by supplying

Chapter 6: Printing Output 65

a string, called the format string, which controls how and where to print the
other arguments.

6.5.1 Introduction to the printf Statement

The printf statement looks like this:

printf format, item1, item2, : : :

The entire list of arguments may optionally be enclosed in parentheses. The
parentheses are necessary if any of the item expressions use the `>' relational
operator; otherwise it could be confused with a redirection (see Section 6.6
[Redirecting Output of print and printf], page 70).

The di�erence between printf and print is the format argument. This
is an expression whose value is taken as a string; it speci�es how to output
each of the other arguments. It is called the format string.

The format string is very similar to that in the ANSI C library function
printf. Most of format is text to be output verbatim. Scattered among
this text are format speci�ers, one per item. Each format speci�er says to
output the next item in the argument list at that place in the format.

The printf statement does not automatically append a newline to its
output. It outputs only what the format string speci�es. So if you want a
newline, you must include one in the format string. The output separator
variables OFS and ORS have no e�ect on printf statements. For example:

BEGIN {

ORS = "\nOUCH!\n"; OFS = "!"

msg = "Don't Panic!"; printf "%s\n", msg

}

This program still prints the familiar `Don't Panic!' message.

6.5.2 Format-Control Letters

A format speci�er starts with the character `%' and ends with a format-
control letter; it tells the printf statement how to output one item. (If you
actually want to output a `%', write `%%'.) The format-control letter speci�es
what kind of value to print. The rest of the format speci�er is made up of
optional modi�ers which are parameters to use, such as the �eld width.

Here is a list of the format-control letters:

c This prints a number as an ASCII character. Thus, `printf
"%c", 65' outputs the letter `A'. The output for a string value
is the �rst character of the string.

66 AWK Language Programming

d

i These are equivalent. They both print a decimal integer. The
`%i' speci�cation is for compatibility with ANSI C.

e

E This prints a number in scienti�c (exponential) notation. For
example,

printf "%4.3e\n", 1950

prints `1.950e+03', with a total of four signi�cant �gures of
which three follow the decimal point. The `4.3' are modi�ers,
discussed below. `%E' uses `E' instead of `e' in the output.

f This prints a number in
oating point notation. For example,

printf "%4.3f", 1950

prints `1950.000', with a total of four signi�cant �gures of which
three follow the decimal point. The `4.3' are modi�ers, dis-
cussed below.

g

G This prints a number in either scienti�c notation or
oating
point notation, whichever uses fewer characters. If the result is
printed in scienti�c notation, `%G' uses `E' instead of `e'.

o This prints an unsigned octal integer. (In octal, or base-eight
notation, the digits run from `0' to `7'; the decimal number eight
is represented as `10' in octal.)

s This prints a string.

x

X This prints an unsigned hexadecimal integer. (In hexadecimal,
or base-16 notation, the digits are `0' through `9' and `a' through
`f'. The hexadecimal digit `f' represents the decimal number
15.) `%X' uses the letters `A' through `F' instead of `a' through
`f'.

% This isn't really a format-control letter, but it does have a mean-
ing when used after a `%': the sequence `%%' outputs one `%'. It
does not consume an argument, and it ignores any modi�ers.

When using the integer format-control letters for values that are outside
the range of a C long integer, gawk will switch to the `%g' format speci�er.
Other versions of awk may print invalid values, or do something else entirely
(d.c.).

6.5.3 Modi�ers for printf Formats

A format speci�cation can also include modi�ers that can control how
much of the item's value is printed and how much space it gets. The modi�ers

Chapter 6: Printing Output 67

come between the `%' and the format-control letter. In the examples below,
we use the bullet symbol \�" to represent spaces in the output. Here are the
possible modi�ers, in the order in which they may appear:

- The minus sign, used before the width modi�er (see below), says
to left-justify the argument within its speci�ed width. Normally
the argument is printed right-justi�ed in the speci�ed width.
Thus,

printf "%-4s", "foo"

prints `foo�'.

space For numeric conversions, pre�x positive values with a space, and
negative values with a minus sign.

+ The plus sign, used before the width modi�er (see below), says
to always supply a sign for numeric conversions, even if the data
to be formatted is positive. The `+' overrides the space modi�er.

Use an \alternate form" for certain control letters. For `%o',
supply a leading zero. For `%x', and `%X', supply a leading `0x'
or `0X' for a non-zero result. For `%e', `%E', and `%f', the result
will always contain a decimal point. For `%g', and `%G', trailing
zeros are not removed from the result.

0 A leading `0' (zero) acts as a
ag, that indicates output should
be padded with zeros instead of spaces. This applies even to
non-numeric output formats (d.c.). This
ag only has an e�ect
when the �eld width is wider than the value to be printed.

width This is a number specifying the desired minimum width of a
�eld. Inserting any number between the `%' sign and the format
control character forces the �eld to be expanded to this width.
The default way to do this is to pad with spaces on the left. For
example,

printf "%4s", "foo"

prints `�foo'.

The value of width is a minimum width, not a maximum. If
the item value requires more than width characters, it can be as
wide as necessary. Thus,

printf "%4s", "foobar"

prints `foobar'.

Preceding the width with a minus sign causes the output to be
padded with spaces on the right, instead of on the left.

.prec This is a number that speci�es the precision to use when print-
ing. For the `e', `E', and `f' formats, this speci�es the number

68 AWK Language Programming

of digits you want printed to the right of the decimal point. For
the `g', and `G' formats, it speci�es the maximum number of
signi�cant digits. For the `d', `o', `i', `u', `x', and `X' formats, it
speci�es the minimum number of digits to print. For a string,
it speci�es the maximum number of characters from the string
that should be printed. Thus,

printf "%.4s", "foobar"

prints `foob'.

The C library printf's dynamic width and prec capability (for example,
"%*.*s") is supported. Instead of supplying explicit width and/or prec
values in the format string, you pass them in the argument list. For example:

w = 5

p = 3

s = "abcdefg"

printf "%*.*s\n", w, p, s

is exactly equivalent to

s = "abcdefg"

printf "%5.3s\n", s

Both programs output `��abc'.

Earlier versions of awk did not support this capability. If you must use
such a version, you may simulate this feature by using concatenation to build
up the format string, like so:

w = 5

p = 3

s = "abcdefg"

printf "%" w "." p "s\n", s

This is not particularly easy to read, but it does work.

C programmers may be used to supplying additional `l' and `h'
ags in
printf format strings. These are not valid in awk. Most awk implementa-
tions silently ignore these
ags. If `--lint' is provided on the command line
(see Section 14.1 [Command Line Options], page 161), gawk will warn about
their use. If `--posix' is supplied, their use is a fatal error.

6.5.4 Examples Using printf

Here is how to use printf to make an aligned table:

awk '{ printf "%-10s %s\n", $1, $2 }' BBS-list

prints the names of bulletin boards ($1) of the �le `BBS-list' as a string of
10 characters, left justi�ed. It also prints the phone numbers ($2) afterward
on the line. This produces an aligned two-column table of names and phone
numbers:

Chapter 6: Printing Output 69

$ awk '{ printf "%-10s %s\n", $1, $2 }' BBS-list

a aardvark 555-5553

a alpo-net 555-3412

a barfly 555-7685

a bites 555-1675

a camelot 555-0542

a core 555-2912

a fooey 555-1234

a foot 555-6699

a macfoo 555-6480

a sdace 555-3430

a sabafoo 555-2127

Did you notice that we did not specify that the phone numbers be printed
as numbers? They had to be printed as strings because the numbers are
separated by a dash. If we had tried to print the phone numbers as numbers,
all we would have gotten would have been the �rst three digits, `555'. This
would have been pretty confusing.

We did not specify a width for the phone numbers because they are the
last things on their lines. We don't need to put spaces after them.

We could make our table look even nicer by adding headings to the tops
of the columns. To do this, we use the BEGIN pattern (see Section 8.1.5 [The
BEGIN and END Special Patterns], page 100) to force the header to be printed
only once, at the beginning of the awk program:

awk 'BEGIN { print "Name Number"

print "---- ------" }

{ printf "%-10s %s\n", $1, $2 }' BBS-list

Did you notice that we mixed print and printf statements in the above
example? We could have used just printf statements to get the same results:

awk 'BEGIN { printf "%-10s %s\n", "Name", "Number"

printf "%-10s %s\n", "----", "------" }

{ printf "%-10s %s\n", $1, $2 }' BBS-list

By printing each column heading with the same format speci�cation used
for the elements of the column, we have made sure that the headings are
aligned just like the columns.

The fact that the same format speci�cation is used three times can be
emphasized by storing it in a variable, like this:

awk 'BEGIN { format = "%-10s %s\n"

printf format, "Name", "Number"

printf format, "----", "------" }

{ printf format, $1, $2 }' BBS-list

70 AWK Language Programming

See if you can use the printf statement to line up the headings and table
data for our `inventory-shipped' example covered earlier in the section on
the print statement (see Section 6.1 [The print Statement], page 61).

6.6 Redirecting Output of print and printf

So far we have been dealing only with output that prints to the standard
output, usually your terminal. Both print and printf can also send their
output to other places. This is called redirection.

A redirection appears after the print or printf statement. Redirections
in awk are written just like redirections in shell commands, except that they
are written inside the awk program.

There are three forms of output redirection: output to a �le, output
appended to a �le, and output through a pipe to another command. They
are all shown for the print statement, but they work identically for printf
also.

print items > output-�le
This type of redirection prints the items into the output �le
output-�le. The �le name output-�le can be any expression. Its
value is changed to a string and then used as a �le name (see
Chapter 7 [Expressions], page 77).

When this type of redirection is used, the output-�le is erased
before the �rst output is written to it. Subsequent writes to the
same output-�le do not erase output-�le, but append to it. If
output-�le does not exist, then it is created.

For example, here is how an awk program can write a list of BBS
names to a �le `name-list' and a list of phone numbers to a �le
`phone-list'. Each output �le contains one name or number
per line.

$ awk '{ print $2 > "phone-list"

> print $1 > "name-list" }' BBS-list

$ cat phone-list

a 555-5553

a 555-3412

: : :

$ cat name-list

a aardvark

a alpo-net

: : :

print items >> output-�le
This type of redirection prints the items into the pre-existing
output �le output-�le. The di�erence between this and the

Chapter 6: Printing Output 71

single-`>' redirection is that the old contents (if any) of output-
�le are not erased. Instead, the awk output is appended to the
�le. If output-�le does not exist, then it is created.

print items | command
It is also possible to send output to another program through a
pipe instead of into a �le. This type of redirection opens a pipe
to command and writes the values of items through this pipe,
to another process created to execute command.

The redirection argument command is actually an awk expres-
sion. Its value is converted to a string, whose contents give the
shell command to be run.

For example, this produces two �les, one unsorted list of BBS
names and one list sorted in reverse alphabetical order:

awk '{ print $1 > "names.unsorted"

command = "sort -r > names.sorted"

print $1 | command }' BBS-list

Here the unsorted list is written with an ordinary redirection
while the sorted list is written by piping through the sort utility.

This example uses redirection to mail a message to a mailing list
`bug-system'. This might be useful when trouble is encountered
in an awk script run periodically for system maintenance.

report = "mail bug-system"

print "Awk script failed:", $0 | report

m = ("at record number " FNR " of " FILENAME)

print m | report

close(report)

The message is built using string concatenation and saved in
the variable m. It is then sent down the pipeline to the mail

program.

We call the close function here because it's a good idea to close
the pipe as soon as all the intended output has been sent to
it. See Section 6.8 [Closing Input and Output Files and Pipes],
page 74, for more information on this. This example also illus-
trates the use of a variable to represent a �le or command: it is
not necessary to always use a string constant. Using a variable is
generally a good idea, since awk requires you to spell the string
value identically every time.

Redirecting output using `>', `>>', or `|' asks the system to open a �le or
pipe only if the particular �le or command you've speci�ed has not already
been written to by your program, or if it has been closed since it was last
written to.

72 AWK Language Programming

Many awk implementations limit the number of pipelines an awk program
may have open to just one! In gawk, there is no such limit. You can open
as many pipelines as the underlying operating system will permit.

6.7 Special File Names in gawk

Running programs conventionally have three input and output streams
already available to them for reading and writing. These are known as the
standard input, standard output, and standard error output. These streams
are, by default, connected to your terminal, but they are often redirected
with the shell, via the `<', `<<', `>', `>>', `>&' and `|' operators. Standard
error is typically used for writing error messages; the reason we have two
separate streams, standard output and standard error, is so that they can
be redirected separately.

In other implementations of awk, the only way to write an error message
to standard error in an awk program is as follows:

print "Serious error detected!" | "cat 1>&2"

This works by opening a pipeline to a shell command which can access the
standard error stream which it inherits from the awk process. This is far
from elegant, and is also ine�cient, since it requires a separate process. So
people writing awk programs often neglect to do this. Instead, they send the
error messages to the terminal, like this:

print "Serious error detected!" > "/dev/tty"

This usually has the same e�ect, but not always: although the standard
error stream is usually the terminal, it can be redirected, and when that
happens, writing to the terminal is not correct. In fact, if awk is run from a
background job, it may not have a terminal at all. Then opening `/dev/tty'
will fail.

gawk provides special �le names for accessing the three standard streams.
When you redirect input or output in gawk, if the �le name matches one of
these special names, then gawk directly uses the stream it stands for.

`/dev/stdin'
The standard input (�le descriptor 0).

`/dev/stdout'
The standard output (�le descriptor 1).

`/dev/stderr'
The standard error output (�le descriptor 2).

`/dev/fd/N '
The �le associated with �le descriptor N. Such a �le must have
been opened by the program initiating the awk execution (typi-

Chapter 6: Printing Output 73

cally the shell). Unless you take special pains in the shell from
which you invoke gawk, only descriptors 0, 1 and 2 are available.

The �le names `/dev/stdin', `/dev/stdout', and `/dev/stderr' are
aliases for `/dev/fd/0', `/dev/fd/1', and `/dev/fd/2', respectively, but they
are more self-explanatory.

The proper way to write an error message in a gawk program is to use
`/dev/stderr', like this:

print "Serious error detected!" > "/dev/stderr"

gawk also provides special �le names that give access to information about
the running gawk process. Each of these \�les" provides a single record of
information. To read them more than once, you must �rst close them with
the close function (see Section 6.8 [Closing Input and Output Files and
Pipes], page 74). The �lenames are:

`/dev/pid'
Reading this �le returns the process ID of the current process,
in decimal, terminated with a newline.

`/dev/ppid'
Reading this �le returns the parent process ID of the current
process, in decimal, terminated with a newline.

`/dev/pgrpid'
Reading this �le returns the process group ID of the current
process, in decimal, terminated with a newline.

`/dev/user'
Reading this �le returns a single record terminated with a new-
line. The �elds are separated with spaces. The �elds represent
the following information:

$1 The return value of the getuid system call (the real
user ID number).

$2 The return value of the geteuid system call (the
e�ective user ID number).

$3 The return value of the getgid system call (the real
group ID number).

$4 The return value of the getegid system call (the
e�ective group ID number).

If there are any additional �elds, they are the group IDs re-
turned by getgroups system call. (Multiple groups may not be
supported on all systems.)

These special �le names may be used on the command line as data �les,
as well as for I/O redirections within an awk program. They may not be
used as source �les with the `-f' option.

74 AWK Language Programming

Recognition of these special �le names is disabled if gawk is in compati-
bility mode (see Section 14.1 [Command Line Options], page 161).

Caution: Unless your system actually has a `/dev/fd' directory (or any
of the other above listed special �les), the interpretation of these �le names is
done by gawk itself. For example, using `/dev/fd/4' for output will actually
write on �le descriptor 4, and not on a new �le descriptor that was dup'ed
from �le descriptor 4. Most of the time this does not matter; however, it is
important to not close any of the �les related to �le descriptors 0, 1, and 2.
If you do close one of these �les, unpredictable behavior will result.

The special �les that provide process-related information may disappear
in a future version of gawk. See Section C.3 [Probable Future Extensions],
page 300.

6.8 Closing Input and Output Files and Pipes

If the same �le name or the same shell command is used with getline

(see Section 5.8 [Explicit Input with getline], page 54) more than once
during the execution of an awk program, the �le is opened (or the command
is executed) only the �rst time. At that time, the �rst record of input is
read from that �le or command. The next time the same �le or command
is used in getline, another record is read from it, and so on.

Similarly, when a �le or pipe is opened for output, the �le name or com-
mand associated with it is remembered by awk and subsequent writes to the
same �le or command are appended to the previous writes. The �le or pipe
stays open until awk exits.

This implies that if you want to start reading the same �le again from
the beginning, or if you want to rerun a shell command (rather than reading
more output from the command), you must take special steps. What you
must do is use the close function, as follows:

close(�lename)

or

close(command)

The argument �lename or command can be any expression. Its value
must exactly match the string that was used to open the �le or start the
command (spaces and other \irrelevant" characters included). For example,
if you open a pipe with this:

"sort -r names" | getline foo

then you must close it with this:

close("sort -r names")

Chapter 6: Printing Output 75

Once this function call is executed, the next getline from that �le or
command, or the next print or printf to that �le or command, will reopen
the �le or rerun the command.

Because the expression that you use to close a �le or pipeline must exactly
match the expression used to open the �le or run the command, it is good
practice to use a variable to store the �le name or command. The previous
example would become

sortcom = "sort -r names"

sortcom | getline foo

: : :

close(sortcom)

This helps avoid hard-to-�nd typographical errors in your awk programs.

Here are some reasons why you might need to close an output �le:

� To write a �le and read it back later on in the same awk program. Close
the �le when you are �nished writing it; then you can start reading it
with getline.

� To write numerous �les, successively, in the same awk program. If you
don't close the �les, eventually you may exceed a system limit on the
number of open �les in one process. So close each one when you are
�nished writing it.

� To make a command �nish. When you redirect output through a pipe,
the command reading the pipe normally continues to try to read input
as long as the pipe is open. Often this means the command cannot
really do its work until the pipe is closed. For example, if you redirect
output to the mail program, the message is not actually sent until the
pipe is closed.

� To run the same program a second time, with the same arguments. This
is not the same thing as giving more input to the �rst run!

For example, suppose you pipe output to the mail program. If you
output several lines redirected to this pipe without closing it, they make
a single message of several lines. By contrast, if you close the pipe after
each line of output, then each line makes a separate message.

close returns a value of zero if the close succeeded. Otherwise, the value
will be non-zero. In this case, gawk sets the variable ERRNO to a string
describing the error that occurred.

If you use more �les than the system allows you to have open, gawk will
attempt to multiplex the available open �les among your data �les. gawk's
ability to do this depends upon the facilities of your operating system: it
may not always work. It is therefore both good practice and good portability
advice to always use close on your �les when you are done with them.

76 AWK Language Programming

Chapter 7: Expressions 77

7 Expressions

Expressions are the basic building blocks of awk patterns and actions. An
expression evaluates to a value, which you can print, test, store in a variable
or pass to a function. Additionally, an expression can assign a new value to
a variable or a �eld, with an assignment operator.

An expression can serve as a pattern or action statement on its own.
Most other kinds of statements contain one or more expressions which spec-
ify data on which to operate. As in other languages, expressions in awk

include variables, array references, constants, and function calls, as well as
combinations of these with various operators.

7.1 Constant Expressions

The simplest type of expression is the constant, which always has the
same value. There are three types of constants: numeric constants, string
constants, and regular expression constants.

7.1.1 Numeric and String Constants

A numeric constant stands for a number. This number can be an integer,
a decimal fraction, or a number in scienti�c (exponential) notation.1 Here
are some examples of numeric constants, which all have the same value:

105

1.05e+2

1050e-1

A string constant consists of a sequence of characters enclosed in double-
quote marks. For example:

"parrot"

represents the string whose contents are `parrot'. Strings in gawk can be of
any length and they can contain any of the possible eight-bit ASCII charac-
ters including ASCII NUL (character code zero). Other awk implementations
may have di�culty with some character codes.

7.1.2 Regular Expression Constants

A regexp constant is a regular expression description enclosed in slashes,
such as /^beginning and end$/. Most regexps used in awk programs are
constant, but the `~' and `!~' matching operators can also match computed

1 The internal representation uses double-precision
oating point numbers.
If you don't know what that means, then don't worry about it.

78 AWK Language Programming

or \dynamic" regexps (which are just ordinary strings or variables that con-
tain a regexp).

7.2 Using Regular Expression Constants

When used on the right hand side of the `~' or `!~' operators, a regexp
constant merely stands for the regexp that is to be matched.

Regexp constants (such as /foo/) may be used like simple expressions.
When a regexp constant appears by itself, it has the same meaning as if it ap-
peared in a pattern, i.e. `($0 ~ /foo/)' (d.c.) (see Section 8.1.3 [Expressions
as Patterns], page 98). This means that the two code segments,

if ($0 ~ /barfly/ || $0 ~ /camelot/)

print "found"

and

if (/barfly/ || /camelot/)

print "found"

are exactly equivalent.

One rather bizarre consequence of this rule is that the following boolean
expression is valid, but does not do what the user probably intended:

note that /foo/ is on the left of the ~

if (/foo/ ~ $1) print "found foo"

This code is \obviously" testing $1 for a match against the regexp /foo/.
But in fact, the expression `/foo/ ~ $1' actually means `($0 ~ /foo/) ~ $1'.
In other words, �rst match the input record against the regexp /foo/. The
result will be either zero or one, depending upon the success or failure of the
match. Then match that result against the �rst �eld in the record.

Since it is unlikely that you would ever really wish to make this kind of
test, gawk will issue a warning when it sees this construct in a program.

Another consequence of this rule is that the assignment statement

matches = /foo/

will assign either zero or one to the variable matches, depending upon the
contents of the current input record.

This feature of the language was never well documented until the POSIX
speci�cation.

Constant regular expressions are also used as the �rst argument for
the gensub, sub and gsub functions, and as the second argument of the
match function (see Section 12.3 [Built-in Functions for String Manipula-
tion], page 137). Modern implementations of awk, including gawk, allow the
third argument of split to be a regexp constant, while some older imple-
mentations do not (d.c.).

Chapter 7: Expressions 79

This can lead to confusion when attempting to use regexp constants as ar-
guments to user de�ned functions (see Chapter 13 [User-de�ned Functions],
page 153). For example:

function mysub(pat, repl, str, global)

{

if (global)

gsub(pat, repl, str)

else

sub(pat, repl, str)

return str

}

{

: : :

text = "hi! hi yourself!"

mysub(/hi/, "howdy", text, 1)

: : :

}

In this example, the programmer wishes to pass a regexp constant to the
user-de�ned function mysub, which will in turn pass it on to either sub or
gsub. However, what really happens is that the pat parameter will be either
one or zero, depending upon whether or not $0 matches /hi/.

As it is unlikely that you would ever really wish to pass a truth value in
this way, gawk will issue a warning when it sees a regexp constant used as a
parameter to a user-de�ned function.

7.3 Variables

Variables are ways of storing values at one point in your program for use
later in another part of your program. You can manipulate them entirely
within your program text, and you can also assign values to them on the
awk command line.

7.3.1 Using Variables in a Program

Variables let you give names to values and refer to them later. You have
already seen variables in many of the examples. The name of a variable must
be a sequence of letters, digits and underscores, but it may not begin with
a digit. Case is signi�cant in variable names; a and A are distinct variables.

A variable name is a valid expression by itself; it represents the variable's
current value. Variables are given new values with assignment operators,

80 AWK Language Programming

increment operators and decrement operators. See Section 7.7 [Assignment
Expressions], page 84.

A few variables have special built-in meanings, such as FS, the �eld sep-
arator, and NF, the number of �elds in the current input record. See Chap-
ter 10 [Built-in Variables], page 115, for a list of them. These built-in vari-
ables can be used and assigned just like all other variables, but their values
are also used or changed automatically by awk. All built-in variables names
are entirely upper-case.

Variables in awk can be assigned either numeric or string values. By
default, variables are initialized to the empty string, which is zero if converted
to a number. There is no need to \initialize" each variable explicitly in awk,
the way you would in C and in most other traditional languages.

7.3.2 Assigning Variables on the Command Line

You can set any awk variable by including a variable assignment among
the arguments on the command line when you invoke awk (see Section 14.2
[Other Command Line Arguments], page 165). Such an assignment has this
form:

variable=text

With it, you can set a variable either at the beginning of the awk run or in
between input �les.

If you precede the assignment with the `-v' option, like this:

-v variable=text

then the variable is set at the very beginning, before even the BEGIN rules
are run. The `-v' option and its assignment must precede all the �le name
arguments, as well as the program text. (See Section 14.1 [Command Line
Options], page 161, for more information about the `-v' option.)

Otherwise, the variable assignment is performed at a time determined
by its position among the input �le arguments: after the processing of the
preceding input �le argument. For example:

awk '{ print $n }' n=4 inventory-shipped n=2 BBS-list

prints the value of �eld number n for all input records. Before the �rst �le
is read, the command line sets the variable n equal to four. This causes the
fourth �eld to be printed in lines from the �le `inventory-shipped'. After
the �rst �le has �nished, but before the second �le is started, n is set to two,
so that the second �eld is printed in lines from `BBS-list'.

Chapter 7: Expressions 81

$ awk '{ print $n }' n=4 inventory-shipped n=2 BBS-list

a 15

a 24

: : :

a 555-5553

a 555-3412

: : :

Command line arguments are made available for explicit examination by
the awk program in an array named ARGV (see Section 10.3 [Using ARGC and
ARGV], page 120).

awk processes the values of command line assignments for escape se-
quences (d.c.) (see Section 4.2 [Escape Sequences], page 24).

7.4 Conversion of Strings and Numbers

Strings are converted to numbers, and numbers to strings, if the context
of the awk program demands it. For example, if the value of either foo or
bar in the expression `foo + bar' happens to be a string, it is converted to a
number before the addition is performed. If numeric values appear in string
concatenation, they are converted to strings. Consider this:

two = 2; three = 3

print (two three) + 4

This prints the (numeric) value 27. The numeric values of the variables
two and three are converted to strings and concatenated together, and the
resulting string is converted back to the number 23, to which four is then
added.

If, for some reason, you need to force a number to be converted to a string,
concatenate the empty string, "", with that number. To force a string to be
converted to a number, add zero to that string.

A string is converted to a number by interpreting any numeric pre�x of
the string as numerals: "2.5" converts to 2.5, "1e3" converts to 1000, and
"25fix" has a numeric value of 25. Strings that can't be interpreted as valid
numbers are converted to zero.

The exact manner in which numbers are converted into strings is con-
trolled by the awk built-in variable CONVFMT (see Chapter 10 [Built-in Vari-
ables], page 115). Numbers are converted using the sprintf function (see
Section 12.3 [Built-in Functions for String Manipulation], page 137) with
CONVFMT as the format speci�er.

CONVFMT's default value is "%.6g", which prints a value with at least six
signi�cant digits. For some applications you will want to change it to specify
more precision. Double precision on most modern machines gives you 16 or
17 decimal digits of precision.

82 AWK Language Programming

Strange results can happen if you set CONVFMT to a string that doesn't tell
sprintf how to format
oating point numbers in a useful way. For example,
if you forget the `%' in the format, all numbers will be converted to the same
constant string.

As a special case, if a number is an integer, then the result of converting
it to a string is always an integer, no matter what the value of CONVFMT may
be. Given the following code fragment:

CONVFMT = "%2.2f"

a = 12

b = a ""

b has the value "12", not "12.00" (d.c.).

Prior to the POSIX standard, awk speci�ed that the value of OFMT was
used for converting numbers to strings. OFMT speci�es the output format to
use when printing numbers with print. CONVFMT was introduced in order to
separate the semantics of conversion from the semantics of printing. Both
CONVFMT and OFMT have the same default value: "%.6g". In the vast majority
of cases, old awk programs will not change their behavior. However, this use
of OFMT is something to keep in mind if you must port your program to
other implementations of awk; we recommend that instead of changing your
programs, you just port gawk itself! See Section 6.1 [The print Statement],
page 61, for more information on the print statement.

7.5 Arithmetic Operators

The awk language uses the common arithmetic operators when evaluating
expressions. All of these arithmetic operators follow normal precedence rules,
and work as you would expect them to.

Here is a �le `grades' containing a list of student names and three test
scores per student (it's a small class):

Pat 100 97 58

Sandy 84 72 93

Chris 72 92 89

This programs takes the �le `grades', and prints the average of the scores.

$ awk '{ sum = $2 + $3 + $4 ; avg = sum / 3

> print $1, avg }' grades

a Pat 85

a Sandy 83

a Chris 84.3333

This table lists the arithmetic operators in awk, in order from highest
precedence to lowest:

Chapter 7: Expressions 83

- x Negation.

+ x Unary plus. The expression is converted to a number.

x ^ y
x ** y Exponentiation: x raised to the y power. `2 ^ 3' has the value

eight. The character sequence `**' is equivalent to `^'. (The
POSIX standard only speci�es the use of `^' for exponentiation.)

x * y Multiplication.

x / y Division. Since all numbers in awk are real numbers, the result
is not rounded to an integer: `3 / 4' has the value 0.75.

x % y Remainder. The quotient is rounded toward zero to an integer,
multiplied by y and this result is subtracted from x. This opera-
tion is sometimes known as \trunc-mod." The following relation
always holds:

b * int(a / b) + (a % b) == a

One possibly undesirable e�ect of this de�nition of remainder is
that x % y is negative if x is negative. Thus,

-17 % 8 = -1

In other awk implementations, the signedness of the remainder
may be machine dependent.

x + y Addition.

x - y Subtraction.

For maximum portability, do not use the `**' operator.

Unary plus and minus have the same precedence, the multiplication op-
erators all have the same precedence, and addition and subtraction have the
same precedence.

7.6 String Concatenation

There is only one string operation: concatenation. It does not have a
speci�c operator to represent it. Instead, concatenation is performed by
writing expressions next to one another, with no operator. For example:

$ awk '{ print "Field number one: " $1 }' BBS-list

a Field number one: aardvark

a Field number one: alpo-net

: : :

Without the space in the string constant after the `:', the line would run
together. For example:

84 AWK Language Programming

$ awk '{ print "Field number one:" $1 }' BBS-list

a Field number one:aardvark

a Field number one:alpo-net

: : :

Since string concatenation does not have an explicit operator, it is often
necessary to insure that it happens where you want it to by using parentheses
to enclose the items to be concatenated. For example, the following code
fragment does not concatenate file and name as you might expect:

file = "file"

name = "name"

print "something meaningful" > file name

It is necessary to use the following:

print "something meaningful" > (file name)

We recommend that you use parentheses around concatenation in all but
the most common contexts (such as on the right-hand side of `=').

7.7 Assignment Expressions

An assignment is an expression that stores a new value into a variable.
For example, let's assign the value one to the variable z:

z = 1

After this expression is executed, the variable z has the value one. What-
ever old value z had before the assignment is forgotten.

Assignments can store string values also. For example, this would store
the value "this food is good" in the variable message:

thing = "food"

predicate = "good"

message = "this " thing " is " predicate

(This also illustrates string concatenation.)

The `=' sign is called an assignment operator. It is the simplest assignment
operator because the value of the right-hand operand is stored unchanged.

Most operators (addition, concatenation, and so on) have no e�ect except
to compute a value. If you ignore the value, you might as well not use the
operator. An assignment operator is di�erent; it does produce a value, but
even if you ignore the value, the assignment still makes itself felt through
the alteration of the variable. We call this a side e�ect.

The left-hand operand of an assignment need not be a variable (see Sec-
tion 7.3 [Variables], page 79); it can also be a �eld (see Section 5.4 [Changing
the Contents of a Field], page 42) or an array element (see Chapter 11 [Ar-
rays in awk], page 123). These are all called lvalues, which means they can

Chapter 7: Expressions 85

appear on the left-hand side of an assignment operator. The right-hand
operand may be any expression; it produces the new value which the assign-
ment stores in the speci�ed variable, �eld or array element. (Such values are
called rvalues).

It is important to note that variables do not have permanent types. The
type of a variable is simply the type of whatever value it happens to hold
at the moment. In the following program fragment, the variable foo has a
numeric value at �rst, and a string value later on:

foo = 1

print foo

foo = "bar"

print foo

When the second assignment gives foo a string value, the fact that it previ-
ously had a numeric value is forgotten.

String values that do not begin with a digit have a numeric value of zero.
After executing this code, the value of foo is �ve:

foo = "a string"

foo = foo + 5

(Note that using a variable as a number and then later as a string can be
confusing and is poor programming style. The above examples illustrate
how awk works, not how you should write your own programs!)

An assignment is an expression, so it has a value: the same value that is
assigned. Thus, `z = 1' as an expression has the value one. One consequence
of this is that you can write multiple assignments together:

x = y = z = 0

stores the value zero in all three variables. It does this because the value
of `z = 0', which is zero, is stored into y, and then the value of `y = z = 0',
which is zero, is stored into x.

You can use an assignment anywhere an expression is called for. For ex-
ample, it is valid to write `x != (y = 1)' to set y to one and then test whether
x equals one. But this style tends to make programs hard to read; except in
a one-shot program, you should not use such nesting of assignments.

Aside from `=', there are several other assignment operators that do arith-
metic with the old value of the variable. For example, the operator `+='
computes a new value by adding the right-hand value to the old value of the
variable. Thus, the following assignment adds �ve to the value of foo:

foo += 5

This is equivalent to the following:

foo = foo + 5

Use whichever one makes the meaning of your program clearer.

86 AWK Language Programming

There are situations where using `+=' (or any assignment operator) is
not the same as simply repeating the left-hand operand in the right-hand
expression. For example:

Thanks to Pat Rankin for this example

BEGIN {

foo[rand()] += 5

for (x in foo)

print x, foo[x]

bar[rand()] = bar[rand()] + 5

for (x in bar)

print x, bar[x]

}

The indices of bar are guaranteed to be di�erent, because rand will re-
turn di�erent values each time it is called. (Arrays and the rand function
haven't been covered yet. See Chapter 11 [Arrays in awk], page 123, and see
Section 12.2 [Numeric Built-in Functions], page 136, for more information).
This example illustrates an important fact about the assignment operators:
the left-hand expression is only evaluated once.

It is also up to the implementation as to which expression is evaluated
�rst, the left-hand one or the right-hand one. Consider this example:

i = 1

a[i += 2] = i + 1

The value of a[3] could be either two or four.

Here is a table of the arithmetic assignment operators. In each case, the
right-hand operand is an expression whose value is converted to a number.

lvalue += increment
Adds increment to the value of lvalue to make the new value of
lvalue.

lvalue -= decrement
Subtracts decrement from the value of lvalue.

lvalue *= coe�cient
Multiplies the value of lvalue by coe�cient.

lvalue /= divisor
Divides the value of lvalue by divisor.

lvalue %= modulus
Sets lvalue to its remainder by modulus.

Chapter 7: Expressions 87

lvalue ^= power
lvalue **= power

Raises lvalue to the power power. (Only the `^=' operator is
speci�ed by POSIX.)

For maximum portability, do not use the `**=' operator.

7.8 Increment and Decrement Operators

Increment and decrement operators increase or decrease the value of a
variable by one. You could do the same thing with an assignment operator,
so the increment operators add no power to the awk language; but they are
convenient abbreviations for very common operations.

The operator to add one is written `++'. It can be used to increment a
variable either before or after taking its value.

To pre-increment a variable v, write `++v '. This adds one to the value of
v and that new value is also the value of this expression. The assignment
expression `v += 1' is completely equivalent.

Writing the `++' after the variable speci�es post-increment. This incre-
ments the variable value just the same; the di�erence is that the value of the
increment expression itself is the variable's old value. Thus, if foo has the
value four, then the expression `foo++' has the value four, but it changes the
value of foo to �ve.

The post-increment `foo++' is nearly equivalent to writing `(foo += 1)

- 1'. It is not perfectly equivalent because all numbers in awk are
oating
point: in
oating point, `foo + 1 - 1' does not necessarily equal foo. But
the di�erence is minute as long as you stick to numbers that are fairly small
(less than 10e12).

Any lvalue can be incremented. Fields and array elements are incre-
mented just like variables. (Use `$(i++)' when you wish to do a �eld ref-
erence and a variable increment at the same time. The parentheses are
necessary because of the precedence of the �eld reference operator, `$'.)

The decrement operator `--' works just like `++' except that it subtracts
one instead of adding. Like `++', it can be used before the lvalue to pre-
decrement or after it to post-decrement.

Here is a summary of increment and decrement expressions.

++lvalue This expression increments lvalue and the new value becomes
the value of the expression.

lvalue++ This expression increments lvalue, but the value of the expres-
sion is the old value of lvalue.

--lvalue Like `++lvalue', but instead of adding, it subtracts. It decre-
ments lvalue and delivers the value that results.

88 AWK Language Programming

lvalue-- Like `lvalue++', but instead of adding, it subtracts. It decre-
ments lvalue. The value of the expression is the old value of
lvalue.

7.9 True and False in awk

Many programming languages have a special representation for the con-
cepts of \true" and \false." Such languages usually use the special constants
true and false, or perhaps their upper-case equivalents.

awk is di�erent. It borrows a very simple concept of true and false from
C. In awk, any non-zero numeric value, or any non-empty string value is
true. Any other value (zero or the null string, "") is false. The following
program will print `A strange truth value' three times:

BEGIN {

if (3.1415927)

print "A strange truth value"

if ("Four Score And Seven Years Ago")

print "A strange truth value"

if (j = 57)

print "A strange truth value"

}

There is a surprising consequence of the \non-zero or non-null" rule: The
string constant "0" is actually true, since it is non-null (d.c.).

7.10 Variable Typing and Comparison Expressions

Unlike other programming languages, awk variables do not have a �xed
type. Instead, they can be either a number or a string, depending upon the
value that is assigned to them.

The 1992 POSIX standard introduced the concept of a numeric string,
which is simply a string that looks like a number, for example, " +2". This
concept is used for determining the type of a variable.

The type of the variable is important, since the types of two variables
determine how they are compared.

In gawk, variable typing follows these rules.

1. A numeric literal or the result of a numeric operation has the numeric
attribute.

2. A string literal or the result of a string operation has the string attribute.

3. Fields, getline input, FILENAME, ARGV elements, ENVIRON elements and
the elements of an array created by split that are numeric strings

Chapter 7: Expressions 89

have the strnum attribute. Otherwise, they have the string attribute.
Uninitialized variables also have the strnum attribute.

4. Attributes propagate across assignments, but are not changed by any
use.

The last rule is particularly important. In the following program, a has
numeric type, even though it is later used in a string operation.

BEGIN {

a = 12.345

b = a " is a cute number"

print b

}

When two operands are compared, either string comparison or numeric
comparison may be used, depending on the attributes of the operands, ac-
cording to the following, symmetric, matrix:

STRING NUMERIC STRNUM

STRING string string string
NUMERIC string numeric numeric
STRNUM string numeric numeric

The basic idea is that user input that looks numeric, and only user input,
should be treated as numeric, even though it is actually made of characters,
and is therefore also a string.

Comparison expressions compare strings or numbers for relationships
such as equality. They are written using relational operators, which are
a superset of those in C. Here is a table of them:

x < y True if x is less than y.

x <= y True if x is less than or equal to y.

x > y True if x is greater than y.

x >= y True if x is greater than or equal to y.

x == y True if x is equal to y.

x != y True if x is not equal to y.

x ~ y True if the string x matches the regexp denoted by y.

x !~ y True if the string x does not match the regexp denoted by y.

subscript in array
True if the array array has an element with the subscript sub-
script.

Comparison expressions have the value one if true and zero if false.

90 AWK Language Programming

When comparing operands of mixed types, numeric operands are con-
verted to strings using the value of CONVFMT (see Section 7.4 [Conversion of
Strings and Numbers], page 81).

Strings are compared by comparing the �rst character of each, then the
second character of each, and so on. Thus "10" is less than "9". If there are
two strings where one is a pre�x of the other, the shorter string is less than
the longer one. Thus "abc" is less than "abcd".

It is very easy to accidentally mistype the `==' operator, and leave o� one
of the `='s. The result is still valid awk code, but the program will not do
what you mean:

if (a = b) # oops! should be a == b

: : :

else

: : :

Unless b happens to be zero or the null string, the if part of the test will
always succeed. Because the operators are so similar, this kind of error is
very di�cult to spot when scanning the source code.

Here are some sample expressions, how gawk compares them, and what
the result of the comparison is.

1.5 <= 2.0

numeric comparison (true)

"abc" >= "xyz"

string comparison (false)

1.5 != " +2"

string comparison (true)

"1e2" < "3"

string comparison (true)

a = 2; b = "2"

a == b string comparison (true)

a = 2; b = " +2"

a == b string comparison (false)

In this example,

$ echo 1e2 3 | awk '{ print ($1 < $2) ? "true" : "false" }'

a false

the result is `false' since both $1 and $2 are numeric strings and thus both
have the strnum attribute, dictating a numeric comparison.

The purpose of the comparison rules and the use of numeric strings is to
attempt to produce the behavior that is \least surprising," while still \doing
the right thing."

Chapter 7: Expressions 91

String comparisons and regular expression comparisons are very di�erent.
For example,

x == "foo"

has the value of one, or is true, if the variable x is precisely `foo'. By
contrast,

x ~ /foo/

has the value one if x contains `foo', such as "Oh, what a fool am I!".

The right hand operand of the `~' and `!~' operators may be either a
regexp constant (/: : :/), or an ordinary expression, in which case the value
of the expression as a string is used as a dynamic regexp (see Section 4.1 [How
to Use Regular Expressions], page 23; also see Section 4.7 [Using Dynamic
Regexps], page 35).

In recent implementations of awk, a constant regular expression in slashes
by itself is also an expression. The regexp /regexp/ is an abbreviation for
this comparison expression:

$0 ~ /regexp/

One special place where /foo/ is not an abbreviation for `$0 ~ /foo/'
is when it is the right-hand operand of `~' or `!~'! See Section 7.2 [Using
Regular Expression Constants], page 78, where this is discussed in more
detail.

7.11 Boolean Expressions

A boolean expression is a combination of comparison expressions or
matching expressions, using the boolean operators \or" (`||'), \and" (`&&'),
and \not" (`!'), along with parentheses to control nesting. The truth value
of the boolean expression is computed by combining the truth values of the
component expressions. Boolean expressions are also referred to as logical
expressions. The terms are equivalent.

Boolean expressions can be used wherever comparison and matching ex-
pressions can be used. They can be used in if, while, do and for statements
(see Chapter 9 [Control Statements in Actions], page 105). They have nu-
meric values (one if true, zero if false), which come into play if the result of
the boolean expression is stored in a variable, or used in arithmetic.

In addition, every boolean expression is also a valid pattern, so you can
use one as a pattern to control the execution of rules.

Here are descriptions of the three boolean operators, with examples.

boolean1 && boolean2
True if both boolean1 and boolean2 are true. For example, the
following statement prints the current input record if it contains
both `2400' and `foo'.

92 AWK Language Programming

if ($0 ~ /2400/ && $0 ~ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is
true. This can make a di�erence when boolean2 contains ex-
pressions that have side e�ects: in the case of `$0 ~ /foo/ &&

($2 == bar++)', the variable bar is not incremented if there is
no `foo' in the record.

boolean1 || boolean2
True if at least one of boolean1 or boolean2 is true. For exam-
ple, the following statement prints all records in the input that
contain either `2400' or `foo', or both.

if ($0 ~ /2400/ || $0 ~ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is
false. This can make a di�erence when boolean2 contains ex-
pressions that have side e�ects.

! boolean True if boolean is false. For example, the following program
prints all records in the input �le `BBS-list' that do not contain
the string `foo'.

awk '{ if (! ($0 ~ /foo/)) print }' BBS-list

The `&&' and `||' operators are called short-circuit operators because of
the way they work. Evaluation of the full expression is \short-circuited" if
the result can be determined part way through its evaluation.

You can continue a statement that uses `&&' or `||' simply by putting
a newline after them. But you cannot put a newline in front of either of
these operators without using backslash continuation (see Section 2.6 [awk
Statements Versus Lines], page 16).

The actual value of an expression using the `!' operator will be either one
or zero, depending upon the truth value of the expression it is applied to.

The `!' operator is often useful for changing the sense of a
ag variable
from false to true and back again. For example, the following program is
one way to print lines in between special bracketing lines:

$1 == "START" { interested = ! interested }

interested == 1 { print }

$1 == "END" { interested = ! interested }

The variable interested, like all awk variables, starts out initialized to zero,
which is also false. When a line is seen whose �rst �eld is `START', the value
of interested is toggled to true, using `!'. The next rule prints lines as
long as interested is true. When a line is seen whose �rst �eld is `END',
interested is toggled back to false.

Chapter 7: Expressions 93

7.12 Conditional Expressions

A conditional expression is a special kind of expression with three
operands. It allows you to use one expression's value to select one of two
other expressions.

The conditional expression is the same as in the C language:

selector ? if-true-exp : if-false-exp

There are three subexpressions. The �rst, selector, is always computed �rst.
If it is \true" (not zero and not null) then if-true-exp is computed next and
its value becomes the value of the whole expression. Otherwise, if-false-exp
is computed next and its value becomes the value of the whole expression.

For example, this expression produces the absolute value of x:

x > 0 ? x : -x

Each time the conditional expression is computed, exactly one of if-true-
exp and if-false-exp is computed; the other is ignored. This is important
when the expressions contain side e�ects. For example, this conditional
expression examines element i of either array a or array b, and increments
i.

x == y ? a[i++] : b[i++]

This is guaranteed to increment i exactly once, because each time only one
of the two increment expressions is executed, and the other is not. See
Chapter 11 [Arrays in awk], page 123, for more information about arrays.

As a minor gawk extension, you can continue a statement that uses `?:'
simply by putting a newline after either character. However, you cannot put
a newline in front of either character without using backslash continuation
(see Section 2.6 [awk Statements Versus Lines], page 16).

7.13 Function Calls

A function is a name for a particular calculation. Because it has a name,
you can ask for it by name at any point in the program. For example, the
function sqrt computes the square root of a number.

A �xed set of functions are built-in, which means they are available in
every awk program. The sqrt function is one of these. See Chapter 12 [Built-
in Functions], page 135, for a list of built-in functions and their descriptions.
In addition, you can de�ne your own functions for use in your program. See
Chapter 13 [User-de�ned Functions], page 153, for how to do this.

The way to use a function is with a function call expression, which con-
sists of the function name followed immediately by a list of arguments in
parentheses. The arguments are expressions which provide the raw materi-
als for the function's calculations. When there is more than one argument,

94 AWK Language Programming

they are separated by commas. If there are no arguments, write just `()'
after the function name. Here are some examples:

sqrt(x^2 + y^2) one argument
atan2(y, x) two arguments
rand() no arguments

Do not put any space between the function name and the open-
parenthesis! A user-de�ned function name looks just like the name of a
variable, and space would make the expression look like concatenation of a
variable with an expression inside parentheses. Space before the parenthesis
is harmless with built-in functions, but it is best not to get into the habit of
using space to avoid mistakes with user-de�ned functions.

Each function expects a particular number of arguments. For example,
the sqrt function must be called with a single argument, the number to take
the square root of:

sqrt(argument)

Some of the built-in functions allow you to omit the �nal argument. If
you do so, they use a reasonable default. See Chapter 12 [Built-in Functions],
page 135, for full details. If arguments are omitted in calls to user-de�ned
functions, then those arguments are treated as local variables, initialized to
the empty string (see Chapter 13 [User-de�ned Functions], page 153).

Like every other expression, the function call has a value, which is com-
puted by the function based on the arguments you give it. In this example,
the value of `sqrt(argument)' is the square root of argument. A function
can also have side e�ects, such as assigning values to certain variables or
doing I/O.

Here is a command to read numbers, one number per line, and print the
square root of each one:

$ awk '{ print "The square root of", $1, "is", sqrt($1) }'

1

a The square root of 1 is 1

3

a The square root of 3 is 1.73205

5

a The square root of 5 is 2.23607

Control-d

7.14 Operator Precedence (How Operators Nest)

Operator precedence determines how operators are grouped, when di�er-
ent operators appear close by in one expression. For example, `*' has higher

Chapter 7: Expressions 95

precedence than `+'; thus, `a + b * c' means to multiply b and c, and then
add a to the product (i.e. `a + (b * c)').

You can overrule the precedence of the operators by using parentheses.
You can think of the precedence rules as saying where the parentheses are
assumed to be if you do not write parentheses yourself. In fact, it is wise
to always use parentheses whenever you have an unusual combination of
operators, because other people who read the program may not remember
what the precedence is in this case. You might forget, too; then you could
make a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost oper-
ator groups �rst, except for the assignment, conditional and exponentiation
operators, which group in the opposite order. Thus, `a - b + c' groups as
`(a - b) + c', and `a = b = c' groups as `a = (b = c)'.

The precedence of pre�x unary operators does not matter as long as
only unary operators are involved, because there is only one way to inter-
pret them|innermost �rst. Thus, `$++i' means `$(++i)' and `++$x' means
`++($x)'. However, when another operator follows the operand, then the
precedence of the unary operators can matter. Thus, `$x^2' means `($x)^2',
but `-x^2' means `-(x^2)', because `-' has lower precedence than `^' while
`$' has higher precedence.

Here is a table of awk's operators, in order from highest precedence to
lowest:

(: : :) Grouping.

$ Field.

++ -- Increment, decrement.

^ ** Exponentiation. These operators group right-to-left. (The `**'
operator is not speci�ed by POSIX.)

+ - ! Unary plus, minus, logical \not".

* / % Multiplication, division, modulus.

+ - Addition, subtraction.

Concatenation
No special token is used to indicate concatenation. The operands
are simply written side by side.

< <= == !=

> >= >> | Relational, and redirection. The relational operators and the
redirections have the same precedence level. Characters such
as `>' serve both as relationals and as redirections; the context
distinguishes between the two meanings.

Note that the I/O redirection operators in print and printf

statements belong to the statement level, not to expressions.

96 AWK Language Programming

The redirection does not produce an expression which could be
the operand of another operator. As a result, it does not make
sense to use a redirection operator near another operator of lower
precedence, without parentheses. Such combinations, for exam-
ple `print foo > a ? b : c', result in syntax errors. The correct
way to write this statement is `print foo > (a ? b : c)'.

~ !~ Matching, non-matching.

in Array membership.

&& Logical \and".

|| Logical \or".

?: Conditional. This operator groups right-to-left.

= += -= *=

/= %= ^= **=

Assignment. These operators group right-to-left. (The `**='
operator is not speci�ed by POSIX.)

Chapter 8: Patterns and Actions 97

8 Patterns andActions

As you have already seen, each awk statement consists of a pattern with
an associated action. This chapter describes how you build patterns and
actions.

8.1 Pattern Elements

Patterns in awk control the execution of rules: a rule is executed when
its pattern matches the current input record. This section explains all about
how to write patterns.

8.1.1 Kinds of Patterns

Here is a summary of the types of patterns supported in awk.

/regular expression/
A regular expression as a pattern. It matches when the text
of the input record �ts the regular expression. (See Chapter 4
[Regular Expressions], page 23.)

expression A single expression. It matches when its value is non-zero (if a
number) or non-null (if a string). (See Section 8.1.3 [Expressions
as Patterns], page 98.)

pat1, pat2
A pair of patterns separated by a comma, specifying a range of
records. The range includes both the initial record that matches
pat1, and the �nal record that matches pat2. (See Section 8.1.4
[Specifying Record Ranges with Patterns], page 99.)

BEGIN

END Special patterns for you to supply start-up or clean-up actions
for your awk program. (See Section 8.1.5 [The BEGIN and END

Special Patterns], page 100.)

empty The empty pattern matches every input record. (See Sec-
tion 8.1.6 [The Empty Pattern], page 102.)

8.1.2 Regular Expressions as Patterns

We have been using regular expressions as patterns since our early exam-
ples. This kind of pattern is simply a regexp constant in the pattern part
of a rule. Its meaning is `$0 ~ /pattern/'. The pattern matches when the
input record matches the regexp. For example:

/foo|bar|baz/ { buzzwords++ }

END { print buzzwords, "buzzwords seen" }

98 AWK Language Programming

8.1.3 Expressions as Patterns

Any awk expression is valid as an awk pattern. Then the pattern matches
if the expression's value is non-zero (if a number) or non-null (if a string).

The expression is reevaluated each time the rule is tested against a new
input record. If the expression uses �elds such as $1, the value depends
directly on the new input record's text; otherwise, it depends only on what
has happened so far in the execution of the awk program, but that may still
be useful.

A very common kind of expression used as a pattern is the comparison ex-
pression, using the comparison operators described in Section 7.10 [Variable
Typing and Comparison Expressions], page 88.

Regexp matching and non-matching are also very common expressions.
The left operand of the `~' and `!~' operators is a string. The right operand
is either a constant regular expression enclosed in slashes (/regexp/), or any
expression, whose string value is used as a dynamic regular expression (see
Section 4.7 [Using Dynamic Regexps], page 35).

The following example prints the second �eld of each input record whose
�rst �eld is precisely `foo'.

$ awk '$1 == "foo" { print $2 }' BBS-list

(There is no output, since there is no BBS site named \foo".) Contrast this
with the following regular expression match, which would accept any record
with a �rst �eld that contains `foo':

$ awk '$1 ~ /foo/ { print $2 }' BBS-list

a 555-1234

a 555-6699

a 555-6480

a 555-2127

Boolean expressions are also commonly used as patterns. Whether the
pattern matches an input record depends on whether its subexpressions
match.

For example, the following command prints all records in `BBS-list' that
contain both `2400' and `foo'.

$ awk '/2400/ && /foo/' BBS-list

a fooey 555-1234 2400/1200/300 B

The following command prints all records in `BBS-list' that contain
either `2400' or `foo', or both.

Chapter 8: Patterns and Actions 99

$ awk '/2400/ || /foo/' BBS-list

a alpo-net 555-3412 2400/1200/300 A

a bites 555-1675 2400/1200/300 A

a fooey 555-1234 2400/1200/300 B

a foot 555-6699 1200/300 B

a macfoo 555-6480 1200/300 A

a sdace 555-3430 2400/1200/300 A

a sabafoo 555-2127 1200/300 C

The following command prints all records in `BBS-list' that do not con-
tain the string `foo'.

$ awk '! /foo/' BBS-list

a aardvark 555-5553 1200/300 B

a alpo-net 555-3412 2400/1200/300 A

a barfly 555-7685 1200/300 A

a bites 555-1675 2400/1200/300 A

a camelot 555-0542 300 C

a core 555-2912 1200/300 C

a sdace 555-3430 2400/1200/300 A

The subexpressions of a boolean operator in a pattern can be constant
regular expressions, comparisons, or any other awk expressions. Range pat-
terns are not expressions, so they cannot appear inside boolean patterns.
Likewise, the special patterns BEGIN and END, which never match any input
record, are not expressions and cannot appear inside boolean patterns.

A regexp constant as a pattern is also a special case of an expression pat-
tern. /foo/ as an expression has the value one if `foo' appears in the current
input record; thus, as a pattern, /foo/ matches any record containing `foo'.

8.1.4 Specifying Record Ranges with Patterns

A range pattern is made of two patterns separated by a comma, of the
form `begpat, endpat'. It matches ranges of consecutive input records. The
�rst pattern, begpat, controls where the range begins, and the second one,
endpat, controls where it ends. For example,

awk '$1 == "on", $1 == "off"'

prints every record between `on'/`off' pairs, inclusive.

A range pattern starts out by matching begpat against every input record;
when a record matches begpat, the range pattern becomes turned on. The
range pattern matches this record. As long as it stays turned on, it auto-
matically matches every input record read. It also matches endpat against
every input record; when that succeeds, the range pattern is turned o� again
for the following record. Then it goes back to checking begpat against each
record.

100 AWK Language Programming

The record that turns on the range pattern and the one that turns it o�
both match the range pattern. If you don't want to operate on these records,
you can write if statements in the rule's action to distinguish them from
the records you are interested in.

It is possible for a pattern to be turned both on and o� by the same
record, if the record satis�es both conditions. Then the action is executed
for just that record.

For example, suppose you have text between two identical markers (say
the `%' symbol) that you wish to ignore. You might try to combine a range
pattern that describes the delimited text with the next statement (not dis-
cussed yet, see Section 9.7 [The next Statement], page 111), which causes
awk to skip any further processing of the current record and start over again
with the next input record. Such a program would like this:

/^%$/,/^%$/ { next }

{ print }

This program fails because the range pattern is both turned on and turned
o� by the �rst line with just a `%' on it. To accomplish this task, you must
write the program this way, using a
ag:

/^%$/ { skip = ! skip; next }

skip == 1 { next } # skip lines with `skip' set

Note that in a range pattern, the `,' has the lowest precedence (is eval-
uated last) of all the operators. Thus, for example, the following program
attempts to combine a range pattern with another, simpler test.

echo Yes | awk '/1/,/2/ || /Yes/'

The author of this program intended it to mean `(/1/,/2/) || /Yes/'.
However, awk interprets this as `/1/, (/2/ || /Yes/)'. This cannot be
changed or worked around; range patterns do not combine with other pat-
terns.

8.1.5 The BEGIN and END Special Patterns

BEGIN and END are special patterns. They are not used to match input
records. Rather, they supply start-up or clean-up actions for your awk script.

8.1.5.1 Startup and Cleanup Actions

A BEGIN rule is executed, once, before the �rst input record has been
read. An END rule is executed, once, after all the input has been read. For
example:

Chapter 8: Patterns and Actions 101

$ awk '

> BEGIN { print "Analysis of \"foo\"" }

> /foo/ { ++n }

> END { print "\"foo\" appears " n " times." }' BBS-list

a Analysis of "foo"

a "foo" appears 4 times.

This program �nds the number of records in the input �le `BBS-list'
that contain the string `foo'. The BEGIN rule prints a title for the report.
There is no need to use the BEGIN rule to initialize the counter n to zero, as
awk does this automatically (see Section 7.3 [Variables], page 79).

The second rule increments the variable n every time a record containing
the pattern `foo' is read. The END rule prints the value of n at the end of
the run.

The special patterns BEGIN and END cannot be used in ranges or with
boolean operators (indeed, they cannot be used with any operators).

An awk program may have multiple BEGIN and/or END rules. They are
executed in the order they appear, all the BEGIN rules at start-up and all the
END rules at termination. BEGIN and END rules may be intermixed with other
rules. This feature was added in the 1987 version of awk, and is included in
the POSIX standard. The original (1978) version of awk required you to put
the BEGIN rule at the beginning of the program, and the END rule at the end,
and only allowed one of each. This is no longer required, but it is a good
idea in terms of program organization and readability.

Multiple BEGIN and END rules are useful for writing library functions,
since each library �le can have its own BEGIN and/or END rule to do its own
initialization and/or cleanup. Note that the order in which library functions
are named on the command line controls the order in which their BEGIN and
END rules are executed. Therefore you have to be careful to write such rules
in library �les so that the order in which they are executed doesn't matter.
See Section 14.1 [Command Line Options], page 161, for more information
on using library functions. See Chapter 15 [A Library of awk Functions],
page 169, for a number of useful library functions.

If an awk program only has a BEGIN rule, and no other rules, then the
program exits after the BEGIN rule has been run. (The original version of awk
used to keep reading and ignoring input until end of �le was seen.) However,
if an END rule exists, then the input will be read, even if there are no other
rules in the program. This is necessary in case the END rule checks the FNR
and NR variables (d.c.).

BEGIN and END rules must have actions; there is no default action for
these rules since there is no current record when they run.

102 AWK Language Programming

8.1.5.2 Input/Output from BEGIN and END Rules

There are several (sometimes subtle) issues involved when doing I/O from
a BEGIN or END rule.

The �rst has to do with the value of $0 in a BEGIN rule. Since BEGIN

rules are executed before any input is read, there simply is no input record,
and therefore no �elds, when executing BEGIN rules. References to $0 and
the �elds yield a null string or zero, depending upon the context. One way
to give $0 a real value is to execute a getline command without a variable
(see Section 5.8 [Explicit Input with getline], page 54). Another way is to
simply assign a value to it.

The second point is similar to the �rst, but from the other direction.
Inside an END rule, what is the value of $0 and NF? Traditionally, due largely
to implementation issues, $0 and NF were unde�ned inside an END rule. The
POSIX standard speci�ed that NF was available in an END rule, containing
the number of �elds from the last input record. Due most probably to an
oversight, the standard does not say that $0 is also preserved, although
logically one would think that it should be. In fact, gawk does preserve the
value of $0 for use in END rules. Be aware, however, that Unix awk, and
possibly other implementations, do not.

The third point follows from the �rst two. What is the meaning of `print'
inside a BEGIN or END rule? The meaning is the same as always, `print $0'.
If $0 is the null string, then this prints an empty line. Many long time
awk programmers use `print' in BEGIN and END rules, to mean `print ""',
relying on $0 being null. While you might generally get away with this in
BEGIN rules, in gawk at least, it is a very bad idea in END rules. It is also
poor style, since if you want an empty line in the output, you should say so
explicitly in your program.

8.1.6 The Empty Pattern

An empty (i.e. non-existent) pattern is considered to match every input
record. For example, the program:

awk '{ print $1 }' BBS-list

prints the �rst �eld of every record.

8.2 Overview of Actions

An awk program or script consists of a series of rules and function de�-
nitions, interspersed. (Functions are described later. See Chapter 13 [User-
de�ned Functions], page 153.)

A rule contains a pattern and an action, either of which (but not both)
may be omitted. The purpose of the action is to tell awk what to do once a

Chapter 8: Patterns and Actions 103

match for the pattern is found. Thus, in outline, an awk program generally
looks like this:

[pattern] [{ action }]
[pattern] [{ action }]
: : :

function name(args) { : : : }

: : :

An action consists of one or more awk statements, enclosed in curly braces
(`{' and `}'). Each statement speci�es one thing to be done. The statements
are separated by newlines or semicolons.

The curly braces around an action must be used even if the action contains
only one statement, or even if it contains no statements at all. However, if
you omit the action entirely, omit the curly braces as well. An omitted action
is equivalent to `{ print $0 }'.

/foo/ { } # match foo, do nothing - empty action

/foo/ # match foo, print the record - omitted action

Here are the kinds of statements supported in awk:

� Expressions, which can call functions or assign values to variables (see
Chapter 7 [Expressions], page 77). Executing this kind of statement
simply computes the value of the expression. This is useful when the
expression has side e�ects (see Section 7.7 [Assignment Expressions],
page 84).

� Control statements, which specify the control
ow of awk programs.
The awk language gives you C-like constructs (if, for, while, and do)
as well as a few special ones (see Chapter 9 [Control Statements in
Actions], page 105).

� Compound statements, which consist of one or more statements enclosed
in curly braces. A compound statement is used in order to put several
statements together in the body of an if, while, do or for statement.

� Input statements, using the getline command (see Section 5.8 [Explicit
Input with getline], page 54), the next statement (see Section 9.7
[The next Statement], page 111), and the nextfile statement (see
Section 9.8 [The nextfile Statement], page 112).

� Output statements, print and printf. See Chapter 6 [Printing Out-
put], page 61.

� Deletion statements, for deleting array elements. See Section 11.6 [The
delete Statement], page 128.

The next chapter covers control statements in detail.

104 AWK Language Programming

Chapter 9: Control Statements in Actions 105

9 Control Statements in Actions

Control statements such as if, while, and so on control the
ow of exe-
cution in awk programs. Most of the control statements in awk are patterned
on similar statements in C.

All the control statements start with special keywords such as if and
while, to distinguish them from simple expressions.

Many control statements contain other statements; for example, the if

statement contains another statement which may or may not be executed.
The contained statement is called the body. If you want to include more than
one statement in the body, group them into a single compound statement
with curly braces, separating them with newlines or semicolons.

9.1 The if-else Statement

The if-else statement is awk's decision-making statement. It looks like
this:

if (condition) then-body [else else-body]

The condition is an expression that controls what the rest of the statement
will do. If condition is true, then-body is executed; otherwise, else-body
is executed. The else part of the statement is optional. The condition is
considered false if its value is zero or the null string, and true otherwise.

Here is an example:

if (x % 2 == 0)

print "x is even"

else

print "x is odd"

In this example, if the expression `x % 2 == 0' is true (that is, the value
of x is evenly divisible by two), then the �rst print statement is executed,
otherwise the second print statement is executed.

If the else appears on the same line as then-body, and then-body is not a
compound statement (i.e. not surrounded by curly braces), then a semicolon
must separate then-body from else. To illustrate this, let's rewrite the
previous example:

if (x % 2 == 0) print "x is even"; else

print "x is odd"

If you forget the `;', awk won't be able to interpret the statement, and you
will get a syntax error.

We would not actually write this example this way, because a human
reader might fail to see the else if it were not the �rst thing on its line.

106 AWK Language Programming

9.2 The while Statement

In programming, a loop means a part of a program that can be executed
two or more times in succession.

The while statement is the simplest looping statement in awk. It re-
peatedly executes a statement as long as a condition is true. It looks like
this:

while (condition)
body

Here body is a statement that we call the body of the loop, and condition
is an expression that controls how long the loop keeps running.

The �rst thing the while statement does is test condition. If condition
is true, it executes the statement body. After body has been executed,
condition is tested again, and if it is still true, body is executed again. This
process repeats until condition is no longer true. If condition is initially
false, the body of the loop is never executed, and awk continues with the
statement following the loop.

This example prints the �rst three �elds of each record, one per line.

awk '{ i = 1

while (i <= 3) {

print $i

i++

}

}' inventory-shipped

Here the body of the loop is a compound statement enclosed in braces,
containing two statements.

The loop works like this: �rst, the value of i is set to one. Then, the
while tests whether i is less than or equal to three. This is true when i

equals one, so the i-th �eld is printed. Then the `i++' increments the value
of i and the loop repeats. The loop terminates when i reaches four.

As you can see, a newline is not required between the condition and
the body; but using one makes the program clearer unless the body is a
compound statement or is very simple. The newline after the open-brace
that begins the compound statement is not required either, but the program
would be harder to read without it.

9.3 The do-while Statement

The do loop is a variation of the while looping statement. The do loop
executes the body once, and then repeats body as long as condition is true.
It looks like this:

Chapter 9: Control Statements in Actions 107

do

body
while (condition)

Even if condition is false at the start, body is executed at least once (and
only once, unless executing body makes condition true). Contrast this with
the corresponding while statement:

while (condition)
body

This statement does not execute body even once if condition is false to begin
with.

Here is an example of a do statement:

awk '{ i = 1

do {

print $0

i++

} while (i <= 10)

}'

This program prints each input record ten times. It isn't a very realistic
example, since in this case an ordinary while would do just as well. But
this re
ects actual experience; there is only occasionally a real use for a do

statement.

9.4 The for Statement

The for statement makes it more convenient to count iterations of a loop.
The general form of the for statement looks like this:

for (initialization; condition; increment)
body

The initialization, condition and increment parts are arbitrary awk expres-
sions, and body stands for any awk statement.

The for statement starts by executing initialization. Then, as long as
condition is true, it repeatedly executes body and then increment. Typically
initialization sets a variable to either zero or one, increment adds one to it,
and condition compares it against the desired number of iterations.

Here is an example of a for statement:

awk '{ for (i = 1; i <= 3; i++)

print $i

}' inventory-shipped

This prints the �rst three �elds of each input record, one �eld per line.

108 AWK Language Programming

You cannot set more than one variable in the initialization part unless you
use a multiple assignment statement such as `x = y = 0', which is possible
only if all the initial values are equal. (But you can initialize additional
variables by writing their assignments as separate statements preceding the
for loop.)

The same is true of the increment part; to increment additional variables,
you must write separate statements at the end of the loop. The C compound
expression, using C's comma operator, would be useful in this context, but
it is not supported in awk.

Most often, increment is an increment expression, as in the example
above. But this is not required; it can be any expression whatever. For
example, this statement prints all the powers of two between one and 100:

for (i = 1; i <= 100; i *= 2)

print i

Any of the three expressions in the parentheses following the for may be
omitted if there is nothing to be done there. Thus, `for (; x > 0;)' is equiv-
alent to `while (x > 0)'. If the condition is omitted, it is treated as true,
e�ectively yielding an in�nite loop (i.e. a loop that will never terminate).

In most cases, a for loop is an abbreviation for a while loop, as shown
here:

initialization
while (condition) {

body
increment

}

The only exception is when the continue statement (see Section 9.6 [The
continue Statement], page 110) is used inside the loop; changing a for

statement to a while statement in this way can change the e�ect of the
continue statement inside the loop.

There is an alternate version of the for loop, for iterating over all the
indices of an array:

for (i in array)

do something with array[i]

See Section 11.5 [Scanning All Elements of an Array], page 127, for more
information on this version of the for loop.

The awk language has a for statement in addition to a while statement
because often a for loop is both less work to type and more natural to think
of. Counting the number of iterations is very common in loops. It can be
easier to think of this counting as part of looping rather than as something
to do inside the loop.

The next section has more complicated examples of for loops.

Chapter 9: Control Statements in Actions 109

9.5 The break Statement

The break statement jumps out of the innermost for, while, or do loop
that encloses it. The following example �nds the smallest divisor of any
integer, and also identi�es prime numbers:

awk '# find smallest divisor of num

{ num = $1

for (div = 2; div*div <= num; div++)

if (num % div == 0)

break

if (num % div == 0)

printf "Smallest divisor of %d is %d\n", num, div

else

printf "%d is prime\n", num

}'

When the remainder is zero in the �rst if statement, awk immediately
breaks out of the containing for loop. This means that awk proceeds imme-
diately to the statement following the loop and continues processing. (This is
very di�erent from the exit statement which stops the entire awk program.
See Section 9.9 [The exit Statement], page 112.)

Here is another program equivalent to the previous one. It illustrates
how the condition of a for or while could just as well be replaced with a
break inside an if:

awk '# find smallest divisor of num

{ num = $1

for (div = 2; ; div++) {

if (num % div == 0) {

printf "Smallest divisor of %d is %d\n", num, div

break

}

if (div*div > num) {

printf "%d is prime\n", num

break

}

}

}'

As described above, the break statement has no meaning when used
outside the body of a loop. However, although it was never documented,
historical implementations of awk have treated the break statement outside
of a loop as if it were a next statement (see Section 9.7 [The next Statement],
page 111). Recent versions of Unix awk no longer allow this usage. gawk

will support this use of break only if `--traditional' has been speci�ed

110 AWK Language Programming

on the command line (see Section 14.1 [Command Line Options], page 161).
Otherwise, it will be treated as an error, since the POSIX standard speci�es
that break should only be used inside the body of a loop (d.c.).

9.6 The continue Statement

The continue statement, like break, is used only inside for, while, and
do loops. It skips over the rest of the loop body, causing the next cycle
around the loop to begin immediately. Contrast this with break, which
jumps out of the loop altogether.

The continue statement in a for loop directs awk to skip the rest of the
body of the loop, and resume execution with the increment-expression of the
for statement. The following program illustrates this fact:

awk 'BEGIN {

for (x = 0; x <= 20; x++) {

if (x == 5)

continue

printf "%d ", x

}

print ""

}'

This program prints all the numbers from zero to 20, except for �ve, for
which the printf is skipped. Since the increment `x++' is not skipped, x
does not remain stuck at �ve. Contrast the for loop above with this while
loop:

awk 'BEGIN {

x = 0

while (x <= 20) {

if (x == 5)

continue

printf "%d ", x

x++

}

print ""

}'

This program loops forever once x gets to �ve.

As described above, the continue statement has no meaning when used
outside the body of a loop. However, although it was never documented, his-
torical implementations of awk have treated the continue statement outside
of a loop as if it were a next statement (see Section 9.7 [The next State-
ment], page 111). Recent versions of Unix awk no longer allow this usage.
gawk will support this use of continue only if `--traditional' has been

Chapter 9: Control Statements in Actions 111

speci�ed on the command line (see Section 14.1 [Command Line Options],
page 161). Otherwise, it will be treated as an error, since the POSIX stan-
dard speci�es that continue should only be used inside the body of a loop
(d.c.).

9.7 The next Statement

The next statement forces awk to immediately stop processing the current
record and go on to the next record. This means that no further rules are
executed for the current record. The rest of the current rule's action is not
executed either.

Contrast this with the e�ect of the getline function (see Section 5.8
[Explicit Input with getline], page 54). That too causes awk to read the
next record immediately, but it does not alter the
ow of control in any way.
So the rest of the current action executes with a new input record.

At the highest level, awk program execution is a loop that reads an input
record and then tests each rule's pattern against it. If you think of this loop
as a for statement whose body contains the rules, then the next statement
is analogous to a continue statement: it skips to the end of the body of this
implicit loop, and executes the increment (which reads another record).

For example, if your awk program works only on records with four �elds,
and you don't want it to fail when given bad input, you might use this rule
near the beginning of the program:

NF != 4 {

err = sprintf("%s:%d: skipped: NF != 4\n", FILENAME, FNR)

print err > "/dev/stderr"

next

}

so that the following rules will not see the bad record. The error message
is redirected to the standard error output stream, as error messages should
be. See Section 6.7 [Special File Names in gawk], page 72.

According to the POSIX standard, the behavior is unde�ned if the next
statement is used in a BEGIN or END rule. gawk will treat it as a syntax error.
Although POSIX permits it, some other awk implementations don't allow
the next statement inside function bodies (see Chapter 13 [User-de�ned
Functions], page 153). Just as any other next statement, a next inside a
function body reads the next record and starts processing it with the �rst
rule in the program.

If the next statement causes the end of the input to be reached, then the
code in any END rules will be executed. See Section 8.1.5 [The BEGIN and
END Special Patterns], page 100.

112 AWK Language Programming

9.8 The nextfile Statement

gawk provides the nextfile statement, which is similar to the next state-
ment. However, instead of abandoning processing of the current record, the
nextfile statement instructs gawk to stop processing the current data �le.

Upon execution of the nextfile statement, FILENAME is updated to the
name of the next data �le listed on the command line, FNR is reset to one,
ARGIND is incremented, and processing starts over with the �rst rule in the
progam. See Chapter 10 [Built-in Variables], page 115.

If the nextfile statement causes the end of the input to be reached, then
the code in any END rules will be executed. See Section 8.1.5 [The BEGIN

and END Special Patterns], page 100.

The nextfile statement is a gawk extension; it is not (currently) avail-
able in any other awk implementation. See Section 15.2 [Implementing
nextfile as a Function], page 170, for a user-de�ned function you can use
to simulate the nextfile statement.

The nextfile statement would be useful if you have many data �les to
process, and you expect that you would not want to process every record in
every �le. Normally, in order to move on to the next data �le, you would
have to continue scanning the unwanted records. The nextfile statement
accomplishes this much more e�ciently.

Caution: Versions of gawk prior to 3.0 used two words (`next file') for
the nextfile statement. This was changed in 3.0 to one word, since the
treatment of `file' was inconsistent. When it appeared after next, it was
a keyword. Otherwise, it was a regular identi�er. The old usage is still
accepted. However, gawk will generate a warning message, and support for
next file will eventually be discontinued in a future version of gawk.

9.9 The exit Statement

The exit statement causes awk to immediately stop executing the current
rule and to stop processing input; any remaining input is ignored. It looks
like this:

exit [return code]

If an exit statement is executed from a BEGIN rule the program stops
processing everything immediately. No input records are read. However, if
an END rule is present, it is executed (see Section 8.1.5 [The BEGIN and END

Special Patterns], page 100).

If exit is used as part of an END rule, it causes the program to stop
immediately.

Chapter 9: Control Statements in Actions 113

An exit statement that is not part of a BEGIN or END rule stops the
execution of any further automatic rules for the current record, skips reading
any remaining input records, and executes the END rule if there is one.

If you do not want the END rule to do its job in this case, you can set a
variable to non-zero before the exit statement, and check that variable in
the END rule. See Section 15.3 [Assertions], page 172, for an example that
does this.

If an argument is supplied to exit, its value is used as the exit status
code for the awk process. If no argument is supplied, exit returns status
zero (success). In the case where an argument is supplied to a �rst exit

statement, and then exit is called a second time with no argument, the
previously supplied exit value is used (d.c.).

For example, let's say you've discovered an error condition you really
don't know how to handle. Conventionally, programs report this by exit-
ing with a non-zero status. Your awk program can do this using an exit

statement with a non-zero argument. Here is an example:

BEGIN {

if (("date" | getline date_now) < 0) {

print "Can't get system date" > "/dev/stderr"

exit 1

}

print "current date is", date_now

close("date")

}

114 AWK Language Programming

Chapter 10: Built-in Variables 115

10 Built-inVariables

Most awk variables are available for you to use for your own purposes; they
never change except when your program assigns values to them, and never
a�ect anything except when your program examines them. However, a few
variables in awk have special built-in meanings. Some of them awk examines
automatically, so that they enable you to tell awk how to do certain things.
Others are set automatically by awk, so that they carry information from
the internal workings of awk to your program.

This chapter documents all the built-in variables of gawk. Most of them
are also documented in the chapters describing their areas of activity.

10.1 Built-in Variables that Control awk

This is an alphabetical list of the variables which you can change to
control how awk does certain things. Those variables that are speci�c to
gawk are marked with an asterisk, `*'.

CONVFMT This string controls conversion of numbers to strings (see Sec-
tion 7.4 [Conversion of Strings and Numbers], page 81). It works
by being passed, in e�ect, as the �rst argument to the sprintf
function (see Section 12.3 [Built-in Functions for String Manip-
ulation], page 137). Its default value is "%.6g". CONVFMT was
introduced by the POSIX standard.

FIELDWIDTHS *

This is a space separated list of columns that tells gawk how to
split input with �xed, columnar boundaries. It is an experimen-
tal feature. Assigning to FIELDWIDTHS overrides the use of FS
for �eld splitting. See Section 5.6 [Reading Fixed-width Data],
page 49, for more information.

If gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 161), then FIELDWIDTHS has no special
meaning, and �eld splitting operations are done based exclu-
sively on the value of FS.

FS FS is the input �eld separator (see Section 5.5 [Specifying How
Fields are Separated], page 44). The value is a single-character
string or a multi-character regular expression that matches the
separations between �elds in an input record. If the value is the
null string (""), then each character in the record becomes a
separate �eld.

The default value is " ", a string consisting of a single space.
As a special exception, this value means that any sequence of

116 AWK Language Programming

spaces and tabs is a single separator. It also causes spaces and
tabs at the beginning and end of a record to be ignored.

You can set the value of FS on the command line using the `-F'
option:

awk -F, 'program' input-�les

If gawk is using FIELDWIDTHS for �eld-splitting, assigning a value
to FS will cause gawk to return to the normal, FS-based, �eld
splitting. An easy way to do this is to simply say `FS = FS',
perhaps with an explanatory comment.

IGNORECASE *

If IGNORECASE is non-zero or non-null, then all string compar-
isons, and all regular expression matching are case-independent.
Thus, regexp matching with `~' and `!~', and the gensub, gsub,
index, match, split and sub functions, record termination with
RS, and �eld splitting with FS all ignore case when doing their
particular regexp operations. See Section 4.5 [Case-sensitivity
in Matching], page 33.

If gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 161), then IGNORECASE has no special mean-
ing, and string and regexp operations are always case-sensitive.

OFMT This string controls conversion of numbers to strings (see Sec-
tion 7.4 [Conversion of Strings and Numbers], page 81) for print-
ing with the print statement. It works by being passed, in
e�ect, as the �rst argument to the sprintf function (see Sec-
tion 12.3 [Built-in Functions for String Manipulation], page 137).
Its default value is "%.6g". Earlier versions of awk also used
OFMT to specify the format for converting numbers to strings in
general expressions; this is now done by CONVFMT.

OFS This is the output �eld separator (see Section 6.3 [Output Sep-
arators], page 63). It is output between the �elds output by a
print statement. Its default value is " ", a string consisting of
a single space.

ORS This is the output record separator. It is output at the end of ev-
ery print statement. Its default value is "\n". (See Section 6.3
[Output Separators], page 63.)

RS This is awk's input record separator. Its default value is a string
containing a single newline character, which means that an input
record consists of a single line of text. It can also be the null
string, in which case records are separated by runs of blank lines,
or a regexp, in which case records are separated by matches of
the regexp in the input text. (See Section 5.1 [How Input is Split
into Records], page 37.)

Chapter 10: Built-in Variables 117

SUBSEP SUBSEP is the subscript separator. It has the default value
of "\034", and is used to separate the parts of the in-
dices of a multi-dimensional array. Thus, the expression
foo["A", "B"] really accesses foo["A\034B"] (see Section 11.9
[Multi-dimensional Arrays], page 130).

10.2 Built-in Variables that Convey Information

This is an alphabetical list of the variables that are set automatically by
awk on certain occasions in order to provide information to your program.
Those variables that are speci�c to gawk are marked with an asterisk, `*'.

ARGC

ARGV The command-line arguments available to awk programs are
stored in an array called ARGV. ARGC is the number of command-
line arguments present. See Section 14.2 [Other Command Line
Arguments], page 165. Unlike most awk arrays, ARGV is indexed
from zero to ARGC � 1. For example:

$ awk 'BEGIN {

> for (i = 0; i < ARGC; i++)

> print ARGV[i]

> }' inventory-shipped BBS-list

a awk

a inventory-shipped

a BBS-list

In this example, ARGV[0] contains "awk", ARGV[1] contains
"inventory-shipped", and ARGV[2] contains "BBS-list". The
value of ARGC is three, one more than the index of the last ele-
ment in ARGV, since the elements are numbered from zero.

The names ARGC and ARGV, as well as the convention of index-
ing the array from zero to ARGC � 1, are derived from the C
language's method of accessing command line arguments. See
Section 10.3 [Using ARGC and ARGV], page 120, for information
about how awk uses these variables.

ARGIND * The index in ARGV of the current �le being processed. Every
time gawk opens a new data �le for processing, it sets ARGIND to
the index in ARGV of the �le name. When gawk is processing the
input �les, it is always true that `FILENAME == ARGV[ARGIND]'.

This variable is useful in �le processing; it allows you to tell how
far along you are in the list of data �les, and to distinguish be-
tween successive instances of the same �lename on the command
line.

118 AWK Language Programming

While you can change the value of ARGIND within your awk pro-
gram, gawk will automatically set it to a new value when the
next �le is opened.

This variable is a gawk extension. In other awk implementations,
or if gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 161), it is not special.

ENVIRON An associative array that contains the values of the environment.
The array indices are the environment variable names; the val-
ues are the values of the particular environment variables. For
example, ENVIRON["HOME"] might be `/home/arnold'. Chang-
ing this array does not a�ect the environment passed on to any
programs that awk may spawn via redirection or the system

function. (In a future version of gawk, it may do so.)

Some operating systems may not have environment variables.
On such systems, the ENVIRON array is empty (except for
ENVIRON["AWKPATH"]).

ERRNO * If a system error occurs either doing a redirection for getline,
during a read for getline, or during a close operation, then
ERRNO will contain a string describing the error.

This variable is a gawk extension. In other awk implementations,
or if gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 161), it is not special.

FILENAME This is the name of the �le that awk is currently reading. When
no data �les are listed on the command line, awk reads from
the standard input, and FILENAME is set to "-". FILENAME is
changed each time a new �le is read (see Chapter 5 [Reading
Input Files], page 37). Inside a BEGIN rule, the value of FILENAME
is "", since there are no input �les being processed yet.1 (d.c.)

FNR FNR is the current record number in the current �le. FNR is
incremented each time a new record is read (see Section 5.8
[Explicit Input with getline], page 54). It is reinitialized to
zero each time a new input �le is started.

NF NF is the number of �elds in the current input record. NF is set
each time a new record is read, when a new �eld is created, or
when $0 changes (see Section 5.2 [Examining Fields], page 40).

NR This is the number of input records awk has processed since
the beginning of the program's execution (see Section 5.1 [How

1 Some early implementations of Unix awk initialized FILENAME to "-",
even if there were data �les to be processed. This behavior was incorrect,
and should not be relied upon in your programs.

Chapter 10: Built-in Variables 119

Input is Split into Records], page 37). NR is set each time a new
record is read.

RLENGTH RLENGTH is the length of the substring matched by the match

function (see Section 12.3 [Built-in Functions for String Manip-
ulation], page 137). RLENGTH is set by invoking the match func-
tion. Its value is the length of the matched string, or �1 if no
match was found.

RSTART RSTART is the start-index in characters of the substring matched
by the match function (see Section 12.3 [Built-in Functions for
String Manipulation], page 137). RSTART is set by invoking the
match function. Its value is the position of the string where the
matched substring starts, or zero if no match was found.

RT * RT is set each time a record is read. It contains the input text
that matched the text denoted by RS, the record separator.

This variable is a gawk extension. In other awk implementations,
or if gawk is in compatibility mode (see Section 14.1 [Command
Line Options], page 161), it is not special.

A side note about NR and FNR. awk simply increments both of these
variables each time it reads a record, instead of setting them to the absolute
value of the number of records read. This means that your program can
change these variables, and their new values will be incremented for each
record (d.c.). For example:

$ echo '1

> 2

> 3

> 4' | awk 'NR == 2 { NR = 17 }

> { print NR }'

a 1

a 17

a 18

a 19

Before FNR was added to the awk language (see Section 17.1 [Major Changes
between V7 and SVR3.1], page 251), many awk programs used this feature to
track the number of records in a �le by resetting NR to zero when FILENAME

changed.

10.3 Using ARGC and ARGV

In Section 10.2 [Built-in Variables that Convey Information], page 117,
you saw this program describing the information contained in ARGC and ARGV:

120 AWK Language Programming

$ awk 'BEGIN {

> for (i = 0; i < ARGC; i++)

> print ARGV[i]

> }' inventory-shipped BBS-list

a awk

a inventory-shipped

a BBS-list

In this example, ARGV[0] contains "awk", ARGV[1] contains "inventory-

shipped", and ARGV[2] contains "BBS-list".

Notice that the awk program is not entered in ARGV. The other special
command line options, with their arguments, are also not entered. But
variable assignments on the command line are treated as arguments, and do
show up in the ARGV array.

Your program can alter ARGC and the elements of ARGV. Each time awk

reaches the end of an input �le, it uses the next element of ARGV as the name
of the next input �le. By storing a di�erent string there, your program
can change which �les are read. You can use "-" to represent the standard
input. By storing additional elements and incrementing ARGC you can cause
additional �les to be read.

If you decrease the value of ARGC, that eliminates input �les from the end
of the list. By recording the old value of ARGC elsewhere, your program can
treat the eliminated arguments as something other than �le names.

To eliminate a �le from the middle of the list, store the null string ("")
into ARGV in place of the �le's name. As a special feature, awk ignores
�le names that have been replaced with the null string. You may also use
the delete statement to remove elements from ARGV (see Section 11.6 [The
delete Statement], page 128).

All of these actions are typically done from the BEGIN rule, before actual
processing of the input begins. See Section 16.1.4 [Splitting a Large File Into
Pieces], page 215, and see Section 16.1.5 [Duplicating Output Into Multiple
Files], page 217, for an example of each way of removing elements from ARGV.

The following fragment processes ARGV in order to examine, and then
remove, command line options.

BEGIN {

for (i = 1; i < ARGC; i++) {

if (ARGV[i] == "-v")

verbose = 1

else if (ARGV[i] == "-d")

debug = 1

Chapter 10: Built-in Variables 121

else if (ARGV[i] ~ /^-?/) {

e = sprintf("%s: unrecognized option -- %c",

ARGV[0], substr(ARGV[i], 1, ,1))

print e > "/dev/stderr"

} else

break

delete ARGV[i]

}

}

122 AWK Language Programming

Chapter 11: Arrays in awk 123

11 Arrays in awk

An array is a table of values, called elements. The elements of an array
are distinguished by their indices. Indices may be either numbers or strings.
awk maintains a single set of names that may be used for naming variables,
arrays and functions (see Chapter 13 [User-de�ned Functions], page 153).
Thus, you cannot have a variable and an array with the same name in the
same awk program.

11.1 Introduction to Arrays

The awk language provides one-dimensional arrays for storing groups of
related strings or numbers.

Every awk array must have a name. Array names have the same syntax
as variable names; any valid variable name would also be a valid array name.
But you cannot use one name in both ways (as an array and as a variable)
in one awk program.

Arrays in awk super�cially resemble arrays in other programming lan-
guages; but there are fundamental di�erences. In awk, you don't need to
specify the size of an array before you start to use it. Additionally, any
number or string in awk may be used as an array index, not just consecutive
integers.

In most other languages, you have to declare an array and specify how
many elements or components it contains. In such languages, the declaration
causes a contiguous block of memory to be allocated for that many elements.
An index in the array usually must be a positive integer; for example, the
index zero speci�es the �rst element in the array, which is actually stored
at the beginning of the block of memory. Index one speci�es the second
element, which is stored in memory right after the �rst element, and so on.
It is impossible to add more elements to the array, because it has room for
only as many elements as you declared. (Some languages allow arbitrary
starting and ending indices, e.g., `15 .. 27', but the size of the array is still
�xed when the array is declared.)

A contiguous array of four elements might look like this, conceptually, if
the element values are eight, "foo", "" and 30:

8 "foo" "" 30 value

0 1 2 3 index

Only the values are stored; the indices are implicit from the order of the
values. Eight is the value at index zero, because eight appears in the position
with zero elements before it.

124 AWK Language Programming

Arrays in awk are di�erent: they are associative. This means that each
array is a collection of pairs: an index, and its corresponding array element
value:

Element 4 Value 30

Element 2 Value "foo"

Element 1 Value 8

Element 3 Value ""

We have shown the pairs in jumbled order because their order is irrelevant.

One advantage of associative arrays is that new pairs can be added at
any time. For example, suppose we add to the above array a tenth element
whose value is "number ten". The result is this:

Element 10 Value "number ten"

Element 4 Value 30

Element 2 Value "foo"

Element 1 Value 8

Element 3 Value ""

Now the array is sparse, which just means some indices are missing: it has
elements 1{4 and 10, but doesn't have elements 5, 6, 7, 8, or 9.

Another consequence of associative arrays is that the indices don't have
to be positive integers. Any number, or even a string, can be an index. For
example, here is an array which translates words from English into French:

Element "dog" Value "chien"

Element "cat" Value "chat"

Element "one" Value "un"

Element 1 Value "un"

Here we decided to translate the number one in both spelled-out and numeric
form|thus illustrating that a single array can have both numbers and strings
as indices. (In fact, array subscripts are always strings; this is discussed in
more detail in Section 11.7 [Using Numbers to Subscript Arrays], page 129.)

When awk creates an array for you, e.g., with the split built-in function,
that array's indices are consecutive integers starting at one. (See Section 12.3
[Built-in Functions for String Manipulation], page 137.)

11.2 Referring to an Array Element

The principal way of using an array is to refer to one of its elements. An
array reference is an expression which looks like this:

array[index]

Here, array is the name of an array. The expression index is the index of
the element of the array that you want.

Chapter 11: Arrays in awk 125

The value of the array reference is the current value of that array element.
For example, foo[4.3] is an expression for the element of array foo at index
`4.3'.

If you refer to an array element that has no recorded value, the value of
the reference is "", the null string. This includes elements to which you have
not assigned any value, and elements that have been deleted (see Section 11.6
[The delete Statement], page 128). Such a reference automatically creates
that array element, with the null string as its value. (In some cases, this is
unfortunate, because it might waste memory inside awk.)

You can �nd out if an element exists in an array at a certain index with
the expression:

index in array

This expression tests whether or not the particular index exists, without the
side e�ect of creating that element if it is not present. The expression has
the value one (true) if array[index] exists, and zero (false) if it does not
exist.

For example, to test whether the array frequencies contains the index
`2', you could write this statement:

if (2 in frequencies)

print "Subscript 2 is present."

Note that this is not a test of whether or not the array frequencies

contains an element whose value is two. (There is no way to do that except
to scan all the elements.) Also, this does not create frequencies[2], while
the following (incorrect) alternative would do so:

if (frequencies[2] != "")

print "Subscript 2 is present."

11.3 Assigning Array Elements

Array elements are lvalues: they can be assigned values just like awk

variables:

array[subscript] = value

Here array is the name of your array. The expression subscript is the index
of the element of the array that you want to assign a value. The expression
value is the value you are assigning to that element of the array.

11.4 Basic Array Example

The following program takes a list of lines, each beginning with a line
number, and prints them out in order of line number. The line numbers
are not in order, however, when they are �rst read: they are scrambled.

126 AWK Language Programming

This program sorts the lines by making an array using the line numbers as
subscripts. It then prints out the lines in sorted order of their numbers. It is
a very simple program, and gets confused if it encounters repeated numbers,
gaps, or lines that don't begin with a number.

{

if ($1 > max)

max = $1

arr[$1] = $0

}

END {

for (x = 1; x <= max; x++)

print arr[x]

}

The �rst rule keeps track of the largest line number seen so far; it also
stores each line into the array arr, at an index that is the line's number.

The second rule runs after all the input has been read, to print out all
the lines.

When this program is run with the following input:

5 I am the Five man

2 Who are you? The new number two!

4 . . . And four on the floor

1 Who is number one?

3 I three you.

its output is this:

1 Who is number one?

2 Who are you? The new number two!

3 I three you.

4 . . . And four on the floor

5 I am the Five man

If a line number is repeated, the last line with a given number overrides
the others.

Gaps in the line numbers can be handled with an easy improvement to
the program's END rule:

END {

for (x = 1; x <= max; x++)

if (x in arr)

print arr[x]

}

Chapter 11: Arrays in awk 127

11.5 Scanning All Elements of an Array

In programs that use arrays, you often need a loop that executes once for
each element of an array. In other languages, where arrays are contiguous
and indices are limited to positive integers, this is easy: you can �nd all
the valid indices by counting from the lowest index up to the highest. This
technique won't do the job in awk, since any number or string can be an
array index. So awk has a special kind of for statement for scanning an
array:

for (var in array)
body

This loop executes body once for each index in array that your program has
previously used, with the variable var set to that index.

Here is a program that uses this form of the for statement. The �rst
rule scans the input records and notes which words appear (at least once) in
the input, by storing a one into the array used with the word as index. The
second rule scans the elements of used to �nd all the distinct words that
appear in the input. It prints each word that is more than 10 characters
long, and also prints the number of such words. See Section 12.3 [Built-in
Functions for String Manipulation], page 137, for more information on the
built-in function length.

Record a 1 for each word that is used at least once.

{

for (i = 1; i <= NF; i++)

used[$i] = 1

}

Find number of distinct words more than 10 characters long.

END {

for (x in used)

if (length(x) > 10) {

++num_long_words

print x

}

print num_long_words, "words longer than 10 characters"

}

See Section 16.2.5 [Generating Word Usage Counts], page 234, for a more
detailed example of this type.

The order in which elements of the array are accessed by this statement
is determined by the internal arrangement of the array elements within awk

and cannot be controlled or changed. This can lead to problems if new
elements are added to array by statements in the loop body; you cannot

128 AWK Language Programming

predict whether or not the for loop will reach them. Similarly, changing var
inside the loop may produce strange results. It is best to avoid such things.

11.6 The delete Statement

You can remove an individual element of an array using the delete state-
ment:

delete array[index]

Once you have deleted an array element, you can no longer obtain any
value the element once had. It is as if you had never referred to it and had
never given it any value.

Here is an example of deleting elements in an array:

for (i in frequencies)

delete frequencies[i]

This example removes all the elements from the array frequencies.

If you delete an element, a subsequent for statement to scan the array
will not report that element, and the in operator to check for the presence
of that element will return zero (i.e. false):

delete foo[4]

if (4 in foo)

print "This will never be printed"

It is important to note that deleting an element is not the same as as-
signing it a null value (the empty string, "").

foo[4] = ""

if (4 in foo)

print "This is printed, even though foo[4] is empty"

It is not an error to delete an element that does not exist.

You can delete all the elements of an array with a single statement, by
leaving o� the subscript in the delete statement.

delete array

This ability is a gawk extension; it is not available in compatibility mode
(see Section 14.1 [Command Line Options], page 161).

Using this version of the delete statement is about three times more
e�cient than the equivalent loop that deletes each element one at a time.

The following statement provides a portable, but non-obvious way to
clear out an array.

thanks to Michael Brennan for pointing this out

split("", array)

Chapter 11: Arrays in awk 129

The split function (see Section 12.3 [Built-in Functions for String Ma-
nipulation], page 137) clears out the target array �rst. This call asks it to
split apart the null string. Since there is no data to split out, the function
simply clears the array and then returns.

11.7 Using Numbers to Subscript Arrays

An important aspect of arrays to remember is that array subscripts are
always strings. If you use a numeric value as a subscript, it will be converted
to a string value before it is used for subscripting (see Section 7.4 [Conversion
of Strings and Numbers], page 81).

This means that the value of the built-in variable CONVFMT can potentially
a�ect how your program accesses elements of an array. For example:

xyz = 12.153

data[xyz] = 1

CONVFMT = "%2.2f"

if (xyz in data)

printf "%s is in data\n", xyz

else

printf "%s is not in data\n", xyz

This prints `12.15 is not in data'. The �rst statement gives xyz a nu-
meric value. Assigning to data[xyz] subscripts data with the string value
"12.153" (using the default conversion value of CONVFMT, "%.6g"), and
assigns one to data["12.153"]. The program then changes the value of
CONVFMT. The test `(xyz in data)' generates a new string value from xyz,
this time "12.15", since the value of CONVFMT only allows two signi�cant
digits. This test fails, since "12.15" is a di�erent string from "12.153".

According to the rules for conversions (see Section 7.4 [Conversion of
Strings and Numbers], page 81), integer values are always converted to
strings as integers, no matter what the value of CONVFMT may happen to
be. So the usual case of:

for (i = 1; i <= maxsub; i++)

do something with array[i]

will work, no matter what the value of CONVFMT.

Like many things in awk, the majority of the time things work as you
would expect them to work. But it is useful to have a precise knowledge
of the actual rules, since sometimes they can have a subtle e�ect on your
programs.

130 AWK Language Programming

11.8 Using Uninitialized Variables as Subscripts

Suppose you want to print your input data in reverse order. A reasonable
attempt at a program to do so (with some test data) might look like this:

$ echo 'line 1

> line 2

> line 3' | awk '{ l[lines] = $0; ++lines }

> END {

> for (i = lines-1; i >= 0; --i)

> print l[i]

> }'

a line 3

a line 2

Unfortunately, the very �rst line of input data did not come out in the
output!

At �rst glance, this program should have worked. The variable lines is
uninitialized, and uninitialized variables have the numeric value zero. So,
the value of l[0] should have been printed.

The issue here is that subscripts for awk arrays are always strings. And
uninitialized variables, when used as strings, have the value "", not zero.
Thus, `line 1' ended up stored in l[""].

The following version of the program works correctly:

{ l[lines++] = $0 }

END {

for (i = lines - 1; i >= 0; --i)

print l[i]

}

Here, the `++' forces l to be numeric, thus making the \old value" numeric
zero, which is then converted to "0" as the array subscript.

As we have just seen, even though it is somewhat unusual, the null string
("") is a valid array subscript (d.c.). If `--lint' is provided on the command
line (see Section 14.1 [Command Line Options], page 161), gawk will warn
about the use of the null string as a subscript.

11.9 Multi-dimensional Arrays

A multi-dimensional array is an array in which an element is identi�ed
by a sequence of indices, instead of a single index. For example, a two-
dimensional array requires two indices. The usual way (in most languages,
including awk) to refer to an element of a two-dimensional array named grid

is with grid[x,y].

Chapter 11: Arrays in awk 131

Multi-dimensional arrays are supported in awk through concatenation of
indices into one string. What happens is that awk converts the indices into
strings (see Section 7.4 [Conversion of Strings and Numbers], page 81) and
concatenates them together, with a separator between them. This creates a
single string that describes the values of the separate indices. The combined
string is used as a single index into an ordinary, one-dimensional array. The
separator used is the value of the built-in variable SUBSEP.

For example, suppose we evaluate the expression `foo[5,12] = "value"'
when the value of SUBSEP is "@". The numbers �ve and 12 are converted to
strings and concatenated with an `@' between them, yielding "5@12"; thus,
the array element foo["5@12"] is set to "value".

Once the element's value is stored, awk has no record of whether it was
stored with a single index or a sequence of indices. The two expressions
`foo[5,12]' and `foo[5 SUBSEP 12]' are always equivalent.

The default value of SUBSEP is the string "\034", which contains a non-
printing character that is unlikely to appear in an awk program or in most
input data.

The usefulness of choosing an unlikely character comes from the fact that
index values that contain a string matching SUBSEP lead to combined strings
that are ambiguous. Suppose that SUBSEP were "@"; then `foo["a@b", "c"]'
and `foo["a", "b@c"]' would be indistinguishable because both would ac-
tually be stored as `foo["a@b@c"]'.

You can test whether a particular index-sequence exists in a \multi-
dimensional" array with the same operator `in' used for single dimensional
arrays. Instead of a single index as the left-hand operand, write the whole
sequence of indices, separated by commas, in parentheses:

(subscript1, subscript2, : : :) in array

The following example treats its input as a two-dimensional array of �elds;
it rotates this array 90 degrees clockwise and prints the result. It assumes
that all lines have the same number of elements.

awk '{

if (max_nf < NF)

max_nf = NF

max_nr = NR

for (x = 1; x <= NF; x++)

vector[x, NR] = $x

}

132 AWK Language Programming

END {

for (x = 1; x <= max_nf; x++) {

for (y = max_nr; y >= 1; --y)

printf("%s ", vector[x, y])

printf("\n")

}

}'

When given the input:

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

it produces:

4 3 2 1

5 4 3 2

6 5 4 3

1 6 5 4

2 1 6 5

3 2 1 6

11.10 Scanning Multi-dimensional Arrays

There is no special for statement for scanning a \multi-dimensional"
array; there cannot be one, because in truth there are no multi-dimensional
arrays or elements; there is only a multi-dimensional way of accessing an
array.

However, if your program has an array that is always accessed as multi-
dimensional, you can get the e�ect of scanning it by combining the scan-
ning for statement (see Section 11.5 [Scanning All Elements of an Array],
page 127) with the split built-in function (see Section 12.3 [Built-in Func-
tions for String Manipulation], page 137). It works like this:

for (combined in array) {

split(combined, separate, SUBSEP)

: : :

}

This sets combined to each concatenated, combined index in the array, and
splits it into the individual indices by breaking it apart where the value of
SUBSEP appears. The split-out indices become the elements of the array
separate.

Thus, suppose you have previously stored a value in array[1, "foo"];
then an element with index "1\034foo" exists in array. (Recall that the

Chapter 11: Arrays in awk 133

default value of SUBSEP is the character with code 034.) Sooner or later the
for statement will �nd that index and do an iteration with combined set to
"1\034foo". Then the split function is called as follows:

split("1\034foo", separate, "\034")

The result of this is to set separate[1] to "1" and separate[2] to "foo".
Presto, the original sequence of separate indices has been recovered.

134 AWK Language Programming

Chapter 12: Built-in Functions 135

12 Built-in Functions

Built-in functions are functions that are always available for your awk

program to call. This chapter de�nes all the built-in functions in awk; some of
them are mentioned in other sections, but they are summarized here for your
convenience. (You can also de�ne new functions yourself. See Chapter 13
[User-de�ned Functions], page 153.)

12.1 Calling Built-in Functions

To call a built-in function, write the name of the function followed by
arguments in parentheses. For example, `atan2(y + z, 1)' is a call to the
function atan2, with two arguments.

Whitespace is ignored between the built-in function name and the open-
parenthesis, but we recommend that you avoid using whitespace there. User-
de�ned functions do not permit whitespace in this way, and you will �nd it
easier to avoid mistakes by following a simple convention which always works:
no whitespace after a function name.

Each built-in function accepts a certain number of arguments. In some
cases, arguments can be omitted. The defaults for omitted arguments vary
from function to function and are described under the individual functions.
In some awk implementations, extra arguments given to built-in functions
are ignored. However, in gawk, it is a fatal error to give extra arguments to
a built-in function.

When a function is called, expressions that create the function's actual
parameters are evaluated completely before the function call is performed.
For example, in the code fragment:

i = 4

j = sqrt(i++)

the variable i is set to �ve before sqrt is called with a value of four for its
actual parameter.

The order of evaluation of the expressions used for the function's param-
eters is unde�ned. Thus, you should not write programs that assume that
parameters are evaluated from left to right or from right to left. For example,

i = 5

j = atan2(i++, i *= 2)

If the order of evaluation is left to right, then i �rst becomes six, and
then 12, and atan2 is called with the two arguments six and 12. But if
the order of evaluation is right to left, i �rst becomes 10, and then 11, and
atan2 is called with the two arguments 11 and 10.

136 AWK Language Programming

12.2 Numeric Built-in Functions

Here is a full list of built-in functions that work with numbers. Optional
parameters are enclosed in square brackets (\[" and \]").

int(x) This produces the nearest integer to x, located between x and
zero, truncated toward zero.

For example, int(3) is three, int(3.9) is three, int(-3.9) is
�3, and int(-3) is �3 as well.

sqrt(x) This gives you the positive square root of x. It reports an error
if x is negative. Thus, sqrt(4) is two.

exp(x) This gives you the exponential of x (e ^ x), or reports an error
if x is out of range. The range of values x can have depends on
your machine's
oating point representation.

log(x) This gives you the natural logarithm of x, if x is positive; oth-
erwise, it reports an error.

sin(x) This gives you the sine of x, with x in radians.

cos(x) This gives you the cosine of x, with x in radians.

atan2(y, x)
This gives you the arctangent of y / x in radians.

rand() This gives you a random number. The values of rand are
uniformly-distributed between zero and one. The value is never
zero and never one.

Often you want random integers instead. Here is a user-de�ned
function you can use to obtain a random non-negative integer
less than n:

function randint(n) {

return int(n * rand())

}

The multiplication produces a random real number greater than
zero and less than n. We then make it an integer (using int)
between zero and n � 1, inclusive.

Here is an example where a similar function is used to produce
random integers between one and n. This program prints a new
random number for each input record.

awk '

Function to roll a simulated die.

function roll(n) { return 1 + int(rand() * n) }

Chapter 12: Built-in Functions 137

Roll 3 six-sided dice and

print total number of points.

{

printf("%d points\n",

roll(6)+roll(6)+roll(6))

}'

Caution: In most awk implementations, including gawk, rand
starts generating numbers from the same starting number, or
seed, each time you run awk. Thus, a program will generate the
same results each time you run it. The numbers are random
within one awk run, but predictable from run to run. This is
convenient for debugging, but if you want a program to do dif-
ferent things each time it is used, you must change the seed to
a value that will be di�erent in each run. To do this, use srand.

srand([x])
The function srand sets the starting point, or seed, for generat-
ing random numbers to the value x.

Each seed value leads to a particular sequence of random num-
bers.1 Thus, if you set the seed to the same value a second time,
you will get the same sequence of random numbers again.

If you omit the argument x, as in srand(), then the current
date and time of day are used for a seed. This is the way to get
random numbers that are truly unpredictable.

The return value of srand is the previous seed. This makes it
easy to keep track of the seeds for use in consistently reproducing
sequences of random numbers.

12.3 Built-in Functions for String Manipulation

The functions in this section look at or change the text of one or more
strings. Optional parameters are enclosed in square brackets (\[" and \]").

index(in, �nd)
This searches the string in for the �rst occurrence of the string
�nd, and returns the position in characters where that occur-
rence begins in the string in. For example:

$ awk 'BEGIN { print index("peanut", "an") }'

a 3

1 Computer generated random numbers really are not truly random. They
are technically known as \pseudo-random." This means that while the
numbers in a sequence appear to be random, you can in fact generate the
same sequence of random numbers over and over again.

138 AWK Language Programming

If �nd is not found, index returns zero. (Remember that string
indices in awk start at one.)

length([string])
This gives you the number of characters in string. If string is a
number, the length of the digit string representing that number
is returned. For example, length("abcde") is �ve. By contrast,
length(15 * 35) works out to three. How? Well, 15 * 35 = 525,
and 525 is then converted to the string "525", which has three
characters.

If no argument is supplied, length returns the length of $0.

In older versions of awk, you could call the length function
without any parentheses. Doing so is marked as \deprecated"
in the POSIX standard. This means that while you can do this
in your programs, it is a feature that can eventually be removed
from a future version of the standard. Therefore, for maximal
portability of your awk programs, you should always supply the
parentheses.

match(string, regexp)
The match function searches the string, string, for the longest,
leftmost substring matched by the regular expression, regexp. It
returns the character position, or index, of where that substring
begins (one, if it starts at the beginning of string). If no match
is found, it returns zero.

The match function sets the built-in variable RSTART to the in-
dex. It also sets the built-in variable RLENGTH to the length
in characters of the matched substring. If no match is found,
RSTART is set to zero, and RLENGTH to �1.

For example:

awk '{

if ($1 == "FIND")

regex = $2

else {

where = match($0, regex)

if (where != 0)

print "Match of", regex, "found at", \

where, "in", $0

}

}'

This program looks for lines that match the regular expression
stored in the variable regex. This regular expression can be
changed. If the �rst word on a line is `FIND', regex is changed
to be the second word on that line. Therefore, given:

Chapter 12: Built-in Functions 139

FIND ru+n

My program runs

but not very quickly

FIND Melvin

JF+KM

This line is property of Reality Engineering Co.

Melvin was here.

awk prints:

Match of ru+n found at 12 in My program runs

Match of Melvin found at 1 in Melvin was here.

split(string, array [, �eldsep])
This divides string into pieces separated by �eldsep, and stores
the pieces in array. The �rst piece is stored in array[1], the
second piece in array[2], and so forth. The string value of the
third argument, �eldsep, is a regexp describing where to split
string (much as FS can be a regexp describing where to split
input records). If the �eldsep is omitted, the value of FS is used.
split returns the number of elements created.

The split function splits strings into pieces in a manner similar
to the way input lines are split into �elds. For example:

split("cul-de-sac", a, "-")

splits the string `cul-de-sac' into three �elds using `-' as the
separator. It sets the contents of the array a as follows:

a[1] = "cul"

a[2] = "de"

a[3] = "sac"

The value returned by this call to split is three.

As with input �eld-splitting, when the value of �eldsep is " ",
leading and trailing whitespace is ignored, and the elements are
separated by runs of whitespace.

Also as with input �eld-splitting, if �eldsep is the null string,
each individual character in the string is split into its own array
element. (This is a gawk-speci�c extension.)

Recent implementations of awk, including gawk, allow the third
argument to be a regexp constant (/abc/), as well as a string
(d.c.). The POSIX standard allows this as well.

Before splitting the string, split deletes any previously existing
elements in the array array (d.c.).

140 AWK Language Programming

sprintf(format, expression1,: : :)

This returns (without printing) the string that printf would
have printed out with the same arguments (see Section 6.5 [Using
printf Statements for Fancier Printing], page 64). For example:

sprintf("pi = %.2f (approx.)", 22/7)

returns the string "pi = 3.14 (approx.)".

sub(regexp, replacement [, target])
The sub function alters the value of target. It searches this
value, which is treated as a string, for the leftmost longest sub-
string matched by the regular expression, regexp, extending this
match as far as possible. Then the entire string is changed by re-
placing the matched text with replacement. The modi�ed string
becomes the new value of target.

This function is peculiar because target is not simply used to
compute a value, and not just any expression will do: it must be
a variable, �eld or array element, so that sub can store a modi-
�ed value there. If this argument is omitted, then the default is
to use and alter $0.

For example:

str = "water, water, everywhere"

sub(/at/, "ith", str)

sets str to "wither, water, everywhere", by replacing the
leftmost, longest occurrence of `at' with `ith'.

The sub function returns the number of substitutions made (ei-
ther one or zero).

If the special character `&' appears in replacement, it stands for
the precise substring that was matched by regexp. (If the regexp
can match more than one string, then this precise substring may
vary.) For example:

awk '{ sub(/candidate/, "& and his wife"); print }'

changes the �rst occurrence of `candidate' to `candidate and

his wife' on each input line.

Here is another example:

awk 'BEGIN {

str = "daabaaa"

sub(/a*/, "c&c", str)

print str

}'

a dcaacbaaa

Chapter 12: Built-in Functions 141

This shows how `&' can represent a non-constant string, and also
illustrates the \leftmost, longest" rule in regexp matching (see
Section 4.6 [How Much Text Matches?], page 34).

The e�ect of this special character (`&') can be turned o� by
putting a backslash before it in the string. As usual, to insert
one backslash in the string, you must write two backslashes.
Therefore, write `\\&' in a string constant to include a literal `&'
in the replacement. For example, here is how to replace the �rst
`|' on each line with an `&':

awk '{ sub(/\|/, "\\&"); print }'

Note: As mentioned above, the third argument to sub must be
a variable, �eld or array reference. Some versions of awk allow
the third argument to be an expression which is not an lvalue.
In such a case, sub would still search for the pattern and return
zero or one, but the result of the substitution (if any) would be
thrown away because there is no place to put it. Such versions
of awk accept expressions like this:

sub(/USA/, "United States", "the USA and Canada")

This is considered erroneous in gawk.

gsub(regexp, replacement [, target])
This is similar to the sub function, except gsub replaces all
of the longest, leftmost, non-overlapping matching substrings
it can �nd. The `g' in gsub stands for \global," which means
replace everywhere. For example:

awk '{ gsub(/Britain/, "United Kingdom"); print }'

replaces all occurrences of the string `Britain' with `United
Kingdom' for all input records.

The gsub function returns the number of substitutions made. If
the variable to be searched and altered, target, is omitted, then
the entire input record, $0, is used.

As in sub, the characters `&' and `\' are special, and the third
argument must be an lvalue.

gensub(regexp, replacement, how [, target])
gensub is a general substitution function. Like sub and gsub,
it searches the target string target for matches of the regular
expression regexp. Unlike sub and gsub, the modi�ed string is
returned as the result of the function, and the original target
string is not changed. If how is a string beginning with `g'
or `G', then it replaces all matches of regexp with replacement.
Otherwise, how is a number indicating which match of regexp
to replace. If no target is supplied, $0 is used instead.

142 AWK Language Programming

gensub provides an additional feature that is not available in
sub or gsub: the ability to specify components of a regexp in
the replacement text. This is done by using parentheses in the
regexp to mark the components, and then specifying `\n' in
the replacement text, where n is a digit from one to nine. For
example:

$ gawk '

> BEGIN {

> a = "abc def"

> b = gensub(/(.+) (.+)/, "\\2 \\1", "g", a)

> print b

> }'

a def abc

As described above for sub, you must type two backslashes in
order to get one into the string.

In the replacement text, the sequence `\0' represents the entire
matched text, as does the character `&'.

This example shows how you can use the third argument to
control which match of the regexp should be changed.

$ echo a b c a b c |

> gawk '{ print gensub(/a/, "AA", 2) }'

a a b c AA b c

In this case, $0 is used as the default target string. gensub

returns the new string as its result, which is passed directly to
print for printing.

If the how argument is a string that does not begin with `g' or `G',
or if it is a number that is less than zero, only one substitution
is performed.

gensub is a gawk extension; it is not available in compatibility
mode (see Section 14.1 [Command Line Options], page 161).

substr(string, start [, length])
This returns a length-character-long substring of string, starting
at character number start. The �rst character of a string is
character number one. For example, substr("washington",
5, 3) returns "ing".

If length is not present, this function returns the whole su�x
of string that begins at character number start. For example,
substr("washington", 5) returns "ington". The whole su�x
is also returned if length is greater than the number of characters
remaining in the string, counting from character number start.

Chapter 12: Built-in Functions 143

tolower(string)
This returns a copy of string, with each upper-case character
in the string replaced with its corresponding lower-case charac-
ter. Non-alphabetic characters are left unchanged. For example,
tolower("MiXeD cAsE 123") returns "mixed case 123".

toupper(string)
This returns a copy of string, with each lower-case character
in the string replaced with its corresponding upper-case charac-
ter. Non-alphabetic characters are left unchanged. For example,
toupper("MiXeD cAsE 123") returns "MIXED CASE 123".

More About `\' and `&' with sub, gsub and gensub

When using sub, gsub or gensub, and trying to get literal backslashes
and ampersands into the replacement text, you need to remember that there
are several levels of escape processing going on.

First, there is the lexical level, which is when awk reads your program,
and builds an internal copy of your program that can be executed.

Then there is the run-time level, when awk actually scans the replacement
string to determine what to generate.

At both levels, awk looks for a de�ned set of characters that can come
after a backslash. At the lexical level, it looks for the escape sequences listed
in Section 4.2 [Escape Sequences], page 24. Thus, for every `\' that awk will
process at the run-time level, you type two `\'s at the lexical level. When a
character that is not valid for an escape sequence follows the `\', Unix awk

and gawk both simply remove the initial `\', and put the following character
into the string. Thus, for example, "a\qb" is treated as "aqb".

At the run-time level, the various functions handle sequences of `\' and
`&' di�erently. The situation is (sadly) somewhat complex.

Historically, the sub and gsub functions treated the two character se-
quence `\&' specially; this sequence was replaced in the generated text with
a single `&'. Any other `\' within the replacement string that did not precede
an `&' was passed through unchanged. To illustrate with a table:

144 AWK Language Programming
�

You type sub sees sub generates

\& & the matched text
\\& \& a literal `&'
\\\& \& a literal `&'

\\\\& \\& a literal `\&'
\\\\\& \\& a literal `\&'
\\\\\\& \\\& a literal `\\&'

\\q \q a literal `\q'

This table shows both the lexical level processing, where an odd number of
backslashes becomes an even number at the run time level, and the run-time
processing done by sub. (For the sake of simplicity, the rest of the tables
below only show the case of even numbers of `\'s entered at the lexical level.)

The problem with the historical approach is that there is no way to get
a literal `\' followed by the matched text.

The 1992 POSIX standard attempted to �x this problem. The standard
says that sub and gsub look for either a `\' or an `&' after the `\'. If either
one follows a `\', that character is output literally. The interpretation of `\'
and `&' then becomes like this:

You type sub sees sub generates

& & the matched text
\\& \& a literal `&'

\\\\& \\& a literal `\', then the matched text
\\\\\\& \\\& a literal `\&'

This would appear to solve the problem. Unfortunately, the phrasing of the
standard is unusual. It says, in e�ect, that `\' turns o� the special meaning
of any following character, but that for anything other than `\' and `&', such
special meaning is unde�ned. This wording leads to two problems.

1. Backslashes must now be doubled in the replacement string, breaking
historical awk programs.

2. To make sure that an awk program is portable, every character in the
replacement string must be preceded with a backslash.2

The POSIX standard is under revision.3 Because of the above problems,
proposed text for the revised standard reverts to rules that correspond more

2 This consequence was certainly unintended.
3 As of December 1995, with �nal approval and publication hopefully some-
time in 1996.

Chapter 12: Built-in Functions 145

closely to the original existing practice. The proposed rules have special
cases that make it possible to produce a `\' preceding the matched text.

You type sub sees sub generates

\\\\\\& \\\& a literal `\&'
\\\\& \\& a literal `\', followed by the matched text
\\& \& a literal `&'
\\q \q a literal `\q'

In a nutshell, at the run-time level, there are now three special sequences
of characters, `\\\&', `\\&' and `\&', whereas historically, there was only one.
However, as in the historical case, any `\' that is not part of one of these
three sequences is not special, and appears in the output literally.

gawk 3.0 follows these proposed POSIX rules for sub and gsub. Whether
these proposed rules will actually become codi�ed into the standard is un-
known at this point. Subsequent gawk releases will track the standard and
implement whatever the �nal version speci�es; this book will be updated as
well.

The rules for gensub are considerably simpler. At the run-time level,
whenever gawk sees a `\', if the following character is a digit, then the text
that matched the corresponding parenthesized subexpression is placed in the
generated output. Otherwise, no matter what the character after the `\' is,
that character will appear in the generated text, and the `\' will not.

You type gensub sees gensub generates

& & the matched text
\\& \& a literal `&'
\\\\ \\ a literal `\'

\\\\& \\& a literal `\', then the matched text
\\\\\\& \\\& a literal `\&'

\\q \q a literal `q'

Because of the complexity of the lexical and run-time level processing,
and the special cases for sub and gsub, we recommend the use of gawk and
gensub for when you have to do substitutions.

12.4 Built-in Functions for Input/Output

The following functions are related to Input/Output (I/O). Optional pa-
rameters are enclosed in square brackets (\[" and \]").

146 AWK Language Programming

close(�lename)
Close the �le �lename, for input or output. The argument may
alternatively be a shell command that was used for redirect-
ing to or from a pipe; then the pipe is closed. See Section 6.8
[Closing Input and Output Files and Pipes], page 74, for more
information.

fflush([�lename])
Flush any bu�ered output associated �lename, which is either a
�le opened for writing, or a shell command for redirecting output
to a pipe.

Many utility programs will bu�er their output; they save in-
formation to be written to a disk �le or terminal in memory,
until there is enough for it to be worthwhile to send the data
to the ouput device. This is often more e�cient than writing
every little bit of information as soon as it is ready. However,
sometimes it is necessary to force a program to
ush its bu�ers;
that is, write the information to its destination, even if a bu�er
is not full. This is the purpose of the fflush function; gawk too
bu�ers its output, and the fflush function can be used to force
gawk to
ush its bu�ers.

fflush is a recent (1994) addition to the Bell Labs research
version of awk; it is not part of the POSIX standard, and will
not be available if `--posix' has been speci�ed on the command
line (see Section 14.1 [Command Line Options], page 161).

gawk extends the fflush function in two ways. This �rst is to
allow no argument at all. In this case, the bu�er for the standard
output is
ushed. The second way is to allow the null string ("")
as the argument. In this case, the bu�ers for all open output
�les and pipes are
ushed.

fflush returns zero if the bu�er was successfully
ushed, and
nonzero otherwise.

system(command)
The system function allows the user to execute operating system
commands and then return to the awk program. The system

function executes the command given by the string command.
It returns, as its value, the status returned by the command that
was executed.

For example, if the following fragment of code is put in your awk
program:

END {

system("date | mail -s 'awk run done' root")

}

Chapter 12: Built-in Functions 147

the system administrator will be sent mail when the awk program
�nishes processing input and begins its end-of-input processing.

Note that redirecting print or printf into a pipe is often
enough to accomplish your task. However, if your awk program is
interactive, system is useful for cranking up large self-contained
programs, such as a shell or an editor.

Some operating systems cannot implement the system function.
system causes a fatal error if it is not supported.

Controlling Output Bu�ering with system

The fflush function provides explicit control over output bu�ering for
individual �les and pipes. However, its use is not portable to many other
awk implementations. An alternative method to
ush output bu�ers is by
calling system with a null string as its argument:

system("") # flush output

gawk treats this use of the system function as a special case, and is smart
enough not to run a shell (or other command interpreter) with the empty
command. Therefore, with gawk, this idiom is not only useful, it is e�cient.
While this method should work with other awk implementations, it will not
necessarily avoid starting an unnecessary shell. (Other implementations may
only
ush the bu�er associated with the standard output, and not necessarily
all bu�ered output.)

If you think about what a programmer expects, it makes sense that
system should
ush any pending output. The following program:

BEGIN {

print "first print"

system("echo system echo")

print "second print"

}

must print

first print

system echo

second print

and not

system echo

first print

second print

If awk did not
ush its bu�ers before calling system, the latter (undesir-
able) output is what you would see.

148 AWK Language Programming

12.5 Functions for Dealing with Time Stamps

A common use for awk programs is the processing of log �les containing
time stamp information, indicating when a particular log record was written.
Many programs log their time stamp in the form returned by the time system
call, which is the number of seconds since a particular epoch. On POSIX
systems, it is the number of seconds since Midnight, January 1, 1970, UTC.

In order to make it easier to process such log �les, and to produce useful
reports, gawk provides two functions for working with time stamps. Both
of these are gawk extensions; they are not speci�ed in the POSIX standard,
nor are they in any other known version of awk.

Optional parameters are enclosed in square brackets (\[" and \]").

systime()

This function returns the current time as the number of seconds
since the system epoch. On POSIX systems, this is the number
of seconds since Midnight, January 1, 1970, UTC. It may be a
di�erent number on other systems.

strftime([format [, timestamp]])
This function returns a string. It is similar to the function
of the same name in ANSI C. The time speci�ed by times-
tamp is used to produce a string, based on the contents of the
format string. The timestamp is in the same format as the
value returned by the systime function. If no timestamp argu-
ment is supplied, gawk will use the current time of day as the
time stamp. If no format argument is supplied, strftime uses
"%a %b %d %H:%M:%S %Z %Y". This format string produces out-
put (almost) equivalent to that of the date utility. (Versions of
gawk prior to 3.0 require the format argument.)

The systime function allows you to compare a time stamp from a log �le
with the current time of day. In particular, it is easy to determine how long
ago a particular record was logged. It also allows you to produce log records
using the \seconds since the epoch" format.

The strftime function allows you to easily turn a time stamp into
human-readable information. It is similar in nature to the sprintf function
(see Section 12.3 [Built-in Functions for String Manipulation], page 137), in
that it copies non-format speci�cation characters verbatim to the returned
string, while substituting date and time values for format speci�cations in
the format string.

strftime is guaranteed by the ANSI C standard to support the following
date format speci�cations:

%a The locale's abbreviated weekday name.

%A The locale's full weekday name.

Chapter 12: Built-in Functions 149

%b The locale's abbreviated month name.

%B The locale's full month name.

%c The locale's \appropriate" date and time representation.

%d The day of the month as a decimal number (01{31).

%H The hour (24-hour clock) as a decimal number (00{23).

%I The hour (12-hour clock) as a decimal number (01{12).

%j The day of the year as a decimal number (001{366).

%m The month as a decimal number (01{12).

%M The minute as a decimal number (00{59).

%p The locale's equivalent of the AM/PM designations associated
with a 12-hour clock.

%S The second as a decimal number (00{61).4

%U The week number of the year (the �rst Sunday as the �rst day
of week one) as a decimal number (00{53).

%w The weekday as a decimal number (0{6). Sunday is day zero.

%W The week number of the year (the �rst Monday as the �rst day
of week one) as a decimal number (00{53).

%x The locale's \appropriate" date representation.

%X The locale's \appropriate" time representation.

%y The year without century as a decimal number (00{99).

%Y The year with century as a decimal number (e.g., 1995).

%Z The time zone name or abbreviation, or no characters if no time
zone is determinable.

%% A literal `%'.

If a conversion speci�er is not one of the above, the behavior is unde�ned.5

Informally, a locale is the geographic place in which a program is meant
to run. For example, a common way to abbreviate the date September 4,
1991 in the United States would be \9/4/91". In many countries in Europe,

4 Occasionally there are minutes in a year with one or two leap seconds,
which is why the seconds can go up to 61.

5 This is because ANSI C leaves the behavior of the C version of strftime
unde�ned, and gawk will use the system's version of strftime if it's there.
Typically, the conversion speci�er will either not appear in the returned
string, or it will appear literally.

150 AWK Language Programming

however, it would be abbreviated \4.9.91". Thus, the `%x' speci�cation in
a "US" locale might produce `9/4/91', while in a "EUROPE" locale, it might
produce `4.9.91'. The ANSI C standard de�nes a default "C" locale, which
is an environment that is typical of what most C programmers are used to.

A public-domain C version of strftime is supplied with gawk for systems
that are not yet fully ANSI-compliant. If that version is used to compile gawk
(see Appendix B [Installing gawk], page 279), then the following additional
format speci�cations are available:

%D Equivalent to specifying `%m/%d/%y'.

%e The day of the month, padded with a space if it is only one digit.

%h Equivalent to `%b', above.

%n A newline character (ASCII LF).

%r Equivalent to specifying `%I:%M:%S %p'.

%R Equivalent to specifying `%H:%M'.

%T Equivalent to specifying `%H:%M:%S'.

%t A tab character.

%k The hour (24-hour clock) as a decimal number (0-23). Single
digit numbers are padded with a space.

%l The hour (12-hour clock) as a decimal number (1-12). Single
digit numbers are padded with a space.

%C The century, as a number between 00 and 99.

%u The weekday as a decimal number [1 (Monday){7].

%V The week number of the year (the �rst Monday as the �rst day
of week one) as a decimal number (01{53). The method for
determining the week number is as speci�ed by ISO 8601 (to
wit: if the week containing January 1 has four or more days in
the new year, then it is week one, otherwise it is week 53 of the
previous year and the next week is week one).

%G The year with century of the ISO week number, as a decimal
number.

For example, January 1, 1993, is in week 53 of 1992. Thus, the
year of its ISO week number is 1992, even though its year is
1993. Similarly, December 31, 1973, is in week 1 of 1974. Thus,
the year of its ISO week number is 1974, even though its year is
1973.

%g The year without century of the ISO week number, as a decimal
number (00{99).

Chapter 12: Built-in Functions 151

%Ec %EC %Ex %Ey %EY %Od %Oe %OH %OI

%Om %OM %OS %Ou %OU %OV %Ow %OW %Oy

These are \alternate representations" for the speci�cations that
use only the second letter (`%c', `%C', and so on). They are
recognized, but their normal representations are used.6 (These
facilitate compliance with the POSIX date utility.)

%v The date in VMS format (e.g., 20-JUN-1991).

%z The timezone o�set in a +HHMM format (e.g., the format nec-
essary to produce RFC-822/RFC-1036 date headers).

This example is an awk implementation of the POSIX date utility. Nor-
mally, the date utility prints the current date and time of day in a well
known format. However, if you provide an argument to it that begins with
a `+', date will copy non-format speci�er characters to the standard output,
and will interpret the current time according to the format speci�ers in the
string. For example:

$ date '+Today is %A, %B %d, %Y.'

a Today is Thursday, July 11, 1991.

Here is the gawk version of the date utility. It has a shell \wrapper", to
handle the `-u' option, which requires that date run as if the time zone was
set to UTC.

#! /bin/sh

#

date --- approximate the P1003.2 'date' command

case $1 in

-u) TZ=GMT0 # use UTC

export TZ

shift ;;

esac

gawk 'BEGIN {

format = "%a %b %d %H:%M:%S %Z %Y"

exitval = 0

6 If you don't understand any of this, don't worry about it; these facilities
are meant to make it easier to \internationalize" programs.

152 AWK Language Programming

if (ARGC > 2)

exitval = 1

else if (ARGC == 2) {

format = ARGV[1]

if (format ~ /^\+/)

format = substr(format, 2) # remove leading +

}

print strftime(format)

exit exitval

}' "$@"

Chapter 13: User-de�ned Functions 153

13 User-de�nedFunctions

Complicated awk programs can often be simpli�ed by de�ning your own
functions. User-de�ned functions can be called just like built-in ones (see
Section 7.13 [Function Calls], page 93), but it is up to you to de�ne them|to
tell awk what they should do.

13.1 Function De�nition Syntax

De�nitions of functions can appear anywhere between the rules of an awk

program. Thus, the general form of an awk program is extended to include
sequences of rules and user-de�ned function de�nitions. There is no need in
awk to put the de�nition of a function before all uses of the function. This
is because awk reads the entire program before starting to execute any of it.

The de�nition of a function named name looks like this:

function name(parameter-list)
{

body-of-function
}

name is the name of the function to be de�ned. A valid function name is
like a valid variable name: a sequence of letters, digits and underscores, not
starting with a digit. Within a single awk program, any particular name can
only be used as a variable, array or function.

parameter-list is a list of the function's arguments and local variable
names, separated by commas. When the function is called, the argument
names are used to hold the argument values given in the call. The local
variables are initialized to the empty string. A function cannot have two
parameters with the same name.

The body-of-function consists of awk statements. It is the most important
part of the de�nition, because it says what the function should actually
do. The argument names exist to give the body a way to talk about the
arguments; local variables, to give the body places to keep temporary values.

Argument names are not distinguished syntactically from local variable
names; instead, the number of arguments supplied when the function is called
determines how many argument variables there are. Thus, if three argument
values are given, the �rst three names in parameter-list are arguments, and
the rest are local variables.

It follows that if the number of arguments is not the same in all calls
to the function, some of the names in parameter-list may be arguments on
some occasions and local variables on others. Another way to think of this
is that omitted arguments default to the null string.

154 AWK Language Programming

Usually when you write a function you know how many names you intend
to use for arguments and how many you intend to use as local variables. It
is conventional to place some extra space between the arguments and the
local variables, to document how your function is supposed to be used.

During execution of the function body, the arguments and local variable
values hide or shadow any variables of the same names used in the rest
of the program. The shadowed variables are not accessible in the function
de�nition, because there is no way to name them while their names have
been taken away for the local variables. All other variables used in the awk
program can be referenced or set normally in the function's body.

The arguments and local variables last only as long as the function body
is executing. Once the body �nishes, you can once again access the variables
that were shadowed while the function was running.

The function body can contain expressions which call functions. They
can even call this function, either directly or by way of another function.
When this happens, we say the function is recursive.

In many awk implementations, including gawk, the keyword function

may be abbreviated func. However, POSIX only speci�es the use of the
keyword function. This actually has some practical implications. If gawk
is in POSIX-compatibility mode (see Section 14.1 [Command Line Options],
page 161), then the following statement will not de�ne a function:

func foo() { a = sqrt($1) ; print a }

Instead it de�nes a rule that, for each record, concatenates the value of the
variable `func' with the return value of the function `foo'. If the resulting
string is non-null, the action is executed. This is probably not what was
desired. (awk accepts this input as syntactically valid, since functions may
be used before they are de�ned in awk programs.)

To ensure that your awk programs are portable, always use the keyword
function when de�ning a function.

13.2 Function De�nition Examples

Here is an example of a user-de�ned function, called myprint, that takes
a number and prints it in a speci�c format.

function myprint(num)

{

printf "%6.3g\n", num

}

To illustrate, here is an awk rule which uses our myprint function:

$3 > 0 { myprint($3) }

Chapter 13: User-de�ned Functions 155

This program prints, in our special format, all the third �elds that contain
a positive number in our input. Therefore, when given:

1.2 3.4 5.6 7.8

9.10 11.12 -13.14 15.16

17.18 19.20 21.22 23.24

this program, using our function to format the results, prints:

5.6

21.2

This function deletes all the elements in an array.

function delarray(a, i)

{

for (i in a)

delete a[i]

}

When working with arrays, it is often necessary to delete all the elements
in an array and start over with a new list of elements (see Section 11.6 [The
delete Statement], page 128). Instead of having to repeat this loop every-
where in your program that you need to clear out an array, your program
can just call delarray.

Here is an example of a recursive function. It takes a string as an input
parameter, and returns the string in backwards order.

function rev(str, start)

{

if (start == 0)

return ""

return (substr(str, start, 1) rev(str, start - 1))

}

If this function is in a �le named `rev.awk', we can test it this way:

$ echo "Don't Panic!" |

> gawk --source '{ print rev($0, length($0)) }' -f rev.awk

a !cinaP t'noD

Here is an example that uses the built-in function strftime. (See Sec-
tion 12.5 [Functions for Dealing with Time Stamps], page 147, for more
information on strftime.) The C ctime function takes a timestamp and
returns it in a string, formatted in a well known fashion. Here is an awk

version:

156 AWK Language Programming

ctime.awk

#

awk version of C ctime(3) function

function ctime(ts, format)

{

format = "%a %b %d %H:%M:%S %Z %Y"

if (ts == 0)

ts = systime() # use current time as default

return strftime(format, ts)

}

13.3 Calling User-de�ned Functions

Calling a function means causing the function to run and do its job. A
function call is an expression, and its value is the value returned by the
function.

A function call consists of the function name followed by the arguments
in parentheses. What you write in the call for the arguments are awk expres-
sions; each time the call is executed, these expressions are evaluated, and
the values are the actual arguments. For example, here is a call to foo with
three arguments (the �rst being a string concatenation):

foo(x y, "lose", 4 * z)

Caution: whitespace characters (spaces and tabs) are not allowed between
the function name and the open-parenthesis of the argument list. If you
write whitespace by mistake, awk might think that you mean to concatenate
a variable with an expression in parentheses. However, it notices that you
used a function name and not a variable name, and reports an error.

When a function is called, it is given a copy of the values of its arguments.
This is known as call by value. The caller may use a variable as the expression
for the argument, but the called function does not know this: it only knows
what value the argument had. For example, if you write this code:

foo = "bar"

z = myfunc(foo)

then you should not think of the argument to myfunc as being \the variable
foo." Instead, think of the argument as the string value, "bar".

If the function myfunc alters the values of its local variables, this has no
e�ect on any other variables. Thus, if myfunc does this:

Chapter 13: User-de�ned Functions 157

function myfunc(str)

{

print str

str = "zzz"

print str

}

to change its �rst argument variable str, this does not change the value of
foo in the caller. The role of foo in calling myfunc ended when its value,
"bar", was computed. If str also exists outside of myfunc, the function body
cannot alter this outer value, because it is shadowed during the execution of
myfunc and cannot be seen or changed from there.

However, when arrays are the parameters to functions, they are not
copied. Instead, the array itself is made available for direct manipulation by
the function. This is usually called call by reference. Changes made to an
array parameter inside the body of a function are visible outside that func-
tion. This can be very dangerous if you do not watch what you are doing.
For example:

function changeit(array, ind, nvalue)

{

array[ind] = nvalue

}

BEGIN {

a[1] = 1; a[2] = 2; a[3] = 3

changeit(a, 2, "two")

printf "a[1] = %s, a[2] = %s, a[3] = %s\n",

a[1], a[2], a[3]

}

This program prints `a[1] = 1, a[2] = two, a[3] = 3', because changeit

stores "two" in the second element of a.

Some awk implementations allow you to call a function that has not been
de�ned, and only report a problem at run-time when the program actually
tries to call the function. For example:

BEGIN {

if (0)

foo()

else

bar()

}

function bar() { : : : }

note that `foo' is not defined

158 AWK Language Programming

Since the `if' statement will never be true, it is not really a problem that
foo has not been de�ned. Usually though, it is a problem if a program calls
an unde�ned function.

If `--lint' has been speci�ed (see Section 14.1 [Command Line Options],
page 161), gawk will report about calls to unde�ned functions.

13.4 The return Statement

The body of a user-de�ned function can contain a return statement.
This statement returns control to the rest of the awk program. It can also
be used to return a value for use in the rest of the awk program. It looks
like this:

return [expression]

The expression part is optional. If it is omitted, then the returned value
is unde�ned and, therefore, unpredictable.

A return statement with no value expression is assumed at the end of
every function de�nition. So if control reaches the end of the function body,
then the function returns an unpredictable value. awk will not warn you if
you use the return value of such a function.

Sometimes, you want to write a function for what it does, not for what
it returns. Such a function corresponds to a void function in C or to a
procedure in Pascal. Thus, it may be appropriate to not return any value;
you should simply bear in mind that if you use the return value of such a
function, you do so at your own risk.

Here is an example of a user-de�ned function that returns a value for the
largest number among the elements of an array:

function maxelt(vec, i, ret)

{

for (i in vec) {

if (ret == "" || vec[i] > ret)

ret = vec[i]

}

return ret

}

You call maxelt with one argument, which is an array name. The local
variables i and ret are not intended to be arguments; while there is nothing
to stop you from passing two or three arguments to maxelt, the results would
be strange. The extra space before i in the function parameter list indicates
that i and ret are not supposed to be arguments. This is a convention that
you should follow when you de�ne functions.

Chapter 13: User-de�ned Functions 159

Here is a program that uses our maxelt function. It loads an array, calls
maxelt, and then reports the maximum number in that array:

awk '

function maxelt(vec, i, ret)

{

for (i in vec) {

if (ret == "" || vec[i] > ret)

ret = vec[i]

}

return ret

}

Load all fields of each record into nums.

{

for(i = 1; i <= NF; i++)

nums[NR, i] = $i

}

END {

print maxelt(nums)

}'

Given the following input:

1 5 23 8 16

44 3 5 2 8 26

256 291 1396 2962 100

-6 467 998 1101

99385 11 0 225

our program tells us (predictably) that 99385 is the largest number in our
array.

160 AWK Language Programming

Chapter 14: Running awk 161

14 Running awk

There are two ways to run awk: with an explicit program, or with one or
more program �les. Here are templates for both of them; items enclosed in
`[: : :]' in these templates are optional.

Besides traditional one-letter POSIX-style options, gawk also supports
GNU long options.

awk [options] -f progfile [--] �le : : :

awk [options] [--] 'program' �le : : :

It is possible to invoke awk with an empty program:

$ awk '' datafile1 datafile2

Doing so makes little sense though; awk will simply exit silently when given
an empty program (d.c.). If `--lint' has been speci�ed on the command
line, gawk will issue a warning that the program is empty.

14.1 Command Line Options

Options begin with a dash, and consist of a single character. GNU style
long options consist of two dashes and a keyword. The keyword can be abbre-
viated, as long the abbreviation allows the option to be uniquely identi�ed.
If the option takes an argument, then the keyword is either immediately
followed by an equals sign (`=') and the argument's value, or the keyword
and the argument's value are separated by whitespace. For brevity, the dis-
cussion below only refers to the traditional short options; however the long
and short options are interchangeable in all contexts.

Each long option for gawk has a corresponding POSIX-style option. The
options and their meanings are as follows:

-F fs
--field-separator fs

Sets the FS variable to fs (see Section 5.5 [Specifying How Fields
are Separated], page 44).

-f source-�le
--file source-�le

Indicates that the awk program is to be found in source-�le in-
stead of in the �rst non-option argument.

-v var=val
--assign var=val

Sets the variable var to the value val before execution of the
program begins. Such variable values are available inside the
BEGIN rule (see Section 14.2 [Other Command Line Arguments],
page 165).

162 AWK Language Programming

The `-v' option can only set one variable, but you can use it
more than once, setting another variable each time, like this:
`awk -v foo=1 -v bar=2 : : :'.

-mf=NNN
-mr=NNN Set various memory limits to the value NNN. The `f'
ag sets the

maximum number of �elds, and the `r'
ag sets the maximum
record size. These two
ags and the `-m' option are from the
Bell Labs research version of Unix awk. They are provided for
compatibility, but otherwise ignored by gawk, since gawk has no
prede�ned limits.

-W gawk-opt
Following the POSIX standard, options that are implementation
speci�c are supplied as arguments to the `-W' option. With gawk,
these arguments may be separated by commas, or quoted and
separated by whitespace. Case is ignored when processing these
options. These options also have corresponding GNU style long
options. See below.

-- Signals the end of the command line options. The following
arguments are not treated as options even if they begin with `-'.
This interpretation of `--' follows the POSIX argument parsing
conventions.

This is useful if you have �le names that start with `-', or in
shell scripts, if you have �le names that will be speci�ed by the
user which could start with `-'.

The following gawk-speci�c options are available:

-W traditional

-W compat

--traditional

--compat Speci�es compatibility mode, in which the GNU extensions to
the awk language are disabled, so that gawk behaves just like
the Bell Labs research version of Unix awk. `--traditional' is
the preferred form of this option. See Section 17.5 [Extensions
in gawk Not in POSIX awk], page 254, which summarizes the
extensions. Also see Section C.1 [Downward Compatibility and
Debugging], page 295.

-W copyleft

-W copyright

--copyleft

--copyright

Print the short version of the General Public License. This op-
tion may disappear in a future version of gawk.

Chapter 14: Running awk 163

-W help

-W usage

--help

--usage Print a \usage" message summarizing the short and long style
options that gawk accepts, and then exit.

-W lint

--lint Warn about constructs that are dubious or non-portable to other
awk implementations. Some warnings are issued when gawk �rst
reads your program. Others are issued at run-time, as your
program executes.

-W lint-old

--lint-old

Warn about constructs that are not available in the original
Version 7 Unix version of awk (see Section 17.1 [Major Changes
between V7 and SVR3.1], page 251).

-W posix

--posix Operate in strict POSIX mode. This disables all gawk extensions
(just like `--traditional'), and adds the following additional
restrictions:

� \x escape sequences are not recognized (see Section 4.2 [Es-
cape Sequences], page 24).

� The synonym func for the keyword function is not rec-
ognized (see Section 13.1 [Function De�nition Syntax],
page 153).

� The operators `**' and `**=' cannot be used in place of `^'
and `^=' (see Section 7.5 [Arithmetic Operators], page 82,
and also see Section 7.7 [Assignment Expressions], page 84).

� Specifying `-Ft' on the command line does not set the value
of FS to be a single tab character (see Section 5.5 [Specifying
How Fields are Separated], page 44).

� The fflush built-in function is not supported (see Sec-
tion 12.4 [Built-in Functions for Input/Output], page 145).

If you supply both `--traditional' and `--posix' on the com-
mand line, `--posix' will take precedence. gawk will also issue
a warning if both options are supplied.

-W re-interval

--re-interval

Allow interval expressions (see Section 4.3 [Regular Expression
Operators], page 26), in regexps. Because interval expressions
were traditionally not available in awk, gawk does not provide
them by default. This prevents old awk programs from breaking.

164 AWK Language Programming

-W source program-text
--source program-text

Program source code is taken from the program-text. This op-
tion allows you to mix source code in �les with source code
that you enter on the command line. This is particularly use-
ful when you have library functions that you wish to use from
your command line programs (see Section 14.3 [The AWKPATH

Environment Variable], page 166).

-W version

--version

Prints version information for this particular copy of gawk. This
allows you to determine if your copy of gawk is up to date with
respect to whatever the Free Software Foundation is currently
distributing. It is also useful for bug reports (see Section B.7
[Reporting Problems and Bugs], page 292).

Any other options are
agged as invalid with a warning message, but are
otherwise ignored.

In compatibility mode, as a special case, if the value of fs supplied to the
`-F' option is `t', then FS is set to the tab character ("\t"). This is only
true for `--traditional', and not for `--posix' (see Section 5.5 [Specifying
How Fields are Separated], page 44).

The `-f' option may be used more than once on the command line. If
it is, awk reads its program source from all of the named �les, as if they
had been concatenated together into one big �le. This is useful for creating
libraries of awk functions. Useful functions can be written once, and then
retrieved from a standard place, instead of having to be included into each
individual program.

You can type in a program at the terminal and still use library functions,
by specifying `-f /dev/tty'. awk will read a �le from the terminal to use
as part of the awk program. After typing your program, type Control-d

(the end-of-�le character) to terminate it. (You may also use `-f -' to read
program source from the standard input, but then you will not be able to
also use the standard input as a source of data.)

Because it is clumsy using the standard awk mechanisms to mix source
�le and command line awk programs, gawk provides the `--source' option.
This does not require you to pre-empt the standard input for your source
code, and allows you to easily mix command line and library source code
(see Section 14.3 [The AWKPATH Environment Variable], page 166).

If no `-f' or `--source' option is speci�ed, then gawk will use the �rst
non-option command line argument as the text of the program source code.

If the environment variable POSIXLY_CORRECT exists, then gawk will be-
have in strict POSIX mode, exactly as if you had supplied the `--posix'

Chapter 14: Running awk 165

command line option. Many GNU programs look for this environment vari-
able to turn on strict POSIX mode. If you supply `--lint' on the command
line, and gawk turns on POSIX mode because of POSIXLY_CORRECT, then it
will print a warning message indicating that POSIX mode is in e�ect.

You would typically set this variable in your shell's startup �le. For a
Bourne compatible shell (such as Bash), you would add these lines to the
`.profile' �le in your home directory.

POSIXLY_CORRECT=true

export POSIXLY_CORRECT

For a csh compatible shell,1 you would add this line to the `.login' �le
in your home directory.

setenv POSIXLY_CORRECT true

14.2 Other Command Line Arguments

Any additional arguments on the command line are normally treated as
input �les to be processed in the order speci�ed. However, an argument that
has the form var=value, assigns the value value to the variable var|it does
not specify a �le at all.

All these arguments are made available to your awk program in the ARGV
array (see Chapter 10 [Built-in Variables], page 115). Command line op-
tions and the program text (if present) are omitted from ARGV. All other
arguments, including variable assignments, are included. As each element of
ARGV is processed, gawk sets the variable ARGIND to the index in ARGV of the
current element.

The distinction between �le name arguments and variable-assignment
arguments is made when awk is about to open the next input �le. At that
point in execution, it checks the \�le name" to see whether it is really a
variable assignment; if so, awk sets the variable instead of reading a �le.

Therefore, the variables actually receive the given values after all pre-
viously speci�ed �les have been read. In particular, the values of variables
assigned in this fashion are not available inside a BEGIN rule (see Section 8.1.5
[The BEGIN and END Special Patterns], page 100), since such rules are run
before awk begins scanning the argument list.

The variable values given on the command line are processed for escape
sequences (d.c.) (see Section 4.2 [Escape Sequences], page 24).

In some earlier implementations of awk, when a variable assignment oc-
curred before any �le names, the assignment would happen before the BEGIN
rule was executed. awk's behavior was thus inconsistent; some command
line assignments were available inside the BEGIN rule, while others were not.

1 Not recommended.

166 AWK Language Programming

However, some applications came to depend upon this \feature." When awk

was changed to be more consistent, the `-v' option was added to accommo-
date applications that depended upon the old behavior.

The variable assignment feature is most useful for assigning to variables
such as RS, OFS, and ORS, which control input and output formats, before
scanning the data �les. It is also useful for controlling state if multiple passes
are needed over a data �le. For example:

awk 'pass == 1 { pass 1 stu� }

pass == 2 { pass 2 stu� }' pass=1 mydata pass=2 mydata

Given the variable assignment feature, the `-F' option for setting the
value of FS is not strictly necessary. It remains for historical compatibility.

14.3 The AWKPATHEnvironment Variable

The previous section described how awk program �les can be named on
the command line with the `-f' option. In most awk implementations, you
must supply a precise path name for each program �le, unless the �le is in
the current directory.

But in gawk, if the �le name supplied to the `-f' option does not contain
a `/', then gawk searches a list of directories (called the search path), one by
one, looking for a �le with the speci�ed name.

The search path is a string consisting of directory names separated by
colons. gawk gets its search path from the AWKPATH environment vari-
able. If that variable does not exist, gawk uses a default path, which is
`.:/usr/local/share/awk'.2 (Programs written for use by system admin-
istrators should use an AWKPATH variable that does not include the current
directory, `.'.)

The search path feature is particularly useful for building up libraries of
useful awk functions. The library �les can be placed in a standard directory
that is in the default path, and then speci�ed on the command line with a
short �le name. Otherwise, the full �le name would have to be typed for
each �le.

By using both the `--source' and `-f' options, your command line awk

programs can use facilities in awk library �les. See Chapter 15 [A Library of
awk Functions], page 169.

2 Your version of gawk may use a directory that is di�erent than
`/usr/local/share/awk'; it will depend upon how gawk was built and
installed. The actual directory will be the value of `$(datadir)' gener-
ated when gawk was con�gured. You probably don't need to worry about
this though.

Chapter 14: Running awk 167

Path searching is not done if gawk is in compatibility mode. This is true
for both `--traditional' and `--posix'. See Section 14.1 [Command Line
Options], page 161.

Note: if you want �les in the current directory to be found, you must
include the current directory in the path, either by including `.' explicitly in
the path, or by writing a null entry in the path. (A null entry is indicated
by starting or ending the path with a colon, or by placing two colons next to
each other (`::').) If the current directory is not included in the path, then
�les cannot be found in the current directory. This path search mechanism
is identical to the shell's.

Starting with version 3.0, if AWKPATH is not de�ned in the environment,
gawk will place its default search path into ENVIRON["AWKPATH"]. This
makes it easy to determine the actual search path gawk will use.

14.4 Obsolete Options and/or Features

This section describes features and/or command line options from previ-
ous releases of gawk that are either not available in the current version, or
that are still supported but deprecated (meaning that they will not be in
the next release).

For version 3.0 of gawk, there are no command line options or other
deprecated features from the previous version of gawk. This section is thus
essentially a place holder, in case some option becomes obsolete in a future
version of gawk.

14.5 Undocumented Options and Features

This section intentionally left blank.

14.6 Known Bugs in gawk

� The `-F' option for changing the value of FS (see Section 14.1 [Command
Line Options], page 161) is not necessary given the command line vari-
able assignment feature; it remains only for backwards compatibility.

� If your system actually has support for `/dev/fd' and the associated
`/dev/stdin', `/dev/stdout', and `/dev/stderr' �les, you may get dif-
ferent output from gawk than you would get on a system without those
�les. When gawk interprets these �les internally, it synchronizes output
to the standard output with output to `/dev/stdout', while on a sys-
tem with those �les, the output is actually to di�erent open �les (see
Section 6.7 [Special File Names in gawk], page 72).

168 AWK Language Programming

� Syntactically invalid single character programs tend to over
ow the
parse stack, generating a rather unhelpful message. Such programs are
surprisingly di�cult to diagnose in the completely general case, and the
e�ort to do so really is not worth it.

� The word \GNU" is incorrectly capitalized in at least one �le in the
source code.

Chapter 15: A Library of awk Functions 169

15 A Library of awkFunctions

This chapter presents a library of useful awk functions. The sample pro-
grams presented later (see Chapter 16 [Practical awk Programs], page 203)
use these functions. The functions are presented here in a progression from
simple to complex.

Section 16.2.7 [Extracting Programs from Texinfo Source Files], page 237,
presents a program that you can use to extract the source code for these
example library functions and programs from the Texinfo source for this
book. (This has already been done as part of the gawk distribution.)

If you have written one or more useful, general purpose awk functions,
and would like to contribute them for a subsequent edition of this book,
please contact the author. See Section B.7 [Reporting Problems and Bugs],
page 292, for information on doing this. Don't just send code, as you will
be required to either place your code in the public domain, publish it under
the GPL (see [GNU GENERAL PUBLIC LICENSE], page 311), or assign
the copyright in it to the Free Software Foundation.

15.1 Simulating gawk-speci�c Features

The programs in this chapter and in Chapter 16 [Practical awk Programs],
page 203, freely use features that are speci�c to gawk. This section brie
y
discusses how you can rewrite these programs for di�erent implementations
of awk.

Diagnostic error messages are sent to `/dev/stderr'. Use `| "cat 1>&2"'
instead of `> "/dev/stderr"', if your system does not have a `/dev/stderr',
or if you cannot use gawk.

A number of programs use nextfile (see Section 9.8 [The nextfile

Statement], page 112), to skip any remaining input in the input �le. Sec-
tion 15.2 [Implementing nextfile as a Function], page 170, shows you how
to write a function that will do the same thing.

Finally, some of the programs choose to ignore upper-case and lower-case
distinctions in their input. They do this by assigning one to IGNORECASE.
You can achieve the same e�ect by adding the following rule to the beginning
of the program:

ignore case

{ $0 = tolower($0) }

Also, verify that all regexp and string constants used in comparisons only
use lower-case letters.

170 AWK Language Programming

15.2 Implementing nextfile as a Function

The nextfile statement presented in Section 9.8 [The nextfile State-
ment], page 112, is a gawk-speci�c extension. It is not available in other
implementations of awk. This section shows two versions of a nextfile

function that you can use to simulate gawk's nextfile statement if you
cannot use gawk.

Here is a �rst attempt at writing a nextfile function.

nextfile --- skip remaining records in current file

this should be read in before the "main" awk program

function nextfile() { _abandon_ = FILENAME; next }

abandon == FILENAME { next }

This �le should be included before the main program, because it supplies
a rule that must be executed �rst. This rule compares the current data
�le's name (which is always in the FILENAME variable) to a private variable
named _abandon_. If the �le name matches, then the action part of the rule
executes a next statement, to go on to the next record. (The use of `_' in
the variable name is a convention. It is discussed more fully in Section 15.12
[Naming Library Function Global Variables], page 201.)

The use of the next statement e�ectively creates a loop that reads all the
records from the current data �le. Eventually, the end of the �le is reached,
and a new data �le is opened, changing the value of FILENAME. Once this
happens, the comparison of _abandon_ to FILENAME fails, and execution
continues with the �rst rule of the \real" program.

The nextfile function itself simply sets the value of _abandon_ and then
executes a next statement to start the loop going.1

This initial version has a subtle problem. What happens if the same
data �le is listed twice on the command line, one right after the other, or
even with just a variable assignment between the two occurrences of the �le
name?

In such a case, this code will skip right through the �le, a second time,
even though it should stop when it gets to the end of the �rst occurrence.
Here is a second version of nextfile that remedies this problem.

1 Some implementations of awk do not allow you to execute next from
within a function body. Some other work-around will be necessary if you
use such a version.

Chapter 15: A Library of awk Functions 171

nextfile --- skip remaining records in current file

correctly handle successive occurrences of the same file

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May, 1993

this should be read in before the "main" awk program

function nextfile() { _abandon_ = FILENAME; next }

abandon == FILENAME {

if (FNR == 1)

abandon = ""

else

next

}

The nextfile function has not changed. It sets _abandon_ equal to the
current �le name and then executes a next satement. The next statement
reads the next record and increments FNR, so FNR is guaranteed to have a
value of at least two. However, if nextfile is called for the last record in the
�le, then awk will close the current data �le and move on to the next one.
Upon doing so, FILENAME will be set to the name of the new �le, and FNR will
be reset to one. If this next �le is the same as the previous one, _abandon_
will still be equal to FILENAME. However, FNR will be equal to one, telling
us that this is a new occurrence of the �le, and not the one we were reading
when the nextfile function was executed. In that case, _abandon_ is reset
to the empty string, so that further executions of this rule will fail (until the
next time that nextfile is called).

If FNR is not one, then we are still in the original data �le, and the program
executes a next statement to skip through it.

An important question to ask at this point is: \Given that the function-
ality of nextfile can be provided with a library �le, why is it built into
gawk?" This is an important question. Adding features for little reason
leads to larger, slower programs that are harder to maintain.

The answer is that building nextfile into gawk provides signi�cant gains
in e�ciency. If the nextfile function is executed at the beginning of a large
data �le, awk still has to scan the entire �le, splitting it up into records, just to
skip over it. The built-in nextfile can simply close the �le immediately and
proceed to the next one, saving a lot of time. This is particularly important
in awk, since awk programs are generally I/O bound (i.e. they spend most of
their time doing input and output, instead of performing computations).

172 AWK Language Programming

15.3 Assertions

When writing large programs, it is often useful to be able to know that
a condition or set of conditions is true. Before proceeding with a particu-
lar computation, you make a statement about what you believe to be the
case. Such a statement is known as an \assertion." The C language pro-
vides an <assert.h> header �le and corresponding assert macro that the
programmer can use to make assertions. If an assertion fails, the assert

macro arranges to print a diagnostic message describing the condition that
should have been true but was not, and then it kills the program. In C,
using assert looks this:

#include <assert.h>

int myfunc(int a, double b)

{

assert(a <= 5 && b >= 17);

: : :

}

If the assertion failed, the program would print a message similar to this:

prog.c:5: assertion failed: a <= 5 && b >= 17

The ANSI C language makes it possible to turn the condition into a string
for use in printing the diagnostic message. This is not possible in awk, so
this assert function also requires a string version of the condition that is
being tested.

assert --- assert that a condition is true. Otherwise exit.

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May, 1993

function assert(condition, string)

{

if (! condition) {

printf("%s:%d: assertion failed: %s\n",

FILENAME, FNR, string) > "/dev/stderr"

_assert_exit = 1

exit 1

}

}

END {

if (_assert_exit)

exit 1

}

Chapter 15: A Library of awk Functions 173

The assert function tests the condition parameter. If it is false, it
prints a message to standard error, using the string parameter to describe
the failed condition. It then sets the variable _assert_exit to one, and
executes the exit statement. The exit statement jumps to the END rule. If
the END rules �nds _assert_exit to be true, then it exits immediately.

The purpose of the END rule with its test is to keep any other END rules
from running. When an assertion fails, the program should exit immediately.
If no assertions fail, then _assert_exit will still be false when the END rule
is run normally, and the rest of the program's END rules will execute. For all
of this to work correctly, `assert.awk' must be the �rst source �le read by
awk.

You would use this function in your programs this way:

function myfunc(a, b)

{

assert(a <= 5 && b >= 17, "a <= 5 && b >= 17")

: : :

}

If the assertion failed, you would see a message like this:

mydata:1357: assertion failed: a <= 5 && b >= 17

There is a problem with this version of assert, that it may not be possible
to work around. An END rule is automatically added to the program calling
assert. Normally, if a program consists of just a BEGIN rule, the input �les
and/or standard input are not read. However, now that the program has
an END rule, awk will attempt to read the input data �les, or standard input
(see Section 8.1.5.1 [Startup and Cleanup Actions], page 100), most likely
causing the program to hang, waiting for input.

Just a note on programming style. You may have noticed that the END

rule uses backslash continuation, with the open brace on a line by itself. This
is so that it more closely resembles the way functions are written. Many of
the examples in this chapter and the next one use this style. You can decide
for yourself if you like writing your BEGIN and END rules this way, or not.

15.4 Translating Between Characters and Numbers

One commercial implementation of awk supplies a built-in function, ord,
which takes a character and returns the numeric value for that character in
the machine's character set. If the string passed to ord has more than one
character, only the �rst one is used.

The inverse of this function is chr (from the function of the same name
in Pascal), which takes a number and returns the corresponding character.

Both functions can be written very nicely in awk; there is no real reason
to build them into the awk interpreter.

174 AWK Language Programming

ord.awk --- do ord and chr

#

Global identifiers:

ord: numerical values indexed by characters

_ord_init: function to initialize _ord_

#

Arnold Robbins

arnold@gnu.ai.mit.edu

Public Domain

16 January, 1992

20 July, 1992, revised

BEGIN { _ord_init() }

function _ord_init(low, high, i, t)

{

low = sprintf("%c", 7) # BEL is ascii 7

if (low == "\a") { # regular ascii

low = 0

high = 127

} else if (sprintf("%c", 128 + 7) == "\a") {

ascii, mark parity

low = 128

high = 255

} else { # ebcdic(!)

low = 0

high = 255

}

for (i = low; i <= high; i++) {

t = sprintf("%c", i)

ord[t] = i

}

}

Some explanation of the numbers used by chr is worthwhile. The most
prominent character set in use today is ASCII. Although an eight-bit byte
can hold 256 distinct values (from zero to 255), ASCII only de�nes characters
that use the values from zero to 127.2 At least one computer manufacturer
that we know of uses ASCII, but with mark parity, meaning that the leftmost

2 ASCII has been extended in many countries to use the values from 128 to
255 for country-speci�c characters. If your system uses these extensions,
you can simplify _ord_init to simply loop from zero to 255.

Chapter 15: A Library of awk Functions 175

bit in the byte is always one. What this means is that on those systems,
characters have numeric values from 128 to 255. Finally, large mainframe
systems use the EBCDIC character set, which uses all 256 values. While
there are other character sets in use on some older systems, they are not
really worth worrying about.

function ord(str, c)

{

only first character is of interest

c = substr(str, 1, 1)

return _ord_[c]

}

function chr(c)

{

force c to be numeric by adding 0

return sprintf("%c", c + 0)

}

test code

BEGIN \

{

for (;;) {

printf("enter a character: ")

if (getline var <= 0)

break

printf("ord(%s) = %d\n", var, ord(var))

}

}

An obvious improvement to these functions would be to move the code
for the _ord_init function into the body of the BEGIN rule. It was written
this way initially for ease of development.

There is a \test program" in a BEGIN rule, for testing the function. It is
commented out for production use.

15.5 Merging an Array Into a String

When doing string processing, it is often useful to be able to join all
the strings in an array into one long string. The following function, join,
accomplishes this task. It is used later in several of the application programs
(see Chapter 16 [Practical awk Programs], page 203).

Good function design is important; this function needs to be general,
but it should also have a reasonable default behavior. It is called with an
array and the beginning and ending indices of the elements in the array to

176 AWK Language Programming

be merged. This assumes that the array indices are numeric|a reasonable
assumption since the array was likely created with split (see Section 12.3
[Built-in Functions for String Manipulation], page 137).

join.awk --- join an array into a string

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

function join(array, start, end, sep, result, i)

{

if (sep == "")

sep = " "

else if (sep == SUBSEP) # magic value

sep = ""

result = array[start]

for (i = start + 1; i <= end; i++)

result = result sep array[i]

return result

}

An optional additional argument is the separator to use when joining the
strings back together. If the caller supplies a non-empty value, join uses it.
If it is not supplied, it will have a null value. In this case, join uses a single
blank as a default separator for the strings. If the value is equal to SUBSEP,
then join joins the strings with no separator between them. SUBSEP serves
as a \magic" value to indicate that there should be no separation between
the component strings.

It would be nice if awk had an assignment operator for concatenation.
The lack of an explicit operator for concatenation makes string operations
more di�cult than they really need to be.

15.6 Turning Dates Into Timestamps

The systime function built in to gawk returns the current time of day as
a timestamp in \seconds since the Epoch." This timestamp can be converted
into a printable date of almost in�nitely variable format using the built-in
strftime function. (For more information on systime and strftime, see
Section 12.5 [Functions for Dealing with Time Stamps], page 147.)

An interesting but di�cult problem is to convert a readable representa-
tion of a date back into a timestamp. The ANSI C library provides a mktime
function that does the basic job, converting a canonical representation of a
date into a timestamp.

Chapter 15: A Library of awk Functions 177

It would appear at �rst glance that gawk would have to supply a mktime

built-in function that was simply a \hook" to the C language version. In
fact though, mktime can be implemented entirely in awk.

Here is a version of mktime for awk. It takes a simple representation of
the date and time, and converts it into a timestamp.

The code is presented here intermixed with explanatory prose. In Sec-
tion 16.2.7 [Extracting Programs from Texinfo Source Files], page 237, you
will see how the Texinfo source �le for this book can be processed to extract
the code into a single source �le.

The program begins with a descriptive comment and a BEGIN rule that
initializes a table _tm_months. This table is a two-dimensional array that
has the lengths of the months. The �rst index is zero for regular years, and
one for leap years. The values are the same for all the months in both kinds
of years, except for February; thus the use of multiple assignment.

mktime.awk --- convert a canonical date representation

into a timestamp

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

BEGIN \

{

Initialize table of month lengths

_tm_months[0,1] = _tm_months[1,1] = 31

_tm_months[0,2] = 28; _tm_months[1,2] = 29

_tm_months[0,3] = _tm_months[1,3] = 31

_tm_months[0,4] = _tm_months[1,4] = 30

_tm_months[0,5] = _tm_months[1,5] = 31

_tm_months[0,6] = _tm_months[1,6] = 30

_tm_months[0,7] = _tm_months[1,7] = 31

_tm_months[0,8] = _tm_months[1,8] = 31

_tm_months[0,9] = _tm_months[1,9] = 30

_tm_months[0,10] = _tm_months[1,10] = 31

_tm_months[0,11] = _tm_months[1,11] = 30

_tm_months[0,12] = _tm_months[1,12] = 31

}

The bene�t of merging multiple BEGIN rules (see Section 8.1.5 [The BEGIN
and END Special Patterns], page 100) is particularly clear when writing li-
brary �les. Functions in library �les can cleanly initialize their own private
data and also provide clean-up actions in private END rules.

The next function is a simple one that computes whether a given year is
or is not a leap year. If a year is evenly divisible by four, but not evenly

178 AWK Language Programming

divisible by 100, or if it is evenly divisible by 400, then it is a leap year.
Thus, 1904 was a leap year, 1900 was not, but 2000 will be.

decide if a year is a leap year

function _tm_isleap(year, ret)

{

ret = (year % 4 == 0 && year % 100 != 0) ||

(year % 400 == 0)

return ret

}

This function is only used a few times in this �le, and its computation
could have been written in-line (at the point where it's used). Making it a
separate function made the original development easier, and also avoids the
possibility of typing errors when duplicating the code in multiple places.

The next function is more interesting. It does most of the work of gen-
erating a timestamp, which is converting a date and time into some number
of seconds since the Epoch. The caller passes an array (rather imaginatively
named a) containing six values: the year including century, the month as a
number between one and 12, the day of the month, the hour as a number
between zero and 23, the minute in the hour, and the seconds within the
minute.

The function uses several local variables to precompute the number of
seconds in an hour, seconds in a day, and seconds in a year. Often, simi-
lar C code simply writes out the expression in-line, expecting the compiler
to do constant folding. E.g., most C compilers would turn `60 * 60' into
`3600' at compile time, instead of recomputing it every time at run time.
Precomputing these values makes the function more e�cient.

convert a date into seconds

function _tm_addup(a, total, yearsecs, daysecs,

hoursecs, i, j)

{

hoursecs = 60 * 60

daysecs = 24 * hoursecs

yearsecs = 365 * daysecs

total = (a[1] - 1970) * yearsecs

extra day for leap years

for (i = 1970; i < a[1]; i++)

if (_tm_isleap(i))

total += daysecs

Chapter 15: A Library of awk Functions 179

j = _tm_isleap(a[1])

for (i = 1; i < a[2]; i++)

total += _tm_months[j, i] * daysecs

total += (a[3] - 1) * daysecs

total += a[4] * hoursecs

total += a[5] * 60

total += a[6]

return total

}

The function starts with a �rst approximation of all the seconds between
Midnight, January 1, 1970,3 and the beginning of the current year. It then
goes through all those years, and for every leap year, adds an additional
day's worth of seconds.

The variable j holds either one or zero, if the current year is or is not a
leap year. For every month in the current year prior to the current month,
it adds the number of seconds in the month, using the appropriate entry in
the _tm_months array.

Finally, it adds in the seconds for the number of days prior to the current
day, and the number of hours, minutes, and seconds in the current day.

The result is a count of seconds since January 1, 1970. This value is not
yet what is needed though. The reason why is described shortly.

The main mktime function takes a single character string argument. This
string is a representation of a date and time in a \canonical" (�xed) form.
This string should be "year month day hour minute second".

mktime --- convert a date into seconds,

compensate for time zone

function mktime(str, res1, res2, a, b, i, j, t, diff)

{

i = split(str, a, " ") # don't rely on FS

if (i != 6)

return -1

force numeric

for (j in a)

a[j] += 0

3 This is the Epoch on POSIX systems. It may be di�erent on other
systems.

180 AWK Language Programming

validate

if (a[1] < 1970 ||

a[2] < 1 || a[2] > 12 ||

a[3] < 1 || a[3] > 31 ||

a[4] < 0 || a[4] > 23 ||

a[5] < 0 || a[5] > 59 ||

a[6] < 0 || a[6] > 61)

return -1

res1 = _tm_addup(a)

t = strftime("%Y %m %d %H %M %S", res1)

if (_tm_debug)

printf("(%s) -> (%s)\n", str, t) > "/dev/stderr"

split(t, b, " ")

res2 = _tm_addup(b)

diff = res1 - res2

if (_tm_debug)

printf("diff = %d seconds\n", diff) > "/dev/stderr"

res1 += diff

return res1

}

The function �rst splits the string into an array, using spaces and tabs
as separators. If there are not six elements in the array, it returns an error,
signaled as the value �1. Next, it forces each element of the array to be
numeric, by adding zero to it. The following `if' statement then makes sure
that each element is within an allowable range. (This checking could be
extended further, e.g., to make sure that the day of the month is within the
correct range for the particular month supplied.) All of this is essentially
preliminary set-up and error checking.

Recall that _tm_addup generated a value in seconds since Midnight, Jan-
uary 1, 1970. This value is not directly usable as the result we want, since
the calculation does not account for the local timezone. In other words, the
value represents the count in seconds since the Epoch, but only for UTC
(Universal Coordinated Time). If the local timezone is east or west of UTC,
then some number of hours should be either added to, or subtracted from
the resulting timestamp.

Chapter 15: A Library of awk Functions 181

For example, 6:23 p.m. in Atlanta, Georgia (USA), is normally �ve hours
west of (behind) UTC. It is only four hours behind UTC if daylight savings
time is in e�ect. If you are calling mktime in Atlanta, with the argument
"1993 5 23 18 23 12", the result from _tm_addup will be for 6:23 p.m. UTC,
which is only 2:23 p.m. in Atlanta. It is necessary to add another four hours
worth of seconds to the result.

How can mktime determine how far away it is from UTC? This is surpris-
ingly easy. The returned timestamp represents the time passed to mktime

as UTC. This timestamp can be fed back to strftime, which will format
it as a local time; i.e. as if it already had the UTC di�erence added in to
it. This is done by giving "%Y %m %d %H %M %S" to strftime as the format
argument. It returns the computed timestamp in the original string format.
The result represents a time that accounts for the UTC di�erence. When
the new time is converted back to a timestamp, the di�erence between the
two timestamps is the di�erence (in seconds) between the local timezone and
UTC. This di�erence is then added back to the original result. An example
demonstrating this is presented below.

Finally, there is a \main" program for testing the function.

BEGIN {

if (_tm_test) {

printf "Enter date as yyyy mm dd hh mm ss: "

getline _tm_test_date

t = mktime(_tm_test_date)

r = strftime("%Y %m %d %H %M %S", t)

printf "Got back (%s)\n", r

}

}

The entire program uses two variables that can be set on the command
line to control debugging output and to enable the test in the �nal BEGIN
rule. Here is the result of a test run. (Note that debugging output is to
standard error, and test output is to standard output.)

$ gawk -f mktime.awk -v _tm_test=1 -v _tm_debug=1

a Enter date as yyyy mm dd hh mm ss: 1993 5 23 15 35 10

error (1993 5 23 15 35 10) -> (1993 05 23 11 35 10)

error diff = 14400 seconds

a Got back (1993 05 23 15 35 10)

The time entered was 3:35 p.m. (15:35 on a 24-hour clock), on May 23,
1993. The �rst line of debugging output shows the resulting time as UTC|
four hours ahead of the local time zone. The second line shows that the
di�erence is 14400 seconds, which is four hours. (The di�erence is only four
hours, since daylight savings time is in e�ect during May.) The �nal line

182 AWK Language Programming

of test output shows that the timezone compensation algorithm works; the
returned time is the same as the entered time.

This program does not solve the general problem of turning an arbitrary
date representation into a timestamp. That problem is very involved. How-
ever, the mktime function provides a foundation upon which to build. Other
software can convert month names into numeric months, and AM/PM times
into 24-hour clocks, to generate the \canonical" format that mktime requires.

15.7 Managing the Time of Day

The systime and strftime functions described in Section 12.5 [Functions
for Dealing with Time Stamps], page 147, provide the minimum function-
ality necessary for dealing with the time of day in human readable form.
While strftime is extensive, the control formats are not necessarily easy to
remember or intuitively obvious when reading a program.

The following function, gettimeofday, populates a user-supplied array
with pre-formatted time information. It returns a string with the current
time formatted in the same way as the date utility.

gettimeofday --- get the time of day in a usable format

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain, May 1993

#

Returns a string in the format of output of date(1)

Populates the array argument time with individual values:

time["second"] -- seconds (0 - 59)

time["minute"] -- minutes (0 - 59)

time["hour"] -- hours (0 - 23)

time["althour"] -- hours (0 - 12)

time["monthday"] -- day of month (1 - 31)

time["month"] -- month of year (1 - 12)

time["monthname"] -- name of the month

time["shortmonth"] -- short name of the month

time["year"] -- year within century (0 - 99)

time["fullyear"] -- year with century (19xx or 20xx)

time["weekday"] -- day of week (Sunday = 0)

time["altweekday"] -- day of week (Monday = 0)

time["weeknum"] -- week number, Sunday first day

time["altweeknum"] -- week number, Monday first day

time["dayname"] -- name of weekday

time["shortdayname"] -- short name of weekday

time["yearday"] -- day of year (0 - 365)

time["timezone"] -- abbreviation of timezone name

time["ampm"] -- AM or PM designation

Chapter 15: A Library of awk Functions 183

function gettimeofday(time, ret, now, i)

{

get time once, avoids unnecessary system calls

now = systime()

return date(1)-style output

ret = strftime("%a %b %d %H:%M:%S %Z %Y", now)

clear out target array

for (i in time)

delete time[i]

fill in values, force numeric values to be

numeric by adding 0

time["second"] = strftime("%S", now) + 0

time["minute"] = strftime("%M", now) + 0

time["hour"] = strftime("%H", now) + 0

time["althour"] = strftime("%I", now) + 0

time["monthday"] = strftime("%d", now) + 0

time["month"] = strftime("%m", now) + 0

time["monthname"] = strftime("%B", now)

time["shortmonth"] = strftime("%b", now)

time["year"] = strftime("%y", now) + 0

time["fullyear"] = strftime("%Y", now) + 0

time["weekday"] = strftime("%w", now) + 0

time["altweekday"] = strftime("%u", now) + 0

time["dayname"] = strftime("%A", now)

time["shortdayname"] = strftime("%a", now)

time["yearday"] = strftime("%j", now) + 0

time["timezone"] = strftime("%Z", now)

time["ampm"] = strftime("%p", now)

time["weeknum"] = strftime("%U", now) + 0

time["altweeknum"] = strftime("%W", now) + 0

return ret

}

The string indices are easier to use and read than the various formats
required by strftime. The alarm program presented in Section 16.2.2 [An
Alarm Clock Program], page 226, uses this function.

The gettimeofday function is presented above as it was written. A more
general design for this function would have allowed the user to supply an

184 AWK Language Programming

optional timestamp value that would have been used instead of the current
time.

15.8 Noting Data File Boundaries

The BEGIN and END rules are each executed exactly once, at the beginning
and end respectively of your awk program (see Section 8.1.5 [The BEGIN and
END Special Patterns], page 100). We (the gawk authors) once had a user
who mistakenly thought that the BEGIN rule was executed at the beginning
of each data �le and the END rule was executed at the end of each data �le.
When informed that this was not the case, the user requested that we add
new special patterns to gawk, named BEGIN_FILE and END_FILE, that would
have the desired behavior. He even supplied us the code to do so.

However, after a little thought, I came up with the following library
program. It arranges to call two user-supplied functions, beginfile and
endfile, at the beginning and end of each data �le. Besides solving the
problem in only nine(!) lines of code, it does so portably ; this will work
with any implementation of awk.

transfile.awk

#

Give the user a hook for filename transitions

#

The user must supply functions beginfile() and endfile()

that each take the name of the file being started or

finished, respectively.

#

Arnold Robbins, arnold@gnu.ai.mit.edu, January 1992

Public Domain

FILENAME != _oldfilename \

{

if (_oldfilename != "")

endfile(_oldfilename)

_oldfilename = FILENAME

beginfile(FILENAME)

}

END { endfile(FILENAME) }

This �le must be loaded before the user's \main" program, so that the
rule it supplies will be executed �rst.

This rule relies on awk's FILENAME variable that automatically changes
for each new data �le. The current �le name is saved in a private variable,

Chapter 15: A Library of awk Functions 185

_oldfilename. If FILENAME does not equal _oldfilename, then a new data
�le is being processed, and it is necessary to call endfile for the old �le.
Since endfile should only be called if a �le has been processed, the pro-
gram �rst checks to make sure that _oldfilename is not the null string.
The program then assigns the current �le name to _oldfilename, and calls
beginfile for the �le. Since, like all awk variables, _oldfilename will be
initialized to the null string, this rule executes correctly even for the �rst
data �le.

The program also supplies an END rule, to do the �nal processing for
the last �le. Since this END rule comes before any END rules supplied in
the \main" program, endfile will be called �rst. Once again the value of
multiple BEGIN and END rules should be clear.

This version has same problem as the �rst version of nextfile (see Sec-
tion 15.2 [Implementing nextfile as a Function], page 170). If the same data
�le occurs twice in a row on command line, then endfile and beginfile

will not be executed at the end of the �rst pass and at the beginning of the
second pass. This version solves the problem.

ftrans.awk --- handle data file transitions

#

user supplies beginfile() and endfile() functions

#

Arnold Robbins, arnold@gnu.ai.mit.edu. November 1992

Public Domain

FNR == 1 {

if (_filename_ != "")

endfile(_filename_)

filename = FILENAME

beginfile(FILENAME)

}

END { endfile(_filename_) }

In Section 16.1.7 [Counting Things], page 223, you will see how this
library function can be used, and how it simpli�es writing the main program.

15.9 Processing Command Line Options

Most utilities on POSIX compatible systems take options or \switches" on
the command line that can be used to change the way a program behaves.
awk is an example of such a program (see Section 14.1 [Command Line
Options], page 161). Often, options take arguments, data that the program
needs to correctly obey the command line option. For example, awk's `-F'

186 AWK Language Programming

option requires a string to use as the �eld separator. The �rst occurrence
on the command line of either `--' or a string that does not begin with `-'
ends the options.

Most Unix systems provide a C function named getopt for processing
command line arguments. The programmer provides a string describing
the one letter options. If an option requires an argument, it is followed
in the string with a colon. getopt is also passed the count and values of
the command line arguments, and is called in a loop. getopt processes the
command line arguments for option letters. Each time around the loop, it
returns a single character representing the next option letter that it found,
or `?' if it found an invalid option. When it returns �1, there are no options
left on the command line.

When using getopt, options that do not take arguments can be grouped
together. Furthermore, options that take arguments require that the argu-
ment be present. The argument can immediately follow the option letter, or
it can be a separate command line argument.

Given a hypothetical program that takes three command line options,
`-a', `-b', and `-c', and `-b' requires an argument, all of the following are
valid ways of invoking the program:

prog -a -b foo -c data1 data2 data3

prog -ac -bfoo -- data1 data2 data3

prog -acbfoo data1 data2 data3

Notice that when the argument is grouped with its option, the rest of the
command line argument is considered to be the option's argument. In the
above example, `-acbfoo' indicates that all of the `-a', `-b', and `-c' options
were supplied, and that `foo' is the argument to the `-b' option.

getopt provides four external variables that the programmer can use.

optind The index in the argument value array (argv) where the �rst
non-option command line argument can be found.

optarg The string value of the argument to an option.

opterr Usually getopt prints an error message when it �nds an invalid
option. Setting opterr to zero disables this feature. (An appli-
cation might wish to print its own error message.)

optopt The letter representing the command line option. While not
usually documented, most versions supply this variable.

The following C fragment shows how getopt might process command
line arguments for awk.

Chapter 15: A Library of awk Functions 187

int

main(int argc, char *argv[])

{

: : :

/* print our own message */

opterr = 0;

while ((c = getopt(argc, argv, "v:f:F:W:")) != -1) {

switch (c) {

case 'f': /* file */

: : :

break;

case 'F': /* field separator */

: : :

break;

case 'v': /* variable assignment */

: : :

break;

case 'W': /* extension */

: : :

break;

case '?':

default:

usage();

break;

}

}

: : :

}

As a side point, gawk actually uses the GNU getopt_long function to
process both normal and GNU-style long options (see Section 14.1 [Com-
mand Line Options], page 161).

The abstraction provided by getopt is very useful, and would be quite
handy in awk programs as well. Here is an awk version of getopt. This
function highlights one of the greatest weaknesses in awk, which is that it
is very poor at manipulating single characters. Repeated calls to substr

are necessary for accessing individual characters (see Section 12.3 [Built-in
Functions for String Manipulation], page 137).

The discussion walks through the code a bit at a time.

getopt --- do C library getopt(3) function in awk

#

arnold@gnu.ai.mit.edu

Public domain

188 AWK Language Programming

#

Initial version: March, 1991

Revised: May, 1993

External variables:

Optind -- index of ARGV for first non-option argument

Optarg -- string value of argument to current option

Opterr -- if non-zero, print our own diagnostic

Optopt -- current option letter

Returns

-1 at end of options

? for unrecognized option

<c> a character representing the current option

Private Data

_opti index in multi-flag option, e.g., -abc

The function starts out with some documentation: who wrote the code,
and when it was revised, followed by a list of the global variables it uses,
what the return values are and what they mean, and any global variables
that are \private" to this library function. Such documentation is essential
for any program, and particularly for library functions.

function getopt(argc, argv, options, optl, thisopt, i)

{

optl = length(options)

if (optl == 0) # no options given

return -1

if (argv[Optind] == "--") { # all done

Optind++

_opti = 0

return -1

} else if (argv[Optind] !~ /^-[^: \t\n\f\r\v\b]/) {

_opti = 0

return -1

}

The function �rst checks that it was indeed called with a string of options
(the options parameter). If options has a zero length, getopt immediately
returns �1.

The next thing to check for is the end of the options. A `--' ends the
command line options, as does any command line argument that does not
begin with a `-'. Optind is used to step through the array of command line

Chapter 15: A Library of awk Functions 189

arguments; it retains its value across calls to getopt, since it is a global
variable.

The regexp used, /^-[^: \t\n\f\r\v\b]/, is perhaps a bit of overkill; it
checks for a `-' followed by anything that is not whitespace and not a colon.
If the current command line argument does not match this pattern, it is not
an option, and it ends option processing.

if (_opti == 0)

_opti = 2

thisopt = substr(argv[Optind], _opti, 1)

Optopt = thisopt

i = index(options, thisopt)

if (i == 0) {

if (Opterr)

printf("%c -- invalid option\n",

thisopt) > "/dev/stderr"

if (_opti >= length(argv[Optind])) {

Optind++

_opti = 0

} else

_opti++

return "?"

}

The _opti variable tracks the position in the current command line ar-
gument (argv[Optind]). In the case that multiple options were grouped
together with one `-' (e.g., `-abx'), it is necessary to return them to the user
one at a time.

If _opti is equal to zero, it is set to two, the index in the string of the
next character to look at (we skip the `-', which is at position one). The
variable thisopt holds the character, obtained with substr. It is saved in
Optopt for the main program to use.

If thisopt is not in the options string, then it is an invalid option. If
Opterr is non-zero, getopt prints an error message on the standard error
that is similar to the message from the C version of getopt.

Since the option is invalid, it is necessary to skip it and move on to the
next option character. If _opti is greater than or equal to the length of the
current command line argument, then it is necessary to move on to the next
one, so Optind is incremented and _opti is reset to zero. Otherwise, Optind
is left alone and _opti is merely incremented.

In any case, since the option was invalid, getopt returns `?'. The main
program can examine Optopt if it needs to know what the invalid option
letter actually was.

190 AWK Language Programming

if (substr(options, i + 1, 1) == ":") {

get option argument

if (length(substr(argv[Optind], _opti + 1)) > 0)

Optarg = substr(argv[Optind], _opti + 1)

else

Optarg = argv[++Optind]

_opti = 0

} else

Optarg = ""

If the option requires an argument, the option letter is followed by a
colon in the options string. If there are remaining characters in the current
command line argument (argv[Optind]), then the rest of that string is
assigned to Optarg. Otherwise, the next command line argument is used
(`-xFOO' vs. `-x FOO'). In either case, _opti is reset to zero, since there are
no more characters left to examine in the current command line argument.

if (_opti == 0 || _opti >= length(argv[Optind])) {

Optind++

_opti = 0

} else

_opti++

return thisopt

}

Finally, if _opti is either zero or greater than the length of the current
command line argument, it means this element in argv is through being
processed, so Optind is incremented to point to the next element in argv. If
neither condition is true, then only _opti is incremented, so that the next
option letter can be processed on the next call to getopt.

BEGIN {

Opterr = 1 # default is to diagnose

Optind = 1 # skip ARGV[0]

test program

if (_getopt_test) {

while ((_go_c = getopt(ARGC, ARGV, "ab:cd")) != -1)

printf("c = <%c>, optarg = <%s>\n",

_go_c, Optarg)

printf("non-option arguments:\n")

for (; Optind < ARGC; Optind++)

printf("\tARGV[%d] = <%s>\n",

Optind, ARGV[Optind])

}

}

Chapter 15: A Library of awk Functions 191

The BEGIN rule initializes both Opterr and Optind to one. Opterr is set
to one, since the default behavior is for getopt to print a diagnostic message
upon seeing an invalid option. Optind is set to one, since there's no reason
to look at the program name, which is in ARGV[0].

The rest of the BEGIN rule is a simple test program. Here is the result of
two sample runs of the test program.

$ awk -f getopt.awk -v _getopt_test=1 -- -a -cbARG bax -x

a c = <a>, optarg = <>

a c = <c>, optarg = <>

a c = , optarg = <ARG>

a non-option arguments:

a ARGV[3] = <bax>

a ARGV[4] = <-x>

$ awk -f getopt.awk -v _getopt_test=1 -- -a -x -- xyz abc

a c = <a>, optarg = <>

error x -- invalid option

a c = <?>, optarg = <>

a non-option arguments:

a ARGV[4] = <xyz>

a ARGV[5] = <abc>

The �rst `--' terminates the arguments to awk, so that it does not try to
interpret the `-a' etc. as its own options.

Several of the sample programs presented in Chapter 16 [Practical awk
Programs], page 203, use getopt to process their arguments.

15.10 Reading the User Database

The `/dev/user' special �le (see Section 6.7 [Special File Names in gawk],
page 72) provides access to the current user's real and e�ective user and
group id numbers, and if available, the user's supplementary group set. How-
ever, since these are numbers, they do not provide very useful information
to the average user. There needs to be some way to �nd the user infor-
mation associated with the user and group numbers. This section presents
a suite of functions for retrieving information from the user database. See
Section 15.11 [Reading the Group Database], page 196, for a similar suite
that retrieves information from the group database.

The POSIX standard does not de�ne the �le where user information is
kept. Instead, it provides the <pwd.h> header �le and several C language sub-
routines for obtaining user information. The primary function is getpwent,
for \get password entry." The \password" comes from the original user
database �le, `/etc/passwd', which kept user information, along with the
encrypted passwords (hence the name).

192 AWK Language Programming

While an awk program could simply read `/etc/passwd' directly (the
format is well known), because of the way password �les are handled on
networked systems, this �le may not contain complete information about
the system's set of users.

To be sure of being able to produce a readable, complete version of the
user database, it is necessary to write a small C program that calls getpwent.
getpwent is de�ned to return a pointer to a struct passwd. Each time it
is called, it returns the next entry in the database. When there are no more
entries, it returns NULL, the null pointer. When this happens, the C program
should call endpwent to close the database. Here is pwcat, a C program that
\cats" the password database.

/*

* pwcat.c

*

* Generate a printable version of the password database

*

* Arnold Robbins

* arnold@gnu.ai.mit.edu

* May 1993

* Public Domain

*/

#include <stdio.h>

#include <pwd.h>

int

main(argc, argv)

int argc;

char **argv;

{

struct passwd *p;

while ((p = getpwent()) != NULL)

printf("%s:%s:%d:%d:%s:%s:%s\n",

p->pw_name, p->pw_passwd, p->pw_uid,

p->pw_gid, p->pw_gecos, p->pw_dir, p->pw_shell);

endpwent();

exit(0);

}

Chapter 15: A Library of awk Functions 193

If you don't understand C, don't worry about it. The output from
pwcat is the user database, in the traditional `/etc/passwd' format of colon-
separated �elds. The �elds are:

Login name
The user's login name.

Encrypted password
The user's encrypted password. This may not be available on
some systems.

User-ID The user's numeric user-id number.

Group-ID The user's numeric group-id number.

Full name The user's full name, and perhaps other information associated
with the user.

Home directory
The user's login, or \home" directory (familiar to shell program-
mers as $HOME).

Login shell
The program that will be run when the user logs in. This is
usually a shell, such as Bash (the Gnu Bourne-Again shell).

Here are a few lines representative of pwcat's output.

$ pwcat

a root:3Ov02d5VaUPB6:0:1:Operator:/:/bin/sh

a nobody:*:65534:65534::/:

a daemon:*:1:1::/:

a sys:*:2:2::/:/bin/csh

a bin:*:3:3::/bin:

a arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/sh

a miriam:yxaay:112:10:Miriam Robbins:/home/miriam:/bin/sh

: : :

With that introduction, here is a group of functions for getting user infor-
mation. There are several functions here, corresponding to the C functions
of the same name.

passwd.awk --- access password file information

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

BEGIN {

tailor this to suit your system

_pw_awklib = "/usr/local/libexec/awk/"

}

194 AWK Language Programming

function _pw_init(oldfs, oldrs, olddol0, pwcat)

{

if (_pw_inited)

return

oldfs = FS

oldrs = RS

olddol0 = $0

FS = ":"

RS = "\n"

pwcat = _pw_awklib "pwcat"

while ((pwcat | getline) > 0) {

_pw_byname[$1] = $0

_pw_byuid[$3] = $0

_pw_bycount[++_pw_total] = $0

}

close(pwcat)

_pw_count = 0

_pw_inited = 1

FS = oldfs

RS = oldrs

$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where pwcat is
stored. Since it is used to help out an awk library routine, we have chosen to
put it in `/usr/local/libexec/awk'. You might want it to be in a di�erent
directory on your system.

The function _pw_init keeps three copies of the user information in three
associative arrays. The arrays are indexed by user name (_pw_byname), by
user-id number (_pw_byuid), and by order of occurrence (_pw_bycount).

The variable _pw_inited is used for e�ciency; _pw_init only needs to
be called once.

Since this function uses getline to read information from pwcat, it �rst
saves the values of FS, RS, and $0. Doing so is necessary, since these functions
could be called from anywhere within a user's program, and the user may
have his or her own values for FS and RS.

The main part of the function uses a loop to read database lines, split
the line into �elds, and then store the line into each array as necessary.
When the loop is done, _pw_init cleans up by closing the pipeline, setting
_pw_inited to one, and restoring FS, RS, and $0. The use of _pw_count will
be explained below.

Chapter 15: A Library of awk Functions 195

function getpwnam(name)

{

_pw_init()

if (name in _pw_byname)

return _pw_byname[name]

return ""

}

The getpwnam function takes a user name as a string argument. If that
user is in the database, it returns the appropriate line. Otherwise it returns
the null string.

function getpwuid(uid)

{

_pw_init()

if (uid in _pw_byuid)

return _pw_byuid[uid]

return ""

}

Similarly, the getpwuid function takes a user-id number argument. If that
user number is in the database, it returns the appropriate line. Otherwise it
returns the null string.

function getpwent()

{

_pw_init()

if (_pw_count < _pw_total)

return _pw_bycount[++_pw_count]

return ""

}

The getpwent function simply steps through the database, one entry at
a time. It uses _pw_count to track its current position in the _pw_bycount
array.

function endpwent()

{

_pw_count = 0

}

The endpwent function resets _pw_count to zero, so that subsequent calls
to getpwent will start over again.

A conscious design decision in this suite is that each subroutine calls
_pw_init to initialize the database arrays. The overhead of running a sepa-
rate process to generate the user database, and the I/O to scan it, will only
be incurred if the user's main program actually calls one of these functions.
If this library �le is loaded along with a user's program, but none of the

196 AWK Language Programming

routines are ever called, then there is no extra run-time overhead. (The al-
ternative would be to move the body of _pw_init into a BEGIN rule, which
would always run pwcat. This simpli�es the code but runs an extra process
that may never be needed.)

In turn, calling _pw_init is not too expensive, since the _pw_inited

variable keeps the program from reading the data more than once. If you
are worried about squeezing every last cycle out of your awk program, the
check of _pw_inited could be moved out of _pw_init and duplicated in
all the other functions. In practice, this is not necessary, since most awk
programs are I/O bound, and it would clutter up the code.

The id program in Section 16.1.3 [Printing Out User Information],
page 212, uses these functions.

15.11 Reading the Group Database

Much of the discussion presented in Section 15.10 [Reading the User
Database], page 191, applies to the group database as well. Although there
has traditionally been a well known �le, `/etc/group', in a well known for-
mat, the POSIX standard only provides a set of C library routines (<grp.h>
and getgrent) for accessing the information. Even though this �le may
exist, it likely does not have complete information. Therefore, as with the
user database, it is necessary to have a small C program that generates the
group database as its output.

Here is grcat, a C program that \cats" the group database.

/*

* grcat.c

*

* Generate a printable version of the group database

*

* Arnold Robbins, arnold@gnu.ai.mit.edu

* May 1993

* Public Domain

*/

#include <stdio.h>

#include <grp.h>

Chapter 15: A Library of awk Functions 197

int

main(argc, argv)

int argc;

char **argv;

{

struct group *g;

int i;

while ((g = getgrent()) != NULL) {

printf("%s:%s:%d:", g->gr_name, g->gr_passwd,

g->gr_gid);

for (i = 0; g->gr_mem[i] != NULL; i++) {

printf("%s", g->gr_mem[i]);

if (g->gr_mem[i+1] != NULL)

putchar(',');

}

putchar('\n');

}

endgrent();

exit(0);

}

Each line in the group database represent one group. The �elds are
separated with colons, and represent the following information.

Group Name
The name of the group.

Group Password
The encrypted group password. In practice, this �eld is never
used. It is usually empty, or set to `*'.

Group ID Number
The numeric group-id number. This number should be unique
within the �le.

Group Member List
A comma-separated list of user names. These users are members
of the group. Most Unix systems allow users to be members of
several groups simultaneously. If your system does, then reading
`/dev/user' will return those group-id numbers in $5 through
$NF. (Note that `/dev/user' is a gawk extension; see Section 6.7
[Special File Names in gawk], page 72.)

198 AWK Language Programming

Here is what running grcat might produce:

$ grcat

a wheel:*:0:arnold

a nogroup:*:65534:

a daemon:*:1:

a kmem:*:2:

a staff:*:10:arnold,miriam,andy

a other:*:20:

: : :

Here are the functions for obtaining information from the group database.
There are several, modeled after the C library functions of the same names.

group.awk --- functions for dealing with the group file

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

BEGIN \

{

Change to suit your system

_gr_awklib = "/usr/local/libexec/awk/"

}

function _gr_init(oldfs, oldrs, olddol0, grcat, n, a, i)

{

if (_gr_inited)

return

oldfs = FS

oldrs = RS

olddol0 = $0

FS = ":"

RS = "\n"

grcat = _gr_awklib "grcat"

while ((grcat | getline) > 0) {

if ($1 in _gr_byname)

_gr_byname[$1] = _gr_byname[$1] "," $4

else

_gr_byname[$1] = $0

if ($3 in _gr_bygid)

_gr_bygid[$3] = _gr_bygid[$3] "," $4

else

_gr_bygid[$3] = $0

n = split($4, a, "[\t]*,[\t]*")

Chapter 15: A Library of awk Functions 199

for (i = 1; i <= n; i++)

if (a[i] in _gr_groupsbyuser)

_gr_groupsbyuser[a[i]] = \

_gr_groupsbyuser[a[i]] " " $1

else

_gr_groupsbyuser[a[i]] = $1

_gr_bycount[++_gr_count] = $0

}

close(grcat)

_gr_count = 0

_gr_inited++

FS = oldfs

RS = oldrs

$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where grcat is
stored. Since it is used to help out an awk library routine, we have chosen to
put it in `/usr/local/libexec/awk'. You might want it to be in a di�erent
directory on your system.

These routines follow the same general outline as the user database
routines (see Section 15.10 [Reading the User Database], page 191). The
_gr_inited variable is used to ensure that the database is scanned no more
than once. The _gr_init function �rst saves FS, RS, and $0, and then sets
FS and RS to the correct values for scanning the group information.

The group information is stored is several associative arrays. The arrays
are indexed by group name (_gr_byname), by group-id number (_gr_bygid),
and by position in the database (_gr_bycount). There is an additional array
indexed by user name (_gr_groupsbyuser), that is a space separated list of
groups that each user belongs to.

Unlike the user database, it is possible to have multiple records in the
database for the same group. This is common when a group has a large
number of members. Such a pair of entries might look like:

tvpeople:*:101:johny,jay,arsenio

tvpeople:*:101:david,conan,tom,joan

For this reason, _gr_init looks to see if a group name or group-id number
has already been seen. If it has, then the user names are simply concatenated
onto the previous list of users. (There is actually a subtle problem with the
code presented above. Suppose that the �rst time there were no names. This
code adds the names with a leading comma. It also doesn't check that there
is a $4.)

200 AWK Language Programming

Finally, _gr_init closes the pipeline to grcat, restores FS, RS, and $0,
initializes _gr_count to zero (it is used later), and makes _gr_inited non-
zero.

function getgrnam(group)

{

_gr_init()

if (group in _gr_byname)

return _gr_byname[group]

return ""

}

The getgrnam function takes a group name as its argument, and if that
group exists, it is returned. Otherwise, getgrnam returns the null string.

function getgrgid(gid)

{

_gr_init()

if (gid in _gr_bygid)

return _gr_bygid[gid]

return ""

}

The getgrgid function is similar, it takes a numeric group-id, and looks
up the information associated with that group-id.

function getgruser(user)

{

_gr_init()

if (user in _gr_groupsbyuser)

return _gr_groupsbyuser[user]

return ""

}

The getgruser function does not have a C counterpart. It takes a user
name, and returns the list of groups that have the user as a member.

function getgrent()

{

_gr_init()

if (++gr_count in _gr_bycount)

return _gr_bycount[_gr_count]

return ""

}

The getgrent function steps through the database one entry at a time.
It uses _gr_count to track its position in the list.

Chapter 15: A Library of awk Functions 201

function endgrent()

{

_gr_count = 0

}

endgrent resets _gr_count to zero so that getgrent can start over again.

As with the user database routines, each function calls _gr_init to ini-
tialize the arrays. Doing so only incurs the extra overhead of running grcat

if these functions are used (as opposed to moving the body of _gr_init into
a BEGIN rule).

Most of the work is in scanning the database and building the various
associative arrays. The functions that the user calls are themselves very
simple, relying on awk's associative arrays to do work.

The id program in Section 16.1.3 [Printing Out User Information],
page 212, uses these functions.

15.12 Naming Library Function Global Variables

Due to the way the awk language evolved, variables are either global
(usable by the entire program), or local (usable just by a speci�c function).
There is no intermediate state analogous to static variables in C.

Library functions often need to have global variables that they can use
to preserve state information between calls to the function. For example,
getopt's variable _opti (see Section 15.9 [Processing Command Line Op-
tions], page 185), and the _tm_months array used by mktime (see Section 15.6
[Turning Dates Into Timestamps], page 176). Such variables are called pri-
vate, since the only functions that need to use them are the ones in the
library.

When writing a library function, you should try to choose names for
your private variables so that they will not con
ict with any variables used
by either another library function or a user's main program. For example,
a name like `i' or `j' is not a good choice, since user programs often use
variable names like these for their own purposes.

The example programs shown in this chapter all start the names of their
private variables with an underscore (`_'). Users generally don't use leading
underscores in their variable names, so this convention immediately decreases
the chances that the variable name will be accidentally shared with the user's
program.

In addition, several of the library functions use a pre�x that helps in-
dicate what function or set of functions uses the variables. For example,
_tm_months in mktime (see Section 15.6 [Turning Dates Into Timestamps],
page 176), and _pw_byname in the user data base routines (see Section 15.10
[Reading the User Database], page 191). This convention is recommended,

202 AWK Language Programming

since it even further decreases the chance of inadvertent con
ict among vari-
able names. Note that this convention can be used equally well both for
variable names and for private function names too.

While I could have re-written all the library routines to use this conven-
tion, I did not do so, in order to show how my own awk programming style
has evolved, and to provide some basis for this discussion.

As a �nal note on variable naming, if a function makes global variables
available for use by a main program, it is a good convention to start that vari-
able's name with a capital letter. For example, getopt's Opterr and Optind

variables (see Section 15.9 [Processing Command Line Options], page 185).
The leading capital letter indicates that it is global, while the fact that the
variable name is not all capital letters indicates that the variable is not one
of awk's built-in variables, like FS.

It is also important that all variables in library functions that do not
need to save state are in fact declared local. If this is not done, the variable
could accidentally be used in the user's program, leading to bugs that are
very di�cult to track down.

function lib_func(x, y, l1, l2)

{

: : :

use variable some_var # some_var could be local

: : : # but is not by oversight

}

A di�erent convention, common in the Tcl community, is to use a sin-
gle associative array to hold the values needed by the library function(s),
or \package." This signi�cantly decreases the number of actual global
names in use. For example, the functions described in Section 15.10 [Read-
ing the User Database], page 191, might have used PW_data["inited"],
PW_data["total"], PW_data["count"] and PW_data["awklib"], instead
of _pw_inited, _pw_awklib, _pw_total, and _pw_count.

The conventions presented in this section are exactly that, conventions.
You are not required to write your programs this way, we merely recommend
that you do so.

Chapter 16: Practical awk Programs 203

16 Practical awkPrograms

This chapter presents a potpourri of awk programs for your reading en-
joyment. There are two sections. The �rst presents awk versions of several
common POSIX utilities. The second is a grab-bag of interesting programs.

Many of these programs use the library functions presented in Chapter 15
[A Library of awk Functions], page 169.

16.1 Re-inventing Wheels for Fun and Pro�t

This section presents a number of POSIX utilities that are implemented
in awk. Re-inventing these programs in awk is often enjoyable, since the
algorithms can be very clearly expressed, and usually the code is very concise
and simple. This is true because awk does so much for you.

It should be noted that these programs are not necessarily intended to
replace the installed versions on your system. Instead, their purpose is to
illustrate awk language programming for \real world" tasks.

The programs are presented in alphabetical order.

16.1.1 Cutting Out Fields and Columns

The cut utility selects, or \cuts," either characters or �elds from its
standard input and sends them to its standard output. cut can cut out
either a list of characters, or a list of �elds. By default, �elds are separated
by tabs, but you may supply a command line option to change the �eld
delimiter, i.e. the �eld separator character. cut's de�nition of �elds is less
general than awk's.

A common use of cutmight be to pull out just the login name of logged-on
users from the output of who. For example, the following pipeline generates
a sorted, unique list of the logged on users:

who | cut -c1-8 | sort | uniq

The options for cut are:

-c list Use list as the list of characters to cut out. Items within the list
may be separated by commas, and ranges of characters can be
separated with dashes. The list `1-8,15,22-35' speci�es char-
acters one through eight, 15, and 22 through 35.

-f list Use list as the list of �elds to cut out.

-d delim Use delim as the �eld separator character instead of the tab
character.

-s Suppress printing of lines that do not contain the �eld delimiter.

204 AWK Language Programming

The awk implementation of cut uses the getopt library function (see
Section 15.9 [Processing Command Line Options], page 185), and the join
library function (see Section 15.5 [Merging an Array Into a String], page 175).

The program begins with a comment describing the options and a usage

function which prints out a usage message and exits. usage is called if invalid
arguments are supplied.

cut.awk --- implement cut in awk

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

Options:

-f list Cut fields

-d c Field delimiter character

-c list Cut characters

#

-s Suppress lines without the delimiter character

function usage(e1, e2)

{

e1 = "usage: cut [-f list] [-d c] [-s] [files...]"

e2 = "usage: cut [-c list] [files...]"

print e1 > "/dev/stderr"

print e2 > "/dev/stderr"

exit 1

}

The variables e1 and e2 are used so that the function �ts nicely on the page.

Next comes a BEGIN rule that parses the command line options. It sets
FS to a single tab character, since that is cut's default �eld separator. The
output �eld separator is also set to be the same as the input �eld separator.
Then getopt is used to step through the command line options. One or
the other of the variables by_fields or by_chars is set to true, to indicate
that processing should be done by �elds or by characters respectively. When
cutting by characters, the output �eld separator is set to the null string.

BEGIN \

{

FS = "\t" # default

OFS = FS

while ((c = getopt(ARGC, ARGV, "sf:c:d:")) != -1) {

if (c == "f") {

by_fields = 1

fieldlist = Optarg

} else if (c == "c") {

Chapter 16: Practical awk Programs 205

by_chars = 1

fieldlist = Optarg

OFS = ""

} else if (c == "d") {

if (length(Optarg) > 1) {

printf("Using first character of %s" \

" for delimiter\n", Optarg) > "/dev/stderr"

Optarg = substr(Optarg, 1, 1)

}

FS = Optarg

OFS = FS

if (FS == " ") # defeat awk semantics

FS = "[]"

} else if (c == "s")

suppress++

else

usage()

}

for (i = 1; i < Optind; i++)

ARGV[i] = ""

Special care is taken when the �eld delimiter is a space. Using " " (a
single space) for the value of FS is incorrect|awk would separate �elds with
runs of spaces and/or tabs, and we want them to be separated with individual
spaces. Also, note that after getopt is through, we have to clear out all the
elements of ARGV from one to Optind, so that awk will not try to process the
command line options as �le names.

After dealing with the command line options, the program veri�es that
the options make sense. Only one or the other of `-c' and `-f' should be used,
and both require a �eld list. Then either set_fieldlist or set_charlist
is called to pull apart the list of �elds or characters.

if (by_fields && by_chars)

usage()

if (by_fields == 0 && by_chars == 0)

by_fields = 1 # default

if (fieldlist == "") {

print "cut: needs list for -c or -f" > "/dev/stderr"

exit 1

}

206 AWK Language Programming

if (by_fields)

set_fieldlist()

else

set_charlist()

}

Here is set_fieldlist. It �rst splits the �eld list apart at the commas,
into an array. Then, for each element of the array, it looks to see if it is
actually a range, and if so splits it apart. The range is veri�ed to make
sure the �rst number is smaller than the second. Each number in the list is
added to the flist array, which simply lists the �elds that will be printed.
Normal �eld splitting is used. The program lets awk handle the job of doing
the �eld splitting.

function set_fieldlist(n, m, i, j, k, f, g)

{

n = split(fieldlist, f, ",")

j = 1 # index in flist

for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # a range

m = split(f[i], g, "-")

if (m != 2 || g[1] >= g[2]) {

printf("bad field list: %s\n",

f[i]) > "/dev/stderr"

exit 1

}

for (k = g[1]; k <= g[2]; k++)

flist[j++] = k

} else

flist[j++] = f[i]

}

nfields = j - 1

}

The set_charlist function is more complicated than set_fieldlist.
The idea here is to use gawk's FIELDWIDTHS variable (see Section 5.6 [Reading
Fixed-width Data], page 49), which describes constant width input. When
using a character list, that is exactly what we have.

Setting up FIELDWIDTHS is more complicated than simply listing the �elds
that need to be printed. We have to keep track of the �elds to be printed,
and also the intervening characters that have to be skipped. For example,
suppose you wanted characters one through eight, 15, and 22 through 35.
You would use `-c 1-8,15,22-35'. The necessary value for FIELDWIDTHS

would be "8 6 1 6 14". This gives us �ve �elds, and what should be printed

Chapter 16: Practical awk Programs 207

are $1, $3, and $5. The intermediate �elds are \�ller," stu� in between the
desired data.

flist lists the �elds to be printed, and t tracks the complete �eld list,
including �ller �elds.

function set_charlist(field, i, j, f, g, t,

filler, last, len)

{

field = 1 # count total fields

n = split(fieldlist, f, ",")

j = 1 # index in flist

for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # range

m = split(f[i], g, "-")

if (m != 2 || g[1] >= g[2]) {

printf(bad character list: %s\n",

f[i]) > "/dev/stderr"

exit 1

}

len = g[2] - g[1] + 1

if (g[1] > 1) # compute length of filler

filler = g[1] - last - 1

else

filler = 0

if (filler)

t[field++] = filler

t[field++] = len # length of field

last = g[2]

flist[j++] = field - 1

} else {

if (f[i] > 1)

filler = f[i] - last - 1

else

filler = 0

if (filler)

t[field++] = filler

t[field++] = 1

last = f[i]

flist[j++] = field - 1

}

}

208 AWK Language Programming

FIELDWIDTHS = join(t, 1, field - 1)

nfields = j - 1

}

Here is the rule that actually processes the data. If the `-s' option was
given, then suppress will be true. The �rst if statement makes sure that
the input record does have the �eld separator. If cut is processing �elds,
suppress is true, and the �eld separator character is not in the record, then
the record is skipped.

If the record is valid, then at this point, gawk has split the data into �elds,
either using the character in FS or using �xed-length �elds and FIELDWIDTHS.
The loop goes through the list of �elds that should be printed. If the cor-
responding �eld has data in it, it is printed. If the next �eld also has data,
then the separator character is written out in between the �elds.

{

if (by_fields && suppress && $0 !~ FS)

next

for (i = 1; i <= nfields; i++) {

if ($flist[i] != "") {

printf "%s", $flist[i]

if (i < nfields && $flist[i+1] != "")

printf "%s", OFS

}

}

print ""

}

This version of cut relies on gawk's FIELDWIDTHS variable to do the
character-based cutting. While it would be possible in other awk imple-
mentations to use substr (see Section 12.3 [Built-in Functions for String
Manipulation], page 137), it would also be extremely painful to do so. The
FIELDWIDTHS variable supplies an elegant solution to the problem of picking
the input line apart by characters.

16.1.2 Searching for Regular Expressions in Files

The egrep utility searches �les for patterns. It uses regular expressions
that are almost identical to those available in awk (see Section 7.1.2 [Regular
Expression Constants], page 77). It is used this way:

egrep [options] 'pattern' �les : : :

The pattern is a regexp. In typical usage, the regexp is quoted to prevent
the shell from expanding any of the special characters as �le name wildcards.
Normally, egrep prints the lines that matched. If multiple �le names are

Chapter 16: Practical awk Programs 209

provided on the command line, each output line is preceded by the name of
the �le and a colon.

The options are:

-c Print out a count of the lines that matched the pattern, instead
of the lines themselves.

-s Be silent. No output is produced, and the exit value indicates
whether or not the pattern was matched.

-v Invert the sense of the test. egrep prints the lines that do not
match the pattern, and exits successfully if the pattern was not
matched.

-i Ignore case distinctions in both the pattern and the input data.

-l Only print the names of the �les that matched, not the lines
that matched.

-e pattern Use pattern as the regexp to match. The purpose of the `-e'
option is to allow patterns that start with a `-'.

This version uses the getopt library function (see Section 15.9 [Processing
Command Line Options], page 185), and the �le transition library program
(see Section 15.8 [Noting Data File Boundaries], page 184).

The program begins with a descriptive comment, and then a BEGIN rule
that processes the command line arguments with getopt. The `-i' (ignore
case) option is particularly easy with gawk; we just use the IGNORECASE built
in variable (see Chapter 10 [Built-in Variables], page 115).

egrep.awk --- simulate egrep in awk

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

Options:

-c count of lines

-s silent - use exit value

-v invert test, success if no match

-i ignore case

-l print filenames only

-e argument is pattern

BEGIN {

while ((c = getopt(ARGC, ARGV, "ce:svil")) != -1) {

if (c == "c")

count_only++

else if (c == "s")

no_print++

210 AWK Language Programming

else if (c == "v")

invert++

else if (c == "i")

IGNORECASE = 1

else if (c == "l")

filenames_only++

else if (c == "e")

pattern = Optarg

else

usage()

}

Next comes the code that handles the egrep speci�c behavior. If no
pattern was supplied with `-e', the �rst non-option on the command line is
used. The awk command line arguments up to ARGV[Optind] are cleared,
so that awk won't try to process them as �les. If no �les were speci�ed, the
standard input is used, and if multiple �les were speci�ed, we make sure to
note this so that the �le names can precede the matched lines in the output.

The last two lines are commented out, since they are not needed in gawk.
They should be uncommented if you have to use another version of awk.

if (pattern == "")

pattern = ARGV[Optind++]

for (i = 1; i < Optind; i++)

ARGV[i] = ""

if (Optind >= ARGC) {

ARGV[1] = "-"

ARGC = 2

} else if (ARGC - Optind > 1)

do_filenames++

if (IGNORECASE)

pattern = tolower(pattern)

}

The next set of lines should be uncommented if you are not using gawk.
This rule translates all the characters in the input line into lower-case if the
`-i' option was speci�ed. The rule is commented out since it is not necessary
with gawk.

#{

if (IGNORECASE)

$0 = tolower($0)

#}

Chapter 16: Practical awk Programs 211

The beginfile function is called by the rule in `ftrans.awk' when each
new �le is processed. In this case, it is very simple; all it does is initialize
a variable fcount to zero. fcount tracks how many lines in the current �le
matched the pattern.

function beginfile(junk)

{

fcount = 0

}

The endfile function is called after each �le has been processed. It is
used only when the user wants a count of the number of lines that matched.
no_print will be true only if the exit status is desired. count_only will be
true if line counts are desired. egrep will therefore only print line counts
if printing and counting are enabled. The output format must be adjusted
depending upon the number of �les to be processed. Finally, fcount is added
to total, so that we know how many lines altogether matched the pattern.

function endfile(file)

{

if (! no_print && count_only)

if (do_filenames)

print file ":" fcount

else

print fcount

total += fcount

}

This rule does most of the work of matching lines. The variable matches
will be true if the line matched the pattern. If the user wants lines that
did not match, the sense of the matches is inverted using the `!' operator.
fcount is incremented with the value of matches, which will be either one
or zero, depending upon a successful or unsuccessful match. If the line did
not match, the next statement just moves on to the next record.

There are several optimizations for performance in the following few lines
of code. If the user only wants exit status (no_print is true), and we don't
have to count lines, then it is enough to know that one line in this �le
matched, and we can skip on to the next �le with nextfile. Along similar
lines, if we are only printing �le names, and we don't need to count lines, we
can print the �le name, and then skip to the next �le with nextfile.

Finally, each line is printed, with a leading �lename and colon if necessary.

{

matches = ($0 ~ pattern)

if (invert)

matches = ! matches

212 AWK Language Programming

fcount += matches # 1 or 0

if (! matches)

next

if (no_print && ! count_only)

nextfile

if (filenames_only && ! count_only) {

print FILENAME

nextfile

}

if (do_filenames && ! count_only)

print FILENAME ":" $0

else if (! count_only)

print

}

The END rule takes care of producing the correct exit status. If there were
no matches, the exit status is one, otherwise it is zero.

END \

{

if (total == 0)

exit 1

exit 0

}

The usage function prints a usage message in case of invalid options and
then exits.

function usage(e)

{

e = "Usage: egrep [-csvil] [-e pat] [files ...]"

print e > "/dev/stderr"

exit 1

}

The variable e is used so that the function �ts nicely on the printed page.

16.1.3 Printing Out User Information

The id utility lists a user's real and e�ective user-id numbers, real and
e�ective group-id numbers, and the user's group set, if any. id will only print
the e�ective user-id and group-id if they are di�erent from the real ones. If

Chapter 16: Practical awk Programs 213

possible, id will also supply the corresponding user and group names. The
output might look like this:

$ id

a uid=2076(arnold) gid=10(staff) groups=10(staff),4(tty)

This information is exactly what is provided by gawk's `/dev/user' spe-
cial �le (see Section 6.7 [Special File Names in gawk], page 72). However, the
id utility provides a more palatable output than just a string of numbers.

Here is a simple version of id written in awk. It uses the user database
library functions (see Section 15.10 [Reading the User Database], page 191),
and the group database library functions (see Section 15.11 [Reading the
Group Database], page 196).

The program is fairly straightforward. All the work is done in the BEGIN
rule. The user and group id numbers are obtained from `/dev/user'. If
there is no support for `/dev/user', the program gives up.

The code is repetitive. The entry in the user database for the real user-id
number is split into parts at the `:'. The name is the �rst �eld. Similar code
is used for the e�ective user-id number, and the group numbers.

id.awk --- implement id in awk

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

output is:

uid=12(foo) euid=34(bar) gid=3(baz) \

egid=5(blat) groups=9(nine),2(two),1(one)

BEGIN \

{

if ((getline < "/dev/user") < 0) {

err = "id: no /dev/user support - cannot run"

print err > "/dev/stderr"

exit 1

}

close("/dev/user")

uid = $1

euid = $2

gid = $3

egid = $4

printf("uid=%d", uid)

pw = getpwuid(uid)

214 AWK Language Programming

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

if (euid != uid) {

printf(" euid=%d", euid)

pw = getpwuid(euid)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

}

printf(" gid=%d", gid)

pw = getgrgid(gid)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

if (egid != gid) {

printf(" egid=%d", egid)

pw = getgrgid(egid)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

}

if (NF > 4) {

printf(" groups=");

for (i = 5; i <= NF; i++) {

printf("%d", $i)

pw = getgrgid($i)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

if (i < NF)

printf(",")

}

}

Chapter 16: Practical awk Programs 215

print ""

}

16.1.4 Splitting a Large File Into Pieces

The split program splits large text �les into smaller pieces. By default,
the output �les are named `xaa', `xab', and so on. Each �le has 1000 lines in
it, with the likely exception of the last �le. To change the number of lines in
each �le, you supply a number on the command line preceded with a minus,
e.g., `-500' for �les with 500 lines in them instead of 1000. To change the
name of the output �les to something like `myfileaa', `myfileab', and so
on, you supply an additional argument that speci�es the �lename.

Here is a version of split in awk. It uses the ord and chr functions
presented in Section 15.4 [Translating Between Characters and Numbers],
page 173.

The program �rst sets its defaults, and then tests to make sure there are
not too many arguments. It then looks at each argument in turn. The �rst
argument could be a minus followed by a number. If it is, this happens to
look like a negative number, so it is made positive, and that is the count of
lines. The data �le name is skipped over, and the �nal argument is used as
the pre�x for the output �le names.

split.awk --- do split in awk

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

usage: split [-num] [file] [outname]

BEGIN \

{

outfile = "x" # default

count = 1000

if (ARGC > 4)

usage()

i = 1

if (ARGV[i] ~ /^-[0-9]+$/) {

count = -ARGV[i]

ARGV[i] = ""

i++

}

test argv in case reading from stdin instead of file

if (i in ARGV)

i++ # skip data file name

216 AWK Language Programming

if (i in ARGV) {

outfile = ARGV[i]

ARGV[i] = ""

}

s1 = s2 = "a"

out = (outfile s1 s2)

}

The next rule does most of the work. tcount (temporary count) tracks
how many lines have been printed to the output �le so far. If it is greater
than count, it is time to close the current �le and start a new one. s1 and
s2 track the current su�xes for the �le name. If they are both `z', the �le
is just too big. Otherwise, s1 moves to the next letter in the alphabet and
s2 starts over again at `a'.

{

if (++tcount > count) {

close(out)

if (s2 == "z") {

if (s1 == "z") {

printf("split: %s is too large to split\n", \

FILENAME) > "/dev/stderr"

exit 1

}

s1 = chr(ord(s1) + 1)

s2 = "a"

} else

s2 = chr(ord(s2) + 1)

out = (outfile s1 s2)

tcount = 1

}

print > out

}

The usage function simply prints an error message and exits.

function usage(e)

{

e = "usage: split [-num] [file] [outname]"

print e > "/dev/stderr"

exit 1

}

The variable e is used so that the function �ts nicely on the page.

This program is a bit sloppy; it relies on awk to close the last �le for it
automatically, instead of doing it in an END rule.

Chapter 16: Practical awk Programs 217

16.1.5 Duplicating Output Into Multiple Files

The tee program is known as a \pipe �tting." tee copies its standard
input to its standard output, and also duplicates it to the �les named on the
command line. Its usage is:

tee [-a] file : : :

The `-a' option tells tee to append to the named �les, instead of trun-
cating them and starting over.

The BEGIN rule �rst makes a copy of all the command line arguments,
into an array named copy. ARGV[0] is not copied, since it is not needed. tee
cannot use ARGV directly, since awk will attempt to process each �le named
in ARGV as input data.

If the �rst argument is `-a', then the
ag variable append is set to true,
and both ARGV[1] and copy[1] are deleted. If ARGC is less than two, then no
�le names were supplied, and tee prints a usage message and exits. Finally,
awk is forced to read the standard input by setting ARGV[1] to "-", and
ARGC to two.

tee.awk --- tee in awk

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

Revised December 1995

BEGIN \

{

for (i = 1; i < ARGC; i++)

copy[i] = ARGV[i]

if (ARGV[1] == "-a") {

append = 1

delete ARGV[1]

delete copy[1]

ARGC--

}

if (ARGC < 2) {

print "usage: tee [-a] file ..." > "/dev/stderr"

exit 1

}

ARGV[1] = "-"

ARGC = 2

}

218 AWK Language Programming

The single rule does all the work. Since there is no pattern, it is executed
for each line of input. The body of the rule simply prints the line into each
�le on the command line, and then to the standard output.

{

moving the if outside the loop makes it run faster

if (append)

for (i in copy)

print >> copy[i]

else

for (i in copy)

print > copy[i]

print

}

It would have been possible to code the loop this way:

for (i in copy)

if (append)

print >> copy[i]

else

print > copy[i]

This is more concise, but it is also less e�cient. The `if' is tested for each
record and for each output �le. By duplicating the loop body, the `if' is
only tested once for each input record. If there are N input records and
M input �les, the �rst method only executes N `if' statements, while the
second would execute N*M `if' statements.

Finally, the END rule cleans up, by closing all the output �les.

END \

{

for (i in copy)

close(copy[i])

}

16.1.6 Printing Non-duplicated Lines of Text

The uniq utility reads sorted lines of data on its standard input, and
(by default) removes duplicate lines. In other words, only unique lines are
printed, hence the name. uniq has a number of options. The usage is:

uniq [-udc [-n]] [+n] [input �le [output �le]]

The option meanings are:

-d Only print repeated lines.

-u Only print non-repeated lines.

Chapter 16: Practical awk Programs 219

-c Count lines. This option overrides `-d' and `-u'. Both repeated
and non-repeated lines are counted.

-n Skip n �elds before comparing lines. The de�nition of �elds is
the same as awk's default: non-whitespace characters separated
by runs of spaces and/or tabs.

+n Skip n characters before comparing lines. Any �elds speci�ed
with `-n' are skipped �rst.

input �le Data is read from the input �le named on the command line,
instead of from the standard input.

output �le The generated output is sent to the named output �le, instead
of to the standard output.

Normally uniq behaves as if both the `-d' and `-u' options had been
provided.

Here is an awk implementation of uniq. It uses the getopt library func-
tion (see Section 15.9 [Processing Command Line Options], page 185), and
the join library function (see Section 15.5 [Merging an Array Into a String],
page 175).

The program begins with a usage function and then a brief outline of
the options and their meanings in a comment.

The BEGIN rule deals with the command line arguments and options.
It uses a trick to get getopt to handle options of the form `-25', treating
such an option as the option letter `2' with an argument of `5'. If indeed
two or more digits were supplied (Optarg looks like a number), Optarg is
concatenated with the option digit, and then result is added to zero to make
it into a number. If there is only one digit in the option, then Optarg is
not needed, and Optind must be decremented so that getopt will process it
next time. This code is admittedly a bit tricky.

If no options were supplied, then the default is taken, to print both re-
peated and non-repeated lines. The output �le, if provided, is assigned to
outputfile. Earlier, outputfile was initialized to the standard output,
`/dev/stdout'.

uniq.awk --- do uniq in awk

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

function usage(e)

{

e = "Usage: uniq [-udc [-n]] [+n] [in [out]]"

print e > "/dev/stderr"

exit 1

}

220 AWK Language Programming

-c count lines. overrides -d and -u

-d only repeated lines

-u only non-repeated lines

-n skip n fields

+n skip n characters, skip fields first

BEGIN \

{

count = 1

outputfile = "/dev/stdout"

opts = "udc0:1:2:3:4:5:6:7:8:9:"

while ((c = getopt(ARGC, ARGV, opts)) != -1) {

if (c == "u")

non_repeated_only++

else if (c == "d")

repeated_only++

else if (c == "c")

do_count++

else if (index("0123456789", c) != 0) {

getopt requires args to options

this messes us up for things like -5

if (Optarg ~ /^[0-9]+$/)

fcount = (c Optarg) + 0

else {

fcount = c + 0

Optind--

}

} else

usage()

}

if (ARGV[Optind] ~ /^\+[0-9]+$/) {

charcount = substr(ARGV[Optind], 2) + 0

Optind++

}

for (i = 1; i < Optind; i++)

ARGV[i] = ""

if (repeated_only == 0 && non_repeated_only == 0)

repeated_only = non_repeated_only = 1

Chapter 16: Practical awk Programs 221

if (ARGC - Optind == 2) {

outputfile = ARGV[ARGC - 1]

ARGV[ARGC - 1] = ""

}

}

The following function, are_equal, compares the current line, $0, to the
previous line, last. It handles skipping �elds and characters.

If no �eld count and no character count were speci�ed, are_equal simply
returns one or zero depending upon the result of a simple string comparison
of last and $0. Otherwise, things get more complicated.

If �elds have to be skipped, each line is broken into an array using split

(see Section 12.3 [Built-in Functions for String Manipulation], page 137), and
then the desired �elds are joined back into a line using join. The joined
lines are stored in clast and cline. If no �elds are skipped, clast and
cline are set to last and $0 respectively.

Finally, if characters are skipped, substr is used to strip o� the lead-
ing charcount characters in clast and cline. The two strings are then
compared, and are_equal returns the result.

function are_equal(n, m, clast, cline, alast, aline)

{

if (fcount == 0 && charcount == 0)

return (last == $0)

if (fcount > 0) {

n = split(last, alast)

m = split($0, aline)

clast = join(alast, fcount+1, n)

cline = join(aline, fcount+1, m)

} else {

clast = last

cline = $0

}

if (charcount) {

clast = substr(clast, charcount + 1)

cline = substr(cline, charcount + 1)

}

return (clast == cline)

}

The following two rules are the body of the program. The �rst one is
executed only for the very �rst line of data. It sets last equal to $0, so that
subsequent lines of text have something to be compared to.

222 AWK Language Programming

The second rule does the work. The variable equal will be one or zero
depending upon the results of are_equal's comparison. If uniq is counting
repeated lines, then the count variable is incremented if the lines are equal.
Otherwise the line is printed and count is reset, since the two lines are not
equal.

If uniq is not counting, count is incremented if the lines are equal. Oth-
erwise, if uniq is counting repeated lines, and more than one line has been
seen, or if uniq is counting non-repeated lines, and only one line has been
seen, then the line is printed, and count is reset.

Finally, similar logic is used in the END rule to print the �nal line of input
data.

NR == 1 {

last = $0

next

}

{

equal = are_equal()

if (do_count) { # overrides -d and -u

if (equal)

count++

else {

printf("%4d %s\n", count, last) > outputfile

last = $0

count = 1 # reset

}

next

}

if (equal)

count++

else {

if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))

print last > outputfile

last = $0

count = 1

}

}

Chapter 16: Practical awk Programs 223

END {

if (do_count)

printf("%4d %s\n", count, last) > outputfile

else if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))

print last > outputfile

}

16.1.7 Counting Things

The wc (word count) utility counts lines, words, and characters in one or
more input �les. Its usage is:

wc [-lwc] [�les : : :]

If no �les are speci�ed on the command line, wc reads its standard input.
If there are multiple �les, it will also print total counts for all the �les. The
options and their meanings are:

-l Only count lines.

-w Only count words. A \word" is a contiguous sequence of non-
whitespace characters, separated by spaces and/or tabs. Hap-
pily, this is the normal way awk separates �elds in its input data.

-c Only count characters.

Implementing wc in awk is particularly elegant, since awk does a lot of the
work for us; it splits lines into words (i.e. �elds) and counts them, it counts
lines (i.e. records) for us, and it can easily tell us how long a line is.

This version uses the getopt library function (see Section 15.9 [Processing
Command Line Options], page 185), and the �le transition functions (see
Section 15.8 [Noting Data File Boundaries], page 184).

This version has one major di�erence from traditional versions of wc. Our
version always prints the counts in the order lines, words, and characters.
Traditional versions note the order of the `-l', `-w', and `-c' options on the
command line, and print the counts in that order.

The BEGIN rule does the argument processing. The variable print_total
will be true if more than one �le was named on the command line.

wc.awk --- count lines, words, characters

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

Options:

-l only count lines

-w only count words

224 AWK Language Programming

-c only count characters

#

Default is to count lines, words, characters

BEGIN {

let getopt print a message about

invalid options. we ignore them

while ((c = getopt(ARGC, ARGV, "lwc")) != -1) {

if (c == "l")

do_lines = 1

else if (c == "w")

do_words = 1

else if (c == "c")

do_chars = 1

}

for (i = 1; i < Optind; i++)

ARGV[i] = ""

if no options, do all

if (! do_lines && ! do_words && ! do_chars)

do_lines = do_words = do_chars = 1

print_total = (ARC - i > 2)

}

The beginfile function is simple; it just resets the counts of lines, words,
and characters to zero, and saves the current �le name in fname.

The endfile function adds the current �le's numbers to the running
totals of lines, words, and characters. It then prints out those numbers for
the �le that was just read. It relies on beginfile to reset the numbers for
the following data �le.

function beginfile(file)

{

chars = lines = words = 0

fname = FILENAME

}

function endfile(file)

{

tchars += chars

tlines += lines

twords += words

Chapter 16: Practical awk Programs 225

if (do_lines)

printf "\t%d", lines

if (do_words)

printf "\t%d", words

if (do_chars)

printf "\t%d", chars

printf "\t%s\n", fname

}

There is one rule that is executed for each line. It adds the length of the
record to chars. It has to add one, since the newline character separating
records (the value of RS) is not part of the record itself. lines is incremented
for each line read, and words is incremented by the value of NF, the number
of \words" on this line.1

Finally, the END rule simply prints the totals for all the �les.

do per line

{

chars += length($0) + 1 # get newline

lines++

words += NF

}

END {

if (print_total) {

if (do_lines)

printf "\t%d", tlines

if (do_words)

printf "\t%d", twords

if (do_chars)

printf "\t%d", tchars

print "\ttotal"

}

}

16.2 A Grab Bag of awk Programs

This section is a large \grab bag" of miscellaneous programs. We hope
you �nd them both interesting and enjoyable.

1 Examine the code in Section 15.8 [Noting Data File Boundaries],
page 184. Why must wc use a separate lines variable, instead of
using the value of FNR in endfile?

226 AWK Language Programming

16.2.1 Finding Duplicated Words in a Document

A common error when writing large amounts of prose is to accidentally
duplicate words. Often you will see this in text as something like \the
the program does the following : : :." When the text is on-line, often the
duplicated words occur at the end of one line and the beginning of another,
making them very di�cult to spot.

This program, `dupword.awk', scans through a �le one line at a time, and
looks for adjacent occurrences of the same word. It also saves the last word
on a line (in the variable prev) for comparison with the �rst word on the
next line.

The �rst two statements make sure that the line is all lower-case, so that,
for example, \The" and \the" compare equal to each other. The second
statement removes all non-alphanumeric and non-whitespace characters from
the line, so that punctuation does not a�ect the comparison either. This
sometimes leads to reports of duplicated words that really are di�erent, but
this is unusual.

dupword --- find duplicate words in text

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

December 1991

{

$0 = tolower($0)

gsub(/[^A-Za-z0-9 \t]/, "");

if ($1 == prev)

printf("%s:%d: duplicate %s\n",

FILENAME, FNR, $1)

for (i = 2; i <= NF; i++)

if ($i == $(i-1))

printf("%s:%d: duplicate %s\n",

FILENAME, FNR, $i)

prev = $NF

}

16.2.2 An Alarm Clock Program

The following program is a simple \alarm clock" program. You give it
a time of day, and an optional message. At the given time, it prints the
message on the standard output. In addition, you can give it the number of
times to repeat the message, and also a delay between repetitions.

This program uses the gettimeofday function from Section 15.7 [Man-
aging the Time of Day], page 182.

Chapter 16: Practical awk Programs 227

All the work is done in the BEGIN rule. The �rst part is argument checking
and setting of defaults; the delay, the count, and the message to print. If the
user supplied a message, but it does not contain the ASCII BEL character
(known as the \alert" character, `\a'), then it is added to the message. (On
many systems, printing the ASCII BEL generates some sort of audible alert.
Thus, when the alarm goes o�, the system calls attention to itself, in case
the user is not looking at their computer or terminal.)

alarm --- set an alarm

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

usage: alarm time ["message" [count [delay]]]

BEGIN \

{

Initial argument sanity checking

usage1 = "usage: alarm time ['message' [count [delay]]]"

usage2 = sprintf("\t(%s) time ::= hh:mm", ARGV[1])

if (ARGC < 2) {

print usage > "/dev/stderr"

exit 1

} else if (ARGC == 5) {

delay = ARGV[4] + 0

count = ARGV[3] + 0

message = ARGV[2]

} else if (ARGC == 4) {

count = ARGV[3] + 0

message = ARGV[2]

} else if (ARGC == 3) {

message = ARGV[2]

} else if (ARGV[1] !~ /[0-9]?[0-9]:[0-9][0-9]/) {

print usage1 > "/dev/stderr"

print usage2 > "/dev/stderr"

exit 1

}

set defaults for once we reach the desired time

if (delay == 0)

delay = 180 # 3 minutes

if (count == 0)

count = 5

228 AWK Language Programming

if (message == "")

message = sprintf("\aIt is now %s!\a", ARGV[1])

else if (index(message, "\a") == 0)

message = "\a" message "\a"

The next section of code turns the alarm time into hours and minutes,
and converts it if necessary to a 24-hour clock. Then it turns that time into
a count of the seconds since midnight. Next it turns the current time into
a count of seconds since midnight. The di�erence between the two is how
long to wait before setting o� the alarm.

split up dest time

split(ARGV[1], atime, ":")

hour = atime[1] + 0 # force numeric

minute = atime[2] + 0 # force numeric

get current broken down time

gettimeofday(now)

if time given is 12-hour hours and it's after that

hour, e.g., `alarm 5:30' at 9 a.m. means 5:30 p.m.,

then add 12 to real hour

if (hour < 12 && now["hour"] > hour)

hour += 12

set target time in seconds since midnight

target = (hour * 60 * 60) + (minute * 60)

get current time in seconds since midnight

current = (now["hour"] * 60 * 60) + \

(now["minute"] * 60) + now["second"]

how long to sleep for

naptime = target - current

if (naptime <= 0) {

print "time is in the past!" > "/dev/stderr"

exit 1

}

Finally, the program uses the system function (see Section 12.4 [Built-in
Functions for Input/Output], page 145) to call the sleep utility. The sleep
utility simply pauses for the given number of seconds. If the exit status is not
zero, the program assumes that sleep was interrupted, and exits. If sleep
exited with an OK status (zero), then the program prints the message in a
loop, again using sleep to delay for however many seconds are necessary.

Chapter 16: Practical awk Programs 229

zzzzzz..... go away if interrupted

if (system(sprintf("sleep %d", naptime)) != 0)

exit 1

time to notify!

command = sprintf("sleep %d", delay)

for (i = 1; i <= count; i++) {

print message

if sleep command interrupted, go away

if (system(command) != 0)

break

}

exit 0

}

16.2.3 Transliterating Characters

The system tr utility transliterates characters. For example, it is often
used to map upper-case letters into lower-case, for further processing.

generate data | tr '[A-Z]' '[a-z]' | process data : : :

You give tr two lists of characters enclosed in square brackets. Usually,
the lists are quoted to keep the shell from attempting to do a �lename
expansion.2 When processing the input, the �rst character in the �rst list
is replaced with the �rst character in the second list, the second character
in the �rst list is replaced with the second character in the second list, and
so on. If there are more characters in the \from" list than in the \to" list,
the last character of the \to" list is used for the remaining characters in the
\from" list.

Some time ago, a user proposed to us that we add a transliteration func-
tion to gawk. Being opposed to \creeping featurism," I wrote the following
program to prove that character transliteration could be done with a user-
level function. This program is not as complete as the system tr utility, but
it will do most of the job.

The translate program demonstrates one of the few weaknesses of stan-
dard awk: dealing with individual characters is very painful, requiring re-

2 On older, non-POSIX systems, tr often does not require that the lists be
enclosed in square brackets and quoted. This is a feature.

230 AWK Language Programming

peated use of the substr, index, and gsub built-in functions (see Sec-
tion 12.3 [Built-in Functions for String Manipulation], page 137).3

There are two functions. The �rst, stranslate, takes three arguments.

from A list of characters to translate from.

to A list of characters to translate to.

target The string to do the translation on.

Associative arrays make the translation part fairly easy. t_ar holds the
\to" characters, indexed by the \from" characters. Then a simple loop goes
through from, one character at a time. For each character in from, if the
character appears in target, gsub is used to change it to the corresponding
to character.

The translate function simply calls stranslate using $0 as the target.
The main program sets two global variables, FROM and TO, from the command
line, and then changes ARGV so that awk will read from the standard input.

Finally, the processing rule simply calls translate for each record.

translate --- do tr like stuff

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

August 1989

bugs: does not handle things like: tr A-Z a-z, it has

to be spelled out. However, if `to' is shorter than `from',

the last character in `to' is used for the rest of `from'.

function stranslate(from, to, target, lf, lt, t_ar, i, c)

{

lf = length(from)

lt = length(to)

for (i = 1; i <= lt; i++)

t_ar[substr(from, i, 1)] = substr(to, i, 1)

if (lt < lf)

for (; i <= lf; i++)

t_ar[substr(from, i, 1)] = substr(to, lt, 1)

for (i = 1; i <= lf; i++) {

c = substr(from, i, 1)

if (index(target, c) > 0)

gsub(c, t_ar[c], target)

}

3 This program was written before gawk acquired the ability to split each
character in a string into separate array elements. How might this ability
simplify the program?

Chapter 16: Practical awk Programs 231

return target

}

function translate(from, to)

{

return $0 = stranslate(from, to, $0)

}

main program

BEGIN {

if (ARGC < 3) {

print "usage: translate from to" > "/dev/stderr"

exit

}

FROM = ARGV[1]

TO = ARGV[2]

ARGC = 2

ARGV[1] = "-"

}

{

translate(FROM, TO)

print

}

While it is possible to do character transliteration in a user-level func-
tion, it is not necessarily e�cient, and we started to consider adding a built-
in function. However, shortly after writing this program, we learned that
the System V Release 4 awk had added the toupper and tolower func-
tions. These functions handle the vast majority of the cases where character
transliteration is necessary, and so we chose to simply add those functions
to gawk as well, and then leave well enough alone.

An obvious improvement to this program would be to set up the t_ar

array only once, in a BEGIN rule. However, this assumes that the \from" and
\to" lists will never change throughout the lifetime of the program.

16.2.4 Printing Mailing Labels

Here is a \real world"4 program. This script reads lists of names and
addresses, and generates mailing labels. Each page of labels has 20 labels on
it, two across and ten down. The addresses are guaranteed to be no more

4 \Real world" is de�ned as \a program actually used to get something
done."

232 AWK Language Programming

than �ve lines of data. Each address is separated from the next by a blank
line.

The basic idea is to read 20 labels worth of data. Each line of each label
is stored in the line array. The single rule takes care of �lling the line

array and printing the page when 20 labels have been read.

The BEGIN rule simply sets RS to the empty string, so that awk will split
records at blank lines (see Section 5.1 [How Input is Split into Records],
page 37). It sets MAXLINES to 100, since MAXLINE is the maximum number
of lines on the page (20 * 5 = 100).

Most of the work is done in the printpage function. The label lines
are stored sequentially in the line array. But they have to be printed
horizontally; line[1] next to line[6], line[2] next to line[7], and so
on. Two loops are used to accomplish this. The outer loop, controlled by
i, steps through every 10 lines of data; this is each row of labels. The inner
loop, controlled by j, goes through the lines within the row. As j goes from
zero to four, `i+j' is the j'th line in the row, and `i+j+5' is the entry next
to it. The output ends up looking something like this:

line 1 line 6

line 2 line 7

line 3 line 8

line 4 line 9

line 5 line 10

As a �nal note, at lines 21 and 61, an extra blank line is printed, to keep
the output lined up on the labels. This is dependent on the particular brand
of labels in use when the program was written. You will also note that there
are two blank lines at the top and two blank lines at the bottom.

The END rule arranges to
ush the �nal page of labels; there may not
have been an even multiple of 20 labels in the data.

labels.awk

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

June 1992

Program to print labels. Each label is 5 lines of data

that may have blank lines. The label sheets have 2

blank lines at the top and 2 at the bottom.

BEGIN { RS = "" ; MAXLINES = 100 }

function printpage(i, j)

{

if (Nlines <= 0)

return

Chapter 16: Practical awk Programs 233

printf "\n\n" # header

for (i = 1; i <= Nlines; i += 10) {

if (i == 21 || i == 61)

print ""

for (j = 0; j < 5; j++) {

if (i + j > MAXLINES)

break

printf " %-41s %s\n", line[i+j], line[i+j+5]

}

print ""

}

printf "\n\n" # footer

for (i in line)

line[i] = ""

}

main rule

{

if (Count >= 20) {

printpage()

Count = 0

Nlines = 0

}

n = split($0, a, "\n")

for (i = 1; i <= n; i++)

line[++Nlines] = a[i]

for (; i <= 5; i++)

line[++Nlines] = ""

Count++

}

END \

{

printpage()

}

234 AWK Language Programming

16.2.5 Generating Word Usage Counts

The following awk program prints the number of occurrences of each
word in its input. It illustrates the associative nature of awk arrays by using
strings as subscripts. It also demonstrates the `for x in array ' construction.
Finally, it shows how awk can be used in conjunction with other utility
programs to do a useful task of some complexity with a minimum of e�ort.
Some explanations follow the program listing.

awk '

Print list of word frequencies

{

for (i = 1; i <= NF; i++)

freq[$i]++

}

END {

for (word in freq)

printf "%s\t%d\n", word, freq[word]

}'

The �rst thing to notice about this program is that it has two rules. The
�rst rule, because it has an empty pattern, is executed on every line of the
input. It uses awk's �eld-accessing mechanism (see Section 5.2 [Examining
Fields], page 40) to pick out the individual words from the line, and the
built-in variable NF (see Chapter 10 [Built-in Variables], page 115) to know
how many �elds are available.

For each input word, an element of the array freq is incremented to
re
ect that the word has been seen an additional time.

The second rule, because it has the pattern END, is not executed until the
input has been exhausted. It prints out the contents of the freq table that
has been built up inside the �rst action.

This program has several problems that would prevent it from being
useful by itself on real text �les:

� Words are detected using the awk convention that �elds are separated
by whitespace and that other characters in the input (except newlines)
don't have any special meaning to awk. This means that punctuation
characters count as part of words.

� The awk language considers upper- and lower-case characters to be dis-
tinct. Therefore, `bartender' and `Bartender' are not treated as the
same word. This is undesirable since, in normal text, words are capi-
talized if they begin sentences, and a frequency analyzer should not be
sensitive to capitalization.

Chapter 16: Practical awk Programs 235

� The output does not come out in any useful order. You're more likely
to be interested in which words occur most frequently, or having an
alphabetized table of how frequently each word occurs.

The way to solve these problems is to use some of the more advanced
features of the awk language. First, we use tolower to remove case distinc-
tions. Next, we use gsub to remove punctuation characters. Finally, we use
the system sort utility to process the output of the awk script. Here is the
new version of the program:

Print list of word frequencies

{

$0 = tolower($0) # remove case distinctions

gsub(/[^a-z0-9_ \t]/, "", $0) # remove punctuation

for (i = 1; i <= NF; i++)

freq[$i]++

}

END {

for (word in freq)

printf "%s\t%d\n", word, freq[word]

}

Assuming we have saved this program in a �le named `wordfreq.awk',
and that the data is in `file1', the following pipeline

awk -f wordfreq.awk file1 | sort +1 -nr

produces a table of the words appearing in `file1' in order of decreasing
frequency.

The awk program suitably massages the data and produces a word fre-
quency table, which is not ordered.

The awk script's output is then sorted by the sort utility and printed
on the terminal. The options given to sort in this example specify to sort
using the second �eld of each input line (skipping one �eld), that the sort keys
should be treated as numeric quantities (otherwise `15' would come before
`5'), and that the sorting should be done in descending (reverse) order.

We could have even done the sort from within the program, by changing
the END action to:

END {

sort = "sort +1 -nr"

for (word in freq)

printf "%s\t%d\n", word, freq[word] | sort

close(sort)

}

236 AWK Language Programming

You would have to use this way of sorting on systems that do not have
true pipes.

See the general operating system documentation for more information on
how to use the sort program.

16.2.6 Removing Duplicates from Unsorted Text

The uniq program (see Section 16.1.6 [Printing Non-duplicated Lines of
Text], page 218), removes duplicate lines from sorted data.

Suppose, however, you need to remove duplicate lines from a data �le,
but that you wish to preserve the order the lines are in? A good example
of this might be a shell history �le. The history �le keeps a copy of all the
commands you have entered, and it is not unusual to repeat a command
several times in a row. Occasionally you might wish to compact the history
by removing duplicate entries. Yet it is desirable to maintain the order of
the original commands.

This simple program does the job. It uses two arrays. The data array is
indexed by the text of each line. For each line, data[$0] is incremented.

If a particular line has not been seen before, then data[$0] will be zero.
In that case, the text of the line is stored in lines[count]. Each element
of lines is a unique command, and the indices of lines indicate the order
in which those lines were encountered. The END rule simply prints out the
lines, in order.

histsort.awk --- compact a shell history file

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

Thanks to Byron Rakitzis for the general idea

{

if (data[$0]++ == 0)

lines[++count] = $0

}

END {

for (i = 1; i <= count; i++)

print lines[i]

}

This program also provides a foundation for generating other useful in-
formation. For example, using the following print satement in the END rule
would indicate how often a particular command was used.

print data[lines[i]], lines[i]

This works because data[$0] was incremented each time a line was seen.

Chapter 16: Practical awk Programs 237

16.2.7 Extracting Programs from Texinfo Source Files

Both this chapter and the previous chapter (Chapter 15 [A Library of
awk Functions], page 169), present a large number of awk programs. If you
wish to experiment with these programs, it is tedious to have to type them
in by hand. Here we present a program that can extract parts of a Texinfo
input �le into separate �les.

This book is written in Texinfo, the GNU project's document formatting
language. A single Texinfo source �le can be used to produce both printed
and on-line documentation. Texinfo is fully documented in Texinfo|The
GNU Documentation Format, available from the Free Software Foundation.

For our purposes, it is enough to know three things about Texinfo input
�les.

� The \at" symbol, `@', is special in Texinfo, much like `\' in C or awk.
Literal `@' symbols are represented in Texinfo source �les as `@@'.

� Comments start with either `@c' or `@comment'. The �le extraction
program will work by using special comments that start at the beginning
of a line.

� Example text that should not be split across a page boundary is brack-
eted between lines containing `@group' and `@end group' commands.

The following program, `extract.awk', reads through a Texinfo source
�le, and does two things, based on the special comments. Upon seeing
`@c system : : :', it runs a command, by extracting the command text from
the control line and passing it on to the system function (see Section 12.4
[Built-in Functions for Input/Output], page 145). Upon seeing `@c file �le-
name', each subsequent line is sent to the �le �lename, until `@c endfile' is
encountered. The rules in `extract.awk' will match either `@c' or `@comment'
by letting the `omment' part be optional. Lines containing `@group' and `@end
group' are simply removed. `extract.awk' uses the join library function
(see Section 15.5 [Merging an Array Into a String], page 175).

The example programs in the on-line Texinfo source for AWK Lan-
guage Programming (`gawk.texi') have all been bracketed inside `file',
and `endfile' lines. The gawk distribution uses a copy of `extract.awk'
to extract the sample programs and install many of them in a standard
directory, where gawk can �nd them.

`extract.awk' begins by setting IGNORECASE to one, so that mixed upper-
case and lower-case letters in the directives won't matter.

The �rst rule handles calling system, checking that a command was given
(NF is at least three), and also checking that the command exited with a zero
exit status, signifying OK.

extract.awk --- extract files and run programs

from texinfo files

238 AWK Language Programming

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

May 1993

BEGIN { IGNORECASE = 1 }

/^@c(omment)?[\t]+system/ \

{

if (NF < 3) {

e = (FILENAME ":" FNR)

e = (e ": badly formed `system' line")

print e > "/dev/stderr"

next

}

$1 = ""

$2 = ""

stat = system($0)

if (stat != 0) {

e = (FILENAME ":" FNR)

e = (e ": warning: system returned " stat)

print e > "/dev/stderr"

}

}

The variable e is used so that the function �ts nicely on the page.

The second rule handles moving data into �les. It veri�es that a �le name
was given in the directive. If the �le named is not the current �le, then the
current �le is closed. This means that an `@c endfile' was not given for
that �le. (We should probably print a diagnostic in this case, although at
the moment we do not.)

The `for' loop does the work. It reads lines using getline (see Section 5.8
[Explicit Input with getline], page 54). For an unexpected end of �le, it
calls the unexpected_eof function. If the line is an \end�le" line, then it
breaks out of the loop. If the line is an `@group' or `@end group' line, then
it ignores it, and goes on to the next line.

Most of the work is in the following few lines. If the line has no `@'
symbols, it can be printed directly. Otherwise, each leading `@' must be
stripped o�.

To remove the `@' symbols, the line is split into separate elements of the
array a, using the split function (see Section 12.3 [Built-in Functions for
String Manipulation], page 137). Each element of a that is empty indicates
two successive `@' symbols in the original line. For each two empty elements
(`@@' in the original �le), we have to add back in a single `@' symbol.

Chapter 16: Practical awk Programs 239

When the processing of the array is �nished, join is called with the
value of SUBSEP, to rejoin the pieces back into a single line. That line is then
printed to the output �le.

/^@c(omment)?[\t]+file/ \

{

if (NF != 3) {

e = (FILENAME ":" FNR ": badly formed `file' line")

print e > "/dev/stderr"

next

}

if ($3 != curfile) {

if (curfile != "")

close(curfile)

curfile = $3

}

for (;;) {

if ((getline line) <= 0)

unexpected_eof()

if (line ~ /^@c(omment)?[\t]+endfile/)

break

else if (line ~ /^@(end[\t]+)?group/)

continue

if (index(line, "@") == 0) {

print line > curfile

continue

}

n = split(line, a, "@")

if a[1] == "", means leading @,

don't add one back in.

for (i = 2; i <= n; i++) {

if (a[i] == "") { # was an @@

a[i] = "@"

if (a[i+1] == "")

i++

}

}

print join(a, 1, n, SUBSEP) > curfile

}

}

An important thing to note is the use of the `>' redirection. Output
done with `>' only opens the �le once; it stays open and subsequent output

240 AWK Language Programming

is appended to the �le (see Section 6.6 [Redirecting Output of print and
printf], page 70). This allows us to easily mix program text and explanatory
prose for the same sample source �le (as has been done here!) without any
hassle. The �le is only closed when a new data �le name is encountered, or
at the end of the input �le.

Finally, the function unexpected_eof prints an appropriate error mes-
sage and then exits.

The END rule handles the �nal cleanup, closing the open �le.

function unexpected_eof()

{

printf("%s:%d: unexpected EOF or error\n", \

FILENAME, FNR) > "/dev/stderr"

exit 1

}

END {

if (curfile)

close(curfile)

}

16.2.8 A Simple Stream Editor

The sed utility is a \stream editor," a program that reads a stream of
data, makes changes to it, and passes the modi�ed data on. It is often used
to make global changes to a large �le, or to a stream of data generated by a
pipeline of commands.

While sed is a complicated program in its own right, its most common
use is to perform global substitutions in the middle of a pipeline:

command1 < orig.data | sed 's/old/new/g' | command2 > result

Here, the `s/old/new/g' tells sed to look for the regexp `old' on each
input line, and replace it with the text `new', globally (i.e. all the occurrences
on a line). This is similar to awk's gsub function (see Section 12.3 [Built-in
Functions for String Manipulation], page 137).

The following program, `awksed.awk', accepts at least two command line
arguments; the pattern to look for and the text to replace it with. Any
additional arguments are treated as data �le names to process. If none are
provided, the standard input is used.

awksed.awk --- do s/foo/bar/g using just print

Thanks to Michael Brennan for the idea

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

August 1995

Chapter 16: Practical awk Programs 241

function usage()

{

print "usage: awksed pat repl [files...]" > "/dev/stderr"

exit 1

}

BEGIN {

validate arguments

if (ARGC < 3)

usage()

RS = ARGV[1]

ORS = ARGV[2]

don't use arguments as files

ARGV[1] = ARGV[2] = ""

}

look ma, no hands!

{

if (RT == "")

printf "%s", $0

else

print

}

The program relies on gawk's ability to have RS be a regexp and on the
setting of RT to the actual text that terminated the record (see Section 5.1
[How Input is Split into Records], page 37).

The idea is to have RS be the pattern to look for. gawk will automatically
set $0 to the text between matches of the pattern. This is text that we
wish to keep, unmodi�ed. Then, by setting ORS to the replacement text, a
simple print statement will output the text we wish to keep, followed by
the replacement text.

There is one wrinkle to this scheme, which is what to do if the last
record doesn't end with text that matches RS? Using a print statement
unconditionally prints the replacement text, which is not correct.

However, if the �le did not end in text that matches RS, RT will be set to
the null string. In this case, we can print $0 using printf (see Section 6.5
[Using printf Statements for Fancier Printing], page 64).

The BEGIN rule handles the setup, checking for the right number of ar-
guments, and calling usage if there is a problem. Then it sets RS and ORS

242 AWK Language Programming

from the command line arguments, and sets ARGV[1] and ARGV[2] to the
null string, so that they will not be treated as �le names (see Section 10.3
[Using ARGC and ARGV], page 120).

The usage function prints an error message and exits.

Finally, the single rule handles the printing scheme outlined above, using
print or printf as appropriate, depending upon the value of RT.

16.2.9 An Easy Way to Use Library Functions

Using library functions in awk can be very bene�cial. It encourages code
re-use and the writing of general functions. Programs are smaller, and there-
fore clearer. However, using library functions is only easy when writing awk

programs; it is painful when running them, requiring multiple `-f' options.
If gawk is unavailable, then so too is the AWKPATH environment variable and
the ability to put awk functions into a library directory (see Section 14.1
[Command Line Options], page 161).

It would be nice to be able to write programs like so:

library functions

@include getopt.awk

@include join.awk

: : :

main program

BEGIN {

while ((c = getopt(ARGC, ARGV, "a:b:cde")) != -1)

: : :

: : :

}

The following program, `igawk.sh', provides this service. It simulates
gawk's searching of the AWKPATH variable, and also allows nested includes; i.e.
a �le that has been included with `@include' can contain further `@include'
statements. igawk will make an e�ort to only include �les once, so that
nested includes don't accidentally include a library function twice.

igawk should behave externally just like gawk. This means it should
accept all of gawk's command line arguments, including the ability to have
multiple source �les speci�ed via `-f', and the ability to mix command line
and library source �les.

The program is written using the POSIX Shell (sh) command language.
The way the program works is as follows:

1. Loop through the arguments, saving anything that doesn't represent
awk source code for later, when the expanded program is run.

Chapter 16: Practical awk Programs 243

2. For any arguments that do represent awk text, put the arguments into
a temporary �le that will be expanded. There are two cases.

a. Literal text, provided with `--source' or `--source='. This text is
just echoed directly. The echo program will automatically supply
a trailing newline.

b. File names provided with `-f'. We use a neat trick, and echo
`@include �lename' into the temporary �le. Since the �le inclu-
sion program will work the way gawk does, this will get the text of
the �le included into the program at the correct point.

3. Run an awk program (naturally) over the temporary �le to expand
`@include' statements. The expanded program is placed in a second
temporary �le.

4. Run the expanded program with gawk and any other original command
line arguments that the user supplied (such as the data �le names).

The initial part of the program turns on shell tracing if the �rst argument
was `debug'. Otherwise, a shell trap statement arranges to clean up any
temporary �les on program exit or upon an interrupt.

The next part loops through all the command line arguments. There are
several cases of interest.

-- This ends the arguments to igawk. Anything else should be
passed on to the user's awk program without being evaluated.

-W This indicates that the next option is speci�c to gawk. To make
argument processing easier, the `-W' is appended to the front of
the remaining arguments and the loop continues. (This is an sh

programming trick. Don't worry about it if you are not familiar
with sh.)

-v

-F These are saved and passed on to gawk.

-f

--file

--file=

-Wfile= The �le name is saved to the temporary �le `/tmp/ig.s.$$' with
an `@include' statement. The sed utility is used to remove the
leading option part of the argument (e.g., `--file=').

--source

--source=

-Wsource=

The source text is echoed into `/tmp/ig.s.$$'.

244 AWK Language Programming

--version

--version

-Wversion

igawk prints its version number, and runs `gawk --version' to
get the gawk version information, and then exits.

If none of `-f', `--file', `-Wfile', `--source', or `-Wsource', were sup-
plied, then the �rst non-option argument should be the awk program. If
there are no command line arguments left, igawk prints an error message
and exits. Otherwise, the �rst argument is echoed into `/tmp/ig.s.$$'.

In any case, after the arguments have been processed, `/tmp/ig.s.$$'
contains the complete text of the original awk program.

The `$$' in sh represents the current process ID number. It is often
used in shell programs to generate unique temporary �le names. This allows
multiple users to run igawk without worrying that the temporary �le names
will clash.

Here's the program:

#! /bin/sh

igawk --- like gawk but do @include processing

Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domain

July 1993

if ["$1" = debug]

then

set -x

shift

else

cleanup on exit, hangup, interrupt, quit, termination

trap 'rm -f /tmp/ig.[se].$$' 0 1 2 3 15

fi

while [$# -ne 0] # loop over arguments

do

case $1 in

--) shift; break;;

-W) shift

set -- -W"$@"

continue;;

-[vF]) opts="$opts $1 '$2'"

shift;;

Chapter 16: Practical awk Programs 245

-[vF]*) opts="$opts '$1'" ;;

-f) echo @include "$2" >> /tmp/ig.s.$$

shift;;

-f*) f=`echo "$1" | sed 's/-f//'`

echo @include "$f" >> /tmp/ig.s.$$;;

-?file=*) # -Wfile or --file

f=`echo "$1" | sed 's/-.file=//'`

echo @include "$f" >> /tmp/ig.s.$$;;

-?file) # get arg, $2

echo @include "$2" >> /tmp/ig.s.$$

shift;;

-?source=*) # -Wsource or --source

t=`echo "$1" | sed 's/-.source=//'`

echo "$t" >> /tmp/ig.s.$$;;

-?source) # get arg, $2

echo "$2" >> /tmp/ig.s.$$

shift;;

-?version)

echo igawk: version 1.0 1>&2

gawk --version

exit 0 ;;

-[W-]*) opts="$opts '$1'" ;;

*) break;;

esac

shift

done

if [! -s /tmp/ig.s.$$]

then

if [-z "$1"]

then

echo igawk: no program! 1>&2

exit 1

246 AWK Language Programming

else

echo "$1" > /tmp/ig.s.$$

shift

fi

fi

at this point, /tmp/ig.s.$$ has the program

The awk program to process `@include' directives reads through the pro-
gram, one line at a time using getline (see Section 5.8 [Explicit Input with
getline], page 54). The input �le names and `@include' statements are
managed using a stack. As each `@include' is encountered, the current �le
name is \pushed" onto the stack, and the �le named in the `@include' di-
rective becomes the current �le name. As each �le is �nished, the stack is
\popped," and the previous input �le becomes the current input �le again.
The process is started by making the original �le the �rst one on the stack.

The pathto function does the work of �nding the full path to a �le. It
simulates gawk's behavior when searching the AWKPATH environment variable
(see Section 14.3 [The AWKPATH Environment Variable], page 166). If a �le
name has a `/' in it, no path search is done. Otherwise, the �le name is
concatenated with the name of each directory in the path, and an attempt
is made to open the generated �le name. The only way in awk to test if
a �le can be read is to go ahead and try to read it with getline; that is
what pathto does. If the �le can be read, it is closed, and the �le name is
returned.

gawk -- '

process @include directives

function pathto(file, i, t, junk)

{

if (index(file, "/") != 0)

return file

for (i = 1; i <= ndirs; i++) {

t = (pathlist[i] "/" file)

if ((getline junk < t) > 0) {

found it

close(t)

return t

}

}

return ""

}

Chapter 16: Practical awk Programs 247

The main program is contained inside one BEGIN rule. The �rst thing it
does is set up the pathlist array that pathto uses. After splitting the path
on `:', null elements are replaced with ".", which represents the current
directory.

BEGIN {

path = ENVIRON["AWKPATH"]

ndirs = split(path, pathlist, ":")

for (i = 1; i <= ndirs; i++) {

if (pathlist[i] == "")

pathlist[i] = "."

}

The stack is initialized with ARGV[1], which will be `/tmp/ig.s.$$'. The
main loop comes next. Input lines are read in succession. Lines that do not
start with `@include' are printed verbatim.

If the line does start with `@include', the �le name is in $2. pathto

is called to generate the full path. If it could not, then we print an error
message and continue.

The next thing to check is if the �le has been included already. The
processed array is indexed by the full �le name of each included �le, and
it tracks this information for us. If the �le has been seen, a warning mes-
sage is printed. Otherwise, the new �le name is pushed onto the stack and
processing continues.

Finally, when getline encounters the end of the input �le, the �le is
closed and the stack is popped. When stackptr is less than zero, the pro-
gram is done.

stackptr = 0

input[stackptr] = ARGV[1] # ARGV[1] is first file

for (; stackptr >= 0; stackptr--) {

while ((getline < input[stackptr]) > 0) {

if (tolower($1) != "@include") {

print

continue

}

fpath = pathto($2)

if (fpath == "") {

printf("igawk:%s:%d: cannot find %s\n", \

input[stackptr], FNR, $2) > "/dev/stderr"

continue

}

248 AWK Language Programming

if (! (fpath in processed)) {

processed[fpath] = input[stackptr]

input[++stackptr] = fpath

} else

print $2, "included in", input[stackptr], \

"already included in", \

processed[fpath] > "/dev/stderr"

}

close(input[stackptr])

}

}' /tmp/ig.s.$$ > /tmp/ig.e.$$

The last step is to call gawk with the expanded program and the original
options and command line arguments that the user supplied. gawk's exit
status is passed back on to igawk's calling program.

eval gawk -f /tmp/ig.e.$$ $opts -- "$@"

exit $?

This version of igawk represents my third attempt at this program. There
are three key simpli�cations that made the program work better.

1. Using `@include' even for the �les named with `-f' makes building the
initial collected awk program much simpler; all the `@include' process-
ing can be done once.

2. The pathto function doesn't try to save the line read with getline

when testing for the �le's accessibility. Trying to save this line for use
with the main program complicates things considerably.

3. Using a getline loop in the BEGIN rule does it all in one place. It is not
necessary to call out to a separate loop for processing nested `@include'
statements.

Also, this program illustrates that it is often worthwhile to combine sh

and awk programming together. You can usually accomplish quite a lot,
without having to resort to low-level programming in C or C++, and it is
frequently easier to do certain kinds of string and argument manipulation
using the shell than it is in awk.

Finally, igawk shows that it is not always necessary to add new features
to a program; they can often be layered on top. With igawk, there is no real
reason to build `@include' processing into gawk itself.

As an additional example of this, consider the idea of having two �les in
a directory in the search path.

`default.awk'
This �le would contain a set of default library functions, such as
getopt and assert.

Chapter 16: Practical awk Programs 249

`site.awk'
This �le would contain library functions that are speci�c to a
site or installation, i.e. locally developed functions. Having a
separate �le allows `default.awk' to change with new gawk re-
leases, without requiring the system administrator to update it
each time by adding the local functions.

One user suggested that gawk be modi�ed to automatically read these
�les upon startup. Instead, it would be very simple to modify igawk to do
this. Since igawk can process nested `@include' directives, `default.awk'
could simply contain `@include' statements for the desired library functions.

250 AWK Language Programming

Chapter 17: The Evolution of the awk Language 251

17 The Evolution of the awk Language

This book describes the GNU implementation of awk, which follows the
POSIX speci�cation. Many awk users are only familiar with the original awk
implementation in Version 7 Unix. (This implementation was the basis for
awk in Berkeley Unix, through 4.3{Reno. The 4.4 release of Berkeley Unix
uses gawk 2.15.2 for its version of awk.) This chapter brie
y describes the
evolution of the awk language, with cross references to other parts of the
book where you can �nd more information.

17.1 Major Changes between V7 and SVR3.1

The awk language evolved considerably between the release of Version 7
Unix (1978) and the new version �rst made generally available in System
V Release 3.1 (1987). This section summarizes the changes, with cross-
references to further details.

� The requirement for `;' to separate rules on a line (see Section 2.6 [awk
Statements Versus Lines], page 16).

� User-de�ned functions, and the return statement (see Chapter 13 [User-
de�ned Functions], page 153).

� The delete statement (see Section 11.6 [The delete Statement],
page 128).

� The do-while statement (see Section 9.3 [The do-while Statement],
page 106).

� The built-in functions atan2, cos, sin, rand and srand (see Section 12.2
[Numeric Built-in Functions], page 136).

� The built-in functions gsub, sub, and match (see Section 12.3 [Built-in
Functions for String Manipulation], page 137).

� The built-in functions close, and system (see Section 12.4 [Built-in
Functions for Input/Output], page 145).

� The ARGC, ARGV, FNR, RLENGTH, RSTART, and SUBSEP built-in variables
(see Chapter 10 [Built-in Variables], page 115).

� The conditional expression using the ternary operator `?:' (see Sec-
tion 7.12 [Conditional Expressions], page 93).

� The exponentiation operator `^' (see Section 7.5 [Arithmetic Opera-
tors], page 82) and its assignment operator form `^=' (see Section 7.7
[Assignment Expressions], page 84).

� C-compatible operator precedence, which breaks some old awk pro-
grams (see Section 7.14 [Operator Precedence (How Operators Nest)],
page 95).

252 AWK Language Programming

� Regexps as the value of FS (see Section 5.5 [Specifying How Fields are
Separated], page 44), and as the third argument to the split function
(see Section 12.3 [Built-in Functions for String Manipulation], page 137).

� Dynamic regexps as operands of the `~' and `!~' operators (see Sec-
tion 4.1 [How to Use Regular Expressions], page 23).

� The escape sequences `\b', `\f', and `\r' (see Section 4.2 [Escape Se-
quences], page 24). (Some vendors have updated their old versions of
awk to recognize `\r', `\b', and `\f', but this is not something you can
rely on.)

� Redirection of input for the getline function (see Section 5.8 [Explicit
Input with getline], page 54).

� Multiple BEGIN and END rules (see Section 8.1.5 [The BEGIN and END

Special Patterns], page 100).

� Multi-dimensional arrays (see Section 11.9 [Multi-dimensional Arrays],
page 130).

17.2 Changes between SVR3.1 and SVR4

The System V Release 4 version of Unix awk added these features (some
of which originated in gawk):

� The ENVIRON variable (see Chapter 10 [Built-in Variables], page 115).

� Multiple `-f' options on the command line (see Section 14.1 [Command
Line Options], page 161).

� The `-v' option for assigning variables before program execution begins
(see Section 14.1 [Command Line Options], page 161).

� The `--' option for terminating command line options.

� The `\a', `\v', and `\x' escape sequences (see Section 4.2 [Escape Se-
quences], page 24).

� A de�ned return value for the srand built-in function (see Section 12.2
[Numeric Built-in Functions], page 136).

� The toupper and tolower built-in string functions for case translation
(see Section 12.3 [Built-in Functions for String Manipulation], page 137).

� A cleaner speci�cation for the `%c' format-control letter in the printf

function (see Section 6.5.2 [Format-Control Letters], page 65).

� The ability to dynamically pass the �eld width and precision ("%*.*d")
in the argument list of the printf function (see Section 6.5.2 [Format-
Control Letters], page 65).

� The use of regexp constants such as /foo/ as expressions, where they
are equivalent to using the matching operator, as in `$0 ~ /foo/' (see
Section 7.2 [Using Regular Expression Constants], page 78).

Chapter 17: The Evolution of the awk Language 253

17.3 Changes between SVR4 and POSIX awk

The POSIX Command Language and Utilities standard for awk intro-
duced the following changes into the language:

� The use of `-W' for implementation-speci�c options.

� The use of CONVFMT for controlling the conversion of numbers to strings
(see Section 7.4 [Conversion of Strings and Numbers], page 81).

� The concept of a numeric string, and tighter comparison rules to go
with it (see Section 7.10 [Variable Typing and Comparison Expressions],
page 88).

� More complete documentation of many of the previously undocumented
features of the language.

The following common extensions are not permitted by the POSIX stan-
dard:

� \x escape sequences are not recognized (see Section 4.2 [Escape Se-
quences], page 24).

� The synonym func for the keyword function is not recognized (see
Section 13.1 [Function De�nition Syntax], page 153).

� The operators `**' and `**=' cannot be used in place of `^' and `^=' (see
Section 7.5 [Arithmetic Operators], page 82, and also see Section 7.7
[Assignment Expressions], page 84).

� Specifying `-Ft' on the command line does not set the value of FS to
be a single tab character (see Section 5.5 [Specifying How Fields are
Separated], page 44).

� The fflush built-in function is not supported (see Section 12.4 [Built-in
Functions for Input/Output], page 145).

17.4 Extensions in the AT&T Bell Laboratories awk

Brian Kernighan, one of the original designers of Unix awk, has made his
version available via anonymous ftp (see Section B.8 [Other Freely Available
awk Implementations], page 293). This section describes extensions in his
version of awk that are not in POSIX awk.

� The `-mf=NNN ' and `-mr=NNN ' command line options to set the max-
imum number of �elds, and the maximum record size, respectively (see
Section 14.1 [Command Line Options], page 161).

� The fflush built-in function for
ushing bu�ered output (see Sec-
tion 12.4 [Built-in Functions for Input/Output], page 145).

254 AWK Language Programming

17.5 Extensions in gawkNot in POSIX awk

The GNU implementation, gawk, adds a number of features. This sec-
tions lists them in the order they were added to gawk. They can all be dis-
abled with either the `--traditional' or `--posix' options (see Section 14.1
[Command Line Options], page 161).

Version 2.10 of gawk introduced these features:

� The AWKPATH environment variable for specifying a path search for the
`-f' command line option (see Section 14.1 [Command Line Options],
page 161).

� The IGNORECASE variable and its e�ects (see Section 4.5 [Case-sensitivity
in Matching], page 33).

� The `/dev/stdin', `/dev/stdout', `/dev/stderr', and `/dev/fd/n' �le
name interpretation (see Section 6.7 [Special File Names in gawk],
page 72).

Version 2.13 of gawk introduced these features:

� The FIELDWIDTHS variable and its e�ects (see Section 5.6 [Reading
Fixed-width Data], page 49).

� The systime and strftime built-in functions for obtaining and printing
time stamps (see Section 12.5 [Functions for Dealing with Time Stamps],
page 147).

� The `-W lint' option to provide source code and run time error
and portability checking (see Section 14.1 [Command Line Options],
page 161).

� The `-W compat' option to turn o� these extensions (see Section 14.1
[Command Line Options], page 161).

� The `-W posix' option for full POSIX compliance (see Section 14.1
[Command Line Options], page 161).

Version 2.14 of gawk introduced these features:

� The next file statement for skipping to the next data �le (see Sec-
tion 9.8 [The nextfile Statement], page 112).

Version 2.15 of gawk introduced these features:

� The ARGIND variable, that tracks the movement of FILENAME through
ARGV (see Chapter 10 [Built-in Variables], page 115).

� The ERRNO variable, that contains the system error message when
getline returns �1, or when close fails (see Chapter 10 [Built-in Vari-
ables], page 115).

� The ability to use GNU-style long named options that start with `--'
(see Section 14.1 [Command Line Options], page 161).

Chapter 17: The Evolution of the awk Language 255

� The `--source' option for mixing command line and library �le source
code (see Section 14.1 [Command Line Options], page 161).

� The `/dev/pid', `/dev/ppid', `/dev/pgrpid', and `/dev/user' �le
name interpretation (see Section 6.7 [Special File Names in gawk],
page 72).

Version 3.0 of gawk introduced these features:

� The next file statement became nextfile (see Section 9.8 [The
nextfile Statement], page 112).

� The `--lint-old' option to warn about constructs that are not available
in the original Version 7 Unix version of awk (see Section 17.1 [Major
Changes between V7 and SVR3.1], page 251).

� The `--traditional' option was added as a better name for `--compat'
(see Section 14.1 [Command Line Options], page 161).

� The ability for FS to be a null string, and for the third argument to
split to be the null string (see Section 5.5.3 [Making Each Character
a Separate Field], page 46).

� The ability for RS to be a regexp (see Section 5.1 [How Input is Split
into Records], page 37).

� The RT variable (see Section 5.1 [How Input is Split into Records],
page 37).

� The gensub function for more powerful text manipulation (see Sec-
tion 12.3 [Built-in Functions for String Manipulation], page 137).

� The strftime function acquired a default time format, allowing it to be
called with no arguments (see Section 12.5 [Functions for Dealing with
Time Stamps], page 147).

� Full support for both POSIX and GNU regexps (see Chapter 4 [Regular
Expressions], page 23).

� The `--re-interval' option to provide interval expressions in regexps
(see Section 4.3 [Regular Expression Operators], page 26).

� IGNORECASE changed, now applying to string comparison as well as reg-
exp operations (see Section 4.5 [Case-sensitivity in Matching], page 33).

� The `-m' option and the fflush function from the Bell Labs research
version of awk (see Section 14.1 [Command Line Options], page 161;
also see Section 12.4 [Built-in Functions for Input/Output], page 145).

� The use of GNU Autoconf to control the con�guration process (see
Section B.2.1 [Compiling gawk for Unix], page 284).

� Amiga support (see Section B.6 [Installing gawk on an Amiga],
page 291).

256 AWK Language Programming

Appendix A: gawk Summary 257

AppendixA gawk Summary

This appendix provides a brief summary of the gawk command line and
the awk language. It is designed to serve as \quick reference." It is therefore
terse, but complete.

A.1 Command Line Options Summary

The command line consists of options to gawk itself, the awk program
text (if not supplied via the `-f' option), and values to be made available in
the ARGC and ARGV prede�ned awk variables:

gawk [POSIX or GNU style options] -f source-�le [--] �le : : :

gawk [POSIX or GNU style options] [--] 'program' �le : : :

The options that gawk accepts are:

-F fs
--field-separator fs

Use fs for the input �eld separator (the value of the FS prede�ned
variable).

-f program-�le
--file program-�le

Read the awk program source from the �le program-�le, instead
of from the �rst command line argument.

-mf=NNN
-mr=NNN The `f'
ag sets the maximum number of �elds, and the `r'

ag sets the maximum record size. These options are ignored
by gawk, since gawk has no prede�ned limits; they are only for
compatibility with the Bell Labs research version of Unix awk.

-v var=val
--assign var=val

Assign the variable var the value val before program execution
begins.

-W traditional

-W compat

--traditional

--compat Use compatibility mode, in which gawk extensions are turned
o�.

258 AWK Language Programming

-W copyleft

-W copyright

--copyleft

--copyright

Print the short version of the General Public License on the error
output. This option may disappear in a future version of gawk.

-W help

-W usage

--help

--usage Print a relatively short summary of the available options on the
error output.

-W lint

--lint Give warnings about dubious or non-portable awk constructs.

-W lint-old

--lint-old

Warn about constructs that are not available in the original
Version 7 Unix version of awk.

-W posix

--posix Use POSIX compatibility mode, in which gawk extensions are
turned o� and additional restrictions apply.

-W re-interval

--re-interval

Allow interval expressions (see Section 4.3 [Regular Expression
Operators], page 26), in regexps.

-W source=program-text
--source program-text

Use program-text as awk program source code. This option al-
lows mixing command line source code with source code from
�les, and is particularly useful for mixing command line pro-
grams with library functions.

-W version

--version

Print version information for this particular copy of gawk on the
error output.

-- Signal the end of options. This is useful to allow further argu-
ments to the awk program itself to start with a `-'. This is mainly
for consistency with POSIX argument parsing conventions.

Any other options are
agged as invalid, but are otherwise ignored. See
Section 14.1 [Command Line Options], page 161, for more details.

Appendix A: gawk Summary 259

A.2 Language Summary

An awk program consists of a sequence of zero or more pattern-action
statements and optional function de�nitions. One or the other of the pattern
and action may be omitted.

pattern { action statements }

pattern
{ action statements }

function name(parameter list) { action statements }

gawk �rst reads the program source from the program-�le(s), if speci�ed,
or from the �rst non-option argument on the command line. The `-f' option
may be used multiple times on the command line. gawk reads the program
text from all the program-�le �les, e�ectively concatenating them in the
order they are speci�ed. This is useful for building libraries of awk functions,
without having to include them in each new awk program that uses them.
To use a library function in a �le from a program typed in on the command
line, specify `--source 'program'', and type your program in between the
single quotes. See Section 14.1 [Command Line Options], page 161.

The environment variable AWKPATH speci�es a search path to use when
�nding source �les named with the `-f' option. The default path, which
is `.:/usr/local/share/awk'1 is used if AWKPATH is not set. If a �le name
given to the `-f' option contains a `/' character, no path search is performed.
See Section 14.3 [The AWKPATH Environment Variable], page 166.

gawk compiles the program into an internal form, and then proceeds to
read each �le named in the ARGV array. The initial values of ARGV come from
the command line arguments. If there are no �les named on the command
line, gawk reads the standard input.

If a \�le" named on the command line has the form `var=val', it is treated
as a variable assignment: the variable var is assigned the value val. If any
of the �les have a value that is the null string, that element in the list is
skipped.

For each record in the input, gawk tests to see if it matches any pattern in
the awk program. For each pattern that the record matches, the associated
action is executed.

A.3 Variables and Fields

awk variables are not declared; they come into existence when they are
�rst used. Their values are either
oating-point numbers or strings. awk also

1 The path may use a directory other than `/usr/local/share/awk', de-
pending upon how gawk was built and installed.

260 AWK Language Programming

has one-dimensional arrays; multiple-dimensional arrays may be simulated.
There are several prede�ned variables that awk sets as a program runs; these
are summarized below.

A.3.1 Fields

As each input line is read, gawk splits the line into �elds, using the value
of the FS variable as the �eld separator. If FS is a single character, �elds are
separated by that character. Otherwise, FS is expected to be a full regular
expression. In the special case that FS is a single space, �elds are separated
by runs of spaces and/or tabs. If FS is the null string (""), then each indi-
vidual character in the record becomes a separate �eld. Note that the value
of IGNORECASE (see Section 4.5 [Case-sensitivity in Matching], page 33) also
a�ects how �elds are split when FS is a regular expression.

Each �eld in the input line may be referenced by its position, $1, $2, and
so on. $0 is the whole line. The value of a �eld may be assigned to as well.
Field numbers need not be constants:

n = 5

print $n

prints the �fth �eld in the input line. The variable NF is set to the total
number of �elds in the input line.

References to non-existent �elds (i.e. �elds after $NF) return the null
string. However, assigning to a non-existent �eld (e.g., $(NF+2) = 5) in-
creases the value of NF, creates any intervening �elds with the null string
as their value, and causes the value of $0 to be recomputed, with the �elds
being separated by the value of OFS. See Chapter 5 [Reading Input Files],
page 37.

A.3.2 Built-in Variables

gawk's built-in variables are:

ARGC The number of elements in ARGV. See below for what is actually
included in ARGV.

ARGIND The index in ARGV of the current �le being processed. When
gawk is processing the input data �les, it is always true that
`FILENAME == ARGV[ARGIND]'.

ARGV The array of command line arguments. The array is indexed
from zero to ARGC � 1. Dynamically changing ARGC and the
contents of ARGV can control the �les used for data. A null-
valued element in ARGV is ignored. ARGV does not include the
options to awk or the text of the awk program itself.

Appendix A: gawk Summary 261

CONVFMT The conversion format to use when converting numbers to
strings.

FIELDWIDTHS

A space separated list of numbers describing the �xed-width
input data.

ENVIRON An array of environment variable values. The array is indexed
by variable name, each element being the value of that variable.
Thus, the environment variable HOME is ENVIRON["HOME"]. One
possible value might be `/home/arnold'.

Changing this array does not a�ect the environment seen by pro-
grams which gawk spawns via redirection or the system function.
(This may change in a future version of gawk.)

Some operating systems do not have environment variables. The
ENVIRON array is empty when running on these systems.

ERRNO The system error message when an error occurs using getline

or close.

FILENAME The name of the current input �le. If no �les are speci�ed on
the command line, the value of FILENAME is the null string.

FNR The input record number in the current input �le.

FS The input �eld separator, a space by default.

IGNORECASE

The case-sensitivity
ag for string comparisons and regular ex-
pression operations. If IGNORECASE has a non-zero value, then
pattern matching in rules, record separating with RS, �eld split-
ting with FS, regular expression matching with `~' and `!~', and
the gensub, gsub, index, match, split and sub built-in func-
tions all ignore case when doing regular expression operations,
and all string comparisons are done ignoring case.

NF The number of �elds in the current input record.

NR The total number of input records seen so far.

OFMT The output format for numbers for the print statement, "%.6g"
by default.

OFS The output �eld separator, a space by default.

ORS The output record separator, by default a newline.

RS The input record separator, by default a newline. If RS is set to
the null string, then records are separated by blank lines. When
RS is set to the null string, then the newline character always
acts as a �eld separator, in addition to whatever value FS may

262 AWK Language Programming

have. If RS is set to a multi-character string, it denotes a regexp;
input text matching the regexp separates records.

RT The input text that matched the text denoted by RS, the record
separator.

RSTART The index of the �rst character last matched by match; zero if
no match.

RLENGTH The length of the string last matched by match; �1 if no match.

SUBSEP The string used to separate multiple subscripts in array ele-
ments, by default "\034".

See Chapter 10 [Built-in Variables], page 115, for more information.

A.3.3 Arrays

Arrays are subscripted with an expression between square brackets (`['
and `]'). Array subscripts are always strings; numbers are converted to
strings as necessary, following the standard conversion rules (see Section 7.4
[Conversion of Strings and Numbers], page 81).

If you use multiple expressions separated by commas inside the square
brackets, then the array subscript is a string consisting of the concatenation
of the individual subscript values, converted to strings, separated by the
subscript separator (the value of SUBSEP).

The special operator in may be used in a conditional context to see if an
array has an index consisting of a particular value.

if (val in array)

print array[val]

If the array has multiple subscripts, use `(i, j, : : :) in array ' to test for
existence of an element.

The in construct may also be used in a for loop to iterate over all the
elements of an array. See Section 11.5 [Scanning All Elements of an Array],
page 127.

You can remove an element from an array using the delete statement.

You can clear an entire array using `delete array '.

See Chapter 11 [Arrays in awk], page 123.

A.3.4 Data Types

The value of an awk expression is always either a number or a string.

Some contexts (such as arithmetic operators) require numeric values.
They convert strings to numbers by interpreting the text of the string as
a number. If the string does not look like a number, it converts to zero.

Appendix A: gawk Summary 263

Other contexts (such as concatenation) require string values. They con-
vert numbers to strings by e�ectively printing them with sprintf. See
Section 7.4 [Conversion of Strings and Numbers], page 81, for the details.

To force conversion of a string value to a number, simply add zero to it.
If the value you start with is already a number, this does not change it.

To force conversion of a numeric value to a string, concatenate it with
the null string.

Comparisons are done numerically if both operands are numeric, or if
one is numeric and the other is a numeric string. Otherwise one or both
operands are converted to strings and a string comparison is performed.
Fields, getline input, FILENAME, ARGV elements, ENVIRON elements and the
elements of an array created by split are the only items that can be numeric
strings. String constants, such as "3.1415927" are not numeric strings,
they are string constants. The full rules for comparisons are described in
Section 7.10 [Variable Typing and Comparison Expressions], page 88.

Uninitialized variables have the string value "" (the null, or empty,
string). In contexts where a number is required, this is equivalent to zero.

See Section 7.3 [Variables], page 79, for more information on variable
naming and initialization; see Section 7.4 [Conversion of Strings and Num-
bers], page 81, for more information on how variable values are interpreted.

A.4 Patterns

An awk program is mostly composed of rules, each consisting of a pattern
followed by an action. The action is enclosed in `{' and `}'. Either the
pattern may be missing, or the action may be missing, but not both. If the
pattern is missing, the action is executed for every input record. A missing
action is equivalent to `{ print }', which prints the entire line.

Comments begin with the `#' character, and continue until the end of the
line. Blank lines may be used to separate statements. Statements normally
end with a newline; however, this is not the case for lines ending in a `,', `{',
`?', `:', `&&', or `||'. Lines ending in do or else also have their statements
automatically continued on the following line. In other cases, a line can be
continued by ending it with a `\', in which case the newline is ignored.

Multiple statements may be put on one line by separating each one with
a `;'. This applies to both the statements within the action part of a rule
(the usual case), and to the rule statements.

See Section 2.2.5 [Comments in awk Programs], page 13, for information
on awk's commenting convention; see Section 2.6 [awk Statements Versus
Lines], page 16, for a description of the line continuation mechanism in awk.

264 AWK Language Programming

A.4.1 Pattern Summary

awk patterns may be one of the following:

/regular expression/
relational expression
pattern && pattern
pattern || pattern
pattern ? pattern : pattern
(pattern)
! pattern
pattern1, pattern2
BEGIN

END

BEGIN and END are two special kinds of patterns that are not tested against
the input. The action parts of all BEGIN rules are concatenated as if all the
statements had been written in a single BEGIN rule. They are executed before
any of the input is read. Similarly, all the END rules are concatenated, and
executed when all the input is exhausted (or when an exit statement is
executed). BEGIN and END patterns cannot be combined with other patterns
in pattern expressions. BEGIN and END rules cannot have missing action
parts.

For /regular-expression/ patterns, the associated statement is executed
for each input record that matches the regular expression. Regular expres-
sions are summarized below.

A relational expression may use any of the operators de�ned below in the
section on actions. These generally test whether certain �elds match certain
regular expressions.

The `&&', `||', and `!' operators are logical \and," logical \or," and logical
\not," respectively, as in C. They do short-circuit evaluation, also as in C,
and are used for combining more primitive pattern expressions. As in most
languages, parentheses may be used to change the order of evaluation.

The `?:' operator is like the same operator in C. If the �rst pattern
matches, then the second pattern is matched against the input record; oth-
erwise, the third is matched. Only one of the second and third patterns is
matched.

The `pattern1, pattern2 ' form of a pattern is called a range pattern.
It matches all input lines starting with a line that matches pattern1, and
continuing until a line that matches pattern2, inclusive. A range pattern
cannot be used as an operand of any of the pattern operators.

See Section 8.1 [Pattern Elements], page 97.

Appendix A: gawk Summary 265

A.4.2 Regular Expressions

Regular expressions are based on POSIX EREs (extended regular ex-
pressions). The escape sequences allowed in string constants are also valid
in regular expressions (see Section 4.2 [Escape Sequences], page 24). Regexps
are composed of characters as follows:

c matches the character c (assuming c is none of the characters
listed below).

\c matches the literal character c.

. matches any character, including newline. In strict POSIX
mode, `.' does not match the nul character, which is a character
with all bits equal to zero.

^ matches the beginning of a string.

$ matches the end of a string.

[abc: : :] matches any of the characters abc: : : (character list).

[[:class:]]
matches any character in the character class class. Allowable
classes are alnum, alpha, blank, cntrl, digit, graph, lower,
print, punct, space, upper, and xdigit.

[[.symbol.]]
matches the multi-character collating symbol symbol. gawk does
not currently support collating symbols.

[[=chars=]]
matches any of the equivalent characters in chars. gawk does
not currently support equivalence classes.

[^abc: : :] matches any character except abc: : : and newline (negated char-
acter list).

r1|r2 matches either r1 or r2 (alternation).

r1r2 matches r1, and then r2 (concatenation).

r+ matches one or more r's.

r* matches zero or more r's.

r? matches zero or one r's.

(r) matches r (grouping).

r{n}
r{n,}
r{n,m} matches at least n, n to any number, or n to m occurrences of r

(interval expressions).

266 AWK Language Programming

\y matches the empty string at either the beginning or the end of
a word.

\B matches the empty string within a word.

\< matches the empty string at the beginning of a word.

\> matches the empty string at the end of a word.

\w matches any word-constituent character (alphanumeric charac-
ters and the underscore).

\W matches any character that is not word-constituent.

\` matches the empty string at the beginning of a bu�er (same as
a string in gawk).

\' matches the empty string at the end of a bu�er.

The various command line options control how gawk interprets characters
in regexps.

No options
In the default case, gawk provide all the facilities of POSIX reg-
exps and the GNU regexp operators described above. However,
interval expressions are not supported.

--posix Only POSIX regexps are supported, the GNU operators are not
special (e.g., `\w' matches a literal `w'). Interval expressions are
allowed.

--traditional

Traditional Unix awk regexps are matched. The GNU operators
are not special, interval expressions are not available, and nei-
ther are the POSIX character classes ([[:alnum:]] and so on).
Characters described by octal and hexadecimal escape sequences
are treated literally, even if they represent regexp metacharac-
ters.

--re-interval

Allow interval expressions in regexps, even if `--traditional'
has been provided.

See Chapter 4 [Regular Expressions], page 23.

A.5 Actions

Action statements are enclosed in braces, `{' and `}'. A missing action
statement is equivalent to `{ print }'.

Appendix A: gawk Summary 267

Action statements consist of the usual assignment, conditional, and loop-
ing statements found in most languages. The operators, control statements,
and Input/Output statements available are similar to those in C.

Comments begin with the `#' character, and continue until the end of the
line. Blank lines may be used to separate statements. Statements normally
end with a newline; however, this is not the case for lines ending in a `,', `{',
`?', `:', `&&', or `||'. Lines ending in do or else also have their statements
automatically continued on the following line. In other cases, a line can be
continued by ending it with a `\', in which case the newline is ignored.

Multiple statements may be put on one line by separating each one with
a `;'. This applies to both the statements within the action part of a rule
(the usual case), and to the rule statements.

See Section 2.2.5 [Comments in awk Programs], page 13, for information
on awk's commenting convention; see Section 2.6 [awk Statements Versus
Lines], page 16, for a description of the line continuation mechanism in awk.

A.5.1 Operators

The operators in awk, in order of decreasing precedence, are:

(: : :) Grouping.

$ Field reference.

++ -- Increment and decrement, both pre�x and post�x.

^ Exponentiation (`**' may also be used, and `**=' for the assign-
ment operator, but they are not speci�ed in the POSIX stan-
dard).

+ - ! Unary plus, unary minus, and logical negation.

* / % Multiplication, division, and modulus.

+ - Addition and subtraction.

space String concatenation.

< <= > >= != ==

The usual relational operators.

~ !~ Regular expression match, negated match.

in Array membership.

&& Logical \and".

|| Logical \or".

?: A conditional expression. This has the form `expr1 ? expr2 :

expr3 '. If expr1 is true, the value of the expression is expr2 ;
otherwise it is expr3. Only one of expr2 and expr3 is evaluated.

268 AWK Language Programming

= += -= *= /= %= ^=

Assignment. Both absolute assignment (var=value) and opera-
tor assignment (the other forms) are supported.

See Chapter 7 [Expressions], page 77.

A.5.2 Control Statements

The control statements are as follows:

if (condition) statement [else statement]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statement
break

continue

delete array[index]
delete array
exit [expression]
{ statements }

See Chapter 9 [Control Statements in Actions], page 105.

A.5.3 I/O Statements

The Input/Output statements are as follows:

getline Set $0 from next input record; set NF, NR, FNR. See Section 5.8
[Explicit Input with getline], page 54.

getline <�le
Set $0 from next record of �le; set NF.

getline var
Set var from next input record; set NF, FNR.

getline var <�le
Set var from next record of �le.

command | getline

Run command, piping its output into getline; sets $0, NF, NR.

command | getline var

Run command, piping its output into getline; sets var.

next Stop processing the current input record. The next input record
is read and processing starts over with the �rst pattern in the awk
program. If the end of the input data is reached, the END rule(s),

Appendix A: gawk Summary 269

if any, are executed. See Section 9.7 [The next Statement],
page 111.

nextfile Stop processing the current input �le. The next input record
read comes from the next input �le. FILENAME is updated, FNR
is set to one, ARGIND is incremented, and processing starts over
with the �rst pattern in the awk program. If the end of the input
data is reached, the END rule(s), if any, are executed. Earlier ver-
sions of gawk used `next file'; this usage is still supported, but
is considered to be deprecated. See Section 9.8 [The nextfile

Statement], page 112.

print Prints the current record. See Chapter 6 [Printing Output],
page 61.

print expr-list
Prints expressions.

print expr-list > �le
Prints expressions to �le. If �le does not exist, it is created. If
it does exist, its contents are deleted the �rst time the print is
executed.

print expr-list >> �le
Prints expressions to �le. The previous contents of �le are re-
tained, and the output of print is appended to the �le.

print expr-list | command
Prints expressions, sending the output down a pipe to command.
The pipeline to the command stays open until the close func-
tion is called.

printf fmt, expr-list
Format and print.

printf fmt, expr-list > file

Format and print to �le. If �le does not exist, it is created. If
it does exist, its contents are deleted the �rst time the printf

is executed.

printf fmt, expr-list >> �le
Format and print to �le. The previous contents of �le are re-
tained, and the output of printf is appended to the �le.

printf fmt, expr-list | command
Format and print, sending the output down a pipe to command.
The pipeline to the command stays open until the close func-
tion is called.

getline returns zero on end of �le, and �1 on an error. In the event of
an error, getline will set ERRNO to the value of a system-dependent string
that describes the error.

270 AWK Language Programming

A.5.4 printf Summary

Conversion speci�cation have the form %[
ag][width][.prec]format. Items
in brackets are optional.

The awk printf statement and sprintf function accept the following
conversion speci�cation formats:

%c An ASCII character. If the argument used for `%c' is numeric, it
is treated as a character and printed. Otherwise, the argument
is assumed to be a string, and the only �rst character of that
string is printed.

%d

%i A decimal number (the integer part).

%e

%E A
oating point number of the form `[-]d.dddddde[+-]dd'. The
`%E' format uses `E' instead of `e'.

%f A
oating point number of the form [-]ddd.dddddd.

%g

%G Use either the `%e' or `%f' formats, whichever produces a shorter
string, with non-signi�cant zeros suppressed. `%G' will use `%E'
instead of `%e'.

%o An unsigned octal number (again, an integer).

%s A character string.

%x

%X An unsigned hexadecimal number (an integer). The `%X' format
uses `A' through `F' instead of `a' through `f' for decimal 10
through 15.

%% A single `%' character; no argument is converted.

There are optional, additional parameters that may lie between the `%'
and the control letter:

- The expression should be left-justi�ed within its �eld.

space For numeric conversions, pre�x positive values with a space, and
negative values with a minus sign.

+ The plus sign, used before the width modi�er (see below), says
to always supply a sign for numeric conversions, even if the data
to be formatted is positive. The `+' overrides the space modi�er.

Use an \alternate form" for certain control letters. For `o', sup-
ply a leading zero. For `x', and `X', supply a leading `0x' or `0X'
for a non-zero result. For `e', `E', and `f', the result will always

Appendix A: gawk Summary 271

contain a decimal point. For `g', and `G', trailing zeros are not
removed from the result.

0 A leading `0' (zero) acts as a
ag, that indicates output should
be padded with zeros instead of spaces. This applies even to
non-numeric output formats. This
ag only has an e�ect when
the �eld width is wider than the value to be printed.

width The �eld should be padded to this width. The �eld is normally
padded with spaces. If the `0'
ag has been used, it is padded
with zeros.

.prec A number that speci�es the precision to use when printing. For
the `e', `E', and `f' formats, this speci�es the number of digits
you want printed to the right of the decimal point. For the `g',
and `G' formats, it speci�es the maximum number of signi�cant
digits. For the `d', `o', `i', `u', `x', and `X' formats, it speci�es
the minimum number of digits to print. For the `s' format, it
speci�es the maximum number of characters from the string that
should be printed.

Either or both of the width and prec values may be speci�ed as `*'. In
that case, the particular value is taken from the argument list.

See Section 6.5 [Using printf Statements for Fancier Printing], page 64.

A.5.5 Special File Names

When doing I/O redirection from either print or printf into a �le, or
via getline from a �le, gawk recognizes certain special �le names internally.
These �le names allow access to open �le descriptors inherited from gawk's
parent process (usually the shell). The �le names are:

`/dev/stdin'
The standard input.

`/dev/stdout'
The standard output.

`/dev/stderr'
The standard error output.

`/dev/fd/n'
The �le denoted by the open �le descriptor n.

In addition, reading the following �les provides process related informa-
tion about the running gawk program. All returned records are terminated
with a newline.

`/dev/pid'
Returns the process ID of the current process.

272 AWK Language Programming

`/dev/ppid'
Returns the parent process ID of the current process.

`/dev/pgrpid'
Returns the process group ID of the current process.

`/dev/user'
At least four space-separated �elds, containing the return values
of the getuid, geteuid, getgid, and getegid system calls. If
there are any additional �elds, they are the group IDs returned
by getgroups system call. (Multiple groups may not be sup-
ported on all systems.)

These �le names may also be used on the command line to name data �les.
These �le names are only recognized internally if you do not actually have
�les with these names on your system.

See Section 6.7 [Special File Names in gawk], page 72, for a longer de-
scription that provides the motivation for this feature.

A.5.6 Built-in Functions

awk provides a number of built-in functions for performing numeric op-
erations, string related operations, and I/O related operations.

The built-in arithmetic functions are:

atan2(y, x)
the arctangent of y/x in radians.

cos(expr) the cosine in radians.

exp(expr) the exponential function (e ^ expr).

int(expr) truncates to integer.

log(expr) the natural logarithm of expr.

rand() a random number between zero and one.

sin(expr) the sine in radians.

sqrt(expr)
the square root function.

srand([expr])
use expr as a new seed for the random number generator. If no
expr is provided, the time of day is used. The return value is
the previous seed for the random number generator.

Appendix A: gawk Summary 273

awk has the following built-in string functions:

gensub(regex, subst, how [, target])
If how is a string beginning with `g' or `G', then replace each
match of regex in target with subst. Otherwise, replace the
how 'th occurrence. If target is not supplied, use $0. The return
value is the changed string; the original target is not modi�ed.
Within subst, `\n', where n is a digit from one to nine, can be
used to indicate the text that matched the n'th parenthesized
subexpression.

gsub(regex, subst [, target])
for each substring matching the regular expression regex in the
string target, substitute the string subst, and return the number
of substitutions. If target is not supplied, use $0.

index(str, search)
returns the index of the string search in the string str, or zero if
search is not present.

length([str])
returns the length of the string str. The length of $0 is returned
if no argument is supplied.

match(str, regex)
returns the position in str where the regular expression regex
occurs, or zero if regex is not present, and sets the values of
RSTART and RLENGTH.

split(str, arr [, regex])
splits the string str into the array arr on the regular expression
regex, and returns the number of elements. If regex is omitted,
FS is used instead. regex can be the null string, causing each
character to be placed into its own array element. The array arr
is cleared �rst.

sprintf(fmt, expr-list)
prints expr-list according to fmt, and returns the resulting string.

sub(regex, subst [, target])
just like gsub, but only the �rst matching substring is replaced.

substr(str, index [, len])
returns the len-character substring of str starting at index. If
len is omitted, the rest of str is used.

tolower(str)
returns a copy of the string str, with all the upper-case characters
in str translated to their corresponding lower-case counterparts.
Non-alphabetic characters are left unchanged.

274 AWK Language Programming

toupper(str)
returns a copy of the string str, with all the lower-case characters
in str translated to their corresponding upper-case counterparts.
Non-alphabetic characters are left unchanged.

The I/O related functions are:

close(expr)
Close the open �le or pipe denoted by expr.

fflush([expr])
Flush any bu�ered output for the output �le or pipe denoted by
expr. If expr is omitted, standard output is
ushed. If expr is
the null string (""), all output bu�ers are
ushed.

system(cmd-line)
Execute the command cmd-line, and return the exit status. If
your operating system does not support system, calling it will
generate a fatal error.

`system("")' can be used to force awk to
ush any pending
output. This is more portable, but less obvious, than calling
fflush.

A.5.7 Time Functions

The following two functions are available for getting the current time of
day, and for formatting time stamps.

systime()

returns the current time of day as the number of seconds since
a particular epoch (Midnight, January 1, 1970 UTC, on POSIX
systems).

strftime([format[, timestamp]])
formats timestamp according to the speci�cation in format. The
current time of day is used if no timestamp is supplied. A default
format equivalent to the output of the date utility is used if
no format is supplied. See Section 12.5 [Functions for Dealing
with Time Stamps], page 147, for the details on the conversion
speci�ers that strftime accepts.

See Chapter 12 [Built-in Functions], page 135, for a description of all of
awk's built-in functions.

A.5.8 String Constants

String constants in awk are sequences of characters enclosed in double
quotes ("). Within strings, certain escape sequences are recognized, as in C.
These are:

Appendix A: gawk Summary 275

\\ A literal backslash.

\a The \alert" character; usually the ASCII BEL character.

\b Backspace.

\f Formfeed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\xhex digits
The character represented by the string of hexadecimal digits
following the `\x'. As in ANSI C, all following hexadecimal
digits are considered part of the escape sequence. E.g., "\x1B"
is a string containing the ASCII ESC (escape) character. (The
`\x' escape sequence is not in POSIX awk.)

\ddd The character represented by the one, two, or three digit se-
quence of octal digits. Thus, "\033" is also a string containing
the ASCII ESC (escape) character.

\c The literal character c, if c is not one of the above.

The escape sequences may also be used inside constant regular expressions
(e.g., the regexp /[\t\f\n\r\v]/ matches whitespace characters).

See Section 4.2 [Escape Sequences], page 24.

A.6 User-de�ned Functions

Functions in awk are de�ned as follows:

function name(parameter list) { statements }

Actual parameters supplied in the function call are used to instantiate the
formal parameters declared in the function. Arrays are passed by reference,
other variables are passed by value.

If there are fewer arguments passed than there are names in parameter-
list, the extra names are given the null string as their value. Extra names
have the e�ect of local variables.

The open-parenthesis in a function call of a user-de�ned function must
immediately follow the function name, without any intervening white space.
This is to avoid a syntactic ambiguity with the concatenation operator.

The word func may be used in place of function (but not in POSIX
awk).

276 AWK Language Programming

Use the return statement to return a value from a function.

See Chapter 13 [User-de�ned Functions], page 153.

A.7 Historical Features

There are two features of historical awk implementations that gawk sup-
ports.

First, it is possible to call the length built-in function not only with no
arguments, but even without parentheses!

a = length

is the same as either of

a = length()

a = length($0)

For example:

$ echo abcdef | awk '{ print length }'

a 6

This feature is marked as \deprecated" in the POSIX standard, and gawk

will issue a warning about its use if `--lint' is speci�ed on the command line.
(The ability to use length this way was actually an accident of the original
Unix awk implementation. If any built-in function used $0 as its default
argument, it was possible to call that function without the parentheses. In
particular, it was common practice to use the length function in this fashion,
and this usage was documented in the awk manual page.)

The other historical feature is the use of either the break statement,
or the continue statement outside the body of a while, for, or do loop.
Traditional awk implementations have treated such usage as equivalent to
the next statement. More recent versions of Unix awk do not allow it. gawk
supports this usage if `--traditional' has been speci�ed.

See Section 14.1 [Command Line Options], page 161, for more information
about the `--posix' and `--lint' options.

Appendix B: Installing gawk 277

AppendixB Installing gawk

This appendix provides instructions for installing gawk on the various
platforms that are supported by the developers. The primary developers
support Unix (and one day, GNU), while the other ports were contributed.
The �le `ACKNOWLEDGMENT' in the gawk distribution lists the electronic mail
addresses of the people who did the respective ports, and they are also
provided in Section B.7 [Reporting Problems and Bugs], page 292.

B.1 The gawkDistribution

This section �rst describes how to get the gawk distribution, how to
extract it, and then what is in the various �les and subdirectories.

B.1.1 Getting the gawk Distribution

There are three ways you can get GNU software.

1. You can copy it from someone else who already has it.

2. You can order gawk directly from the Free Software Foundation. Soft-
ware distributions are available for Unix, MS-DOS, and VMS, on tape,
CD-ROM, or
oppies (MS-DOS only). The address is:

Free Software Foundation
59 Temple Place|Suite 330
Boston, MA 02111-1307 USA
Phone: +1-617-542-5942
Fax (including Japan): +1-617-542-2652
E-mail: gnu@prep.ai.mit.edu

Ordering from the FSF directly contributes to the support of the foun-
dation and to the production of more free software.

3. You can get gawk by using anonymous ftp to the Internet host
ftp.gnu.ai.mit.edu, in the directory `/pub/gnu'.

Here is a list of alternate ftp sites from which you can obtain GNU
software. When a site is listed as \site:directory" the directory indi-
cates the directory where GNU software is kept. You should use a site
that is geographically close to you.

Asia:

cair-archive.kaist.ac.kr:/pub/gnu

ftp.cs.titech.ac.jp

ftp.nectec.or.th:/pub/mirrors/gnu

utsun.s.u-tokyo.ac.jp:/ftpsync/prep

278 AWK Language Programming

Australia:

archie.au:/gnu

(archie.oz or archie.oz.au for ACSnet)

Africa:

ftp.sun.ac.za:/pub/gnu

Middle East:

ftp.technion.ac.il:/pub/unsupported/gnu

Europe:

archive.eu.net

ftp.denet.dk

ftp.eunet.ch

ftp.funet.fi:/pub/gnu

ftp.ieunet.ie:pub/gnu

ftp.informatik.rwth-aachen.de:/pub/gnu

ftp.informatik.tu-muenchen.de

ftp.luth.se:/pub/unix/gnu

ftp.mcc.ac.uk

ftp.stacken.kth.se

ftp.sunet.se:/pub/gnu

ftp.univ-lyon1.fr:pub/gnu

ftp.win.tue.nl:/pub/gnu

irisa.irisa.fr:/pub/gnu

isy.liu.se

nic.switch.ch:/mirror/gnu

src.doc.ic.ac.uk:/gnu

unix.hensa.ac.uk:/pub/uunet/systems/gnu

South America:

ftp.inf.utfsm.cl:/pub/gnu

ftp.unicamp.br:/pub/gnu

Western Canada:

ftp.cs.ubc.ca:/mirror2/gnu

USA:

col.hp.com:/mirrors/gnu

f.ms.uky.edu:/pub3/gnu

ftp.cc.gatech.edu:/pub/gnu

ftp.cs.columbia.edu:/archives/gnu/prep

ftp.digex.net:/pub/gnu

ftp.hawaii.edu:/mirrors/gnu

ftp.kpc.com:/pub/mirror/gnu

Appendix B: Installing gawk 279

USA (continued):

ftp.uu.net:/systems/gnu

gatekeeper.dec.com:/pub/GNU

jaguar.utah.edu:/gnustuff

labrea.stanford.edu

mrcnext.cso.uiuc.edu:/pub/gnu

vixen.cso.uiuc.edu:/gnu

wuarchive.wustl.edu:/systems/gnu

B.1.2 Extracting the Distribution

gawk is distributed as a tar �le compressed with the GNU Zip program,
gzip.

Once you have the distribution (for example, `gawk-3.0.0.tar.gz'), �rst
use gzip to expand the �le, and then use tar to extract it. You can use the
following pipeline to produce the gawk distribution:

Under System V, add 'o' to the tar flags

gzip -d -c gawk-3.0.0.tar.gz | tar -xvpf -

This will create a directory named `gawk-3.0.0' in the current directory.

The distribution �le name is of the form `gawk-V.R.n.tar.gz'. The V
represents the major version of gawk, the R represents the current release of
version V, and the n represents a patch level, meaning that minor bugs have
been �xed in the release. The current patch level is 0, but when retrieving
distributions, you should get the version with the highest version, release,
and patch level. (Note that release levels greater than or equal to 90 denote
\beta," or non-production software; you may not wish to retrieve such a
version unless you don't mind experimenting.)

If you are not on a Unix system, you will need to make other arrangements
for getting and extracting the gawk distribution. You should consult a local
expert.

B.1.3 Contents of the gawk Distribution

The gawk distribution has a number of C source �les, documentation
�les, subdirectories and �les related to the con�guration process (see Sec-
tion B.2 [Compiling and Installing gawk on Unix], page 284), and several
subdirectories related to di�erent, non-Unix, operating systems.

various `.c', `.y', and `.h' �les
These �les are the actual gawk source code.

280 AWK Language Programming

`README'
`README_d/README.*'

Descriptive �les: `README' for gawk under Unix, and the rest for
the various hardware and software combinations.

`INSTALL' A �le providing an overview of the con�guration and installation
process.

`PORTS' A list of systems to which gawk has been ported, and which have
successfully run the test suite.

`ACKNOWLEDGMENT'
A list of the people who contributed major parts of the code or
documentation.

`ChangeLog'
A detailed list of source code changes as bugs are �xed or im-
provements made.

`NEWS' A list of changes to gawk since the last release or patch.

`COPYING' The GNU General Public License.

`FUTURES' A brief list of features and/or changes being contemplated for
future releases, with some indication of the time frame for the
feature, based on its di�culty.

`LIMITATIONS'
A list of those factors that limit gawk's performance. Most of
these depend on the hardware or operating system software, and
are not limits in gawk itself.

`POSIX.STD'
A description of one area where the POSIX standard for awk is
incorrect, and how gawk handles the problem.

`PROBLEMS'
A �le describing known problems with the current release.

`doc/gawk.1'
The troff source for a manual page describing gawk. This is
distributed for the convenience of Unix users.

`doc/gawk.texi'
The Texinfo source �le for this book. It should be processed
with TEX to produce a printed document, and with makeinfo

to produce an Info �le.

`doc/gawk.info'
The generated Info �le for this book.

Appendix B: Installing gawk 281

`doc/igawk.1'
The troff source for a manual page describing the igawk pro-
gram presented in Section 16.2.9 [An Easy Way to Use Library
Functions], page 242.

`doc/Makefile.in'
The input �le used during the con�guration process to generate
the actual `Makefile' for creating the documentation.

`Makefile.in'
`acconfig.h'
`aclocal.m4'
`configh.in'
`configure.in'
`configure'
`custom.h'
`missing/*'

These �les and subdirectory are used when con�guring gawk

for various Unix systems. They are explained in detail in Sec-
tion B.2 [Compiling and Installing gawk on Unix], page 284.

`awklib/extract.awk'
`awklib/Makefile.in'

The `awklib' directory contains a copy of `extract.awk' (see
Section 16.2.7 [Extracting Programs from Texinfo Source Files],
page 237), which can be used to extract the sample programs
from the Texinfo source �le for this book, and a `Makefile.in'
�le, which configure uses to generate a `Makefile'. As part of
the process of building gawk, the library functions from Chap-
ter 15 [A Library of awk Functions], page 169, and the igawk

program from Section 16.2.9 [An EasyWay to Use Library Func-
tions], page 242, are extracted into ready to use �les. They are
installed as part of the installation process.

`amiga/*' Files needed for building gawk on an Amiga. See Section B.6
[Installing gawk on an Amiga], page 291, for details.

`atari/*' Files needed for building gawk on an Atari ST. See Section B.5
[Installing gawk on the Atari ST], page 289, for details.

`pc/*' Files needed for building gawk under MS-DOS and OS/2. See
Section B.4 [MS-DOS and OS/2 Installation and Compilation],
page 288, for details.

`vms/*' Files needed for building gawk under VMS. See Section B.3 [How
to Compile and Install gawk on VMS], page 285, for details.

`test/*' A test suite for gawk. You can use `make check' from the top
level gawk directory to run your version of gawk against the test

282 AWK Language Programming

suite. If gawk successfully passes `make check' then you can be
con�dent of a successful port.

B.2 Compiling and Installing gawk on Unix

Usually, you can compile and install gawk by typing only two commands.
However, if you do use an unusual system, you may need to con�gure gawk
for your system yourself.

B.2.1 Compiling gawk for Unix

After you have extracted the gawk distribution, cd to `gawk-3.0.0'. Like
most GNU software, gawk is con�gured automatically for your Unix system
by running the configure program. This program is a Bourne shell script
that was generated automatically using GNU autoconf. (The autoconf

software is described fully in Autoconf|Generating Automatic Con�gura-
tion Scripts, which is available from the Free Software Foundation.)

To con�gure gawk, simply run configure:

sh ./configure

This produces a `Makefile' and `config.h' tailored to your system. The
`config.h' �le describes various facts about your system. You may wish to
edit the `Makefile' to change the CFLAGS variable, which controls the com-
mand line options that are passed to the C compiler (such as optimization
levels, or compiling for debugging).

Alternatively, you can add your own values for most make variables, such
as CC and CFLAGS, on the command line when running configure:

CC=cc CFLAGS=-g sh ./configure

See the �le `INSTALL' in the gawk distribution for all the details.

After you have run configure, and possibly edited the `Makefile', type:

make

and shortly thereafter, you should have an executable version of gawk. That's
all there is to it! (If these steps do not work, please send in a bug report;
see Section B.7 [Reporting Problems and Bugs], page 292.)

B.2.2 The Con�guration Process

(This section is of interest only if you know something about using the C
language and the Unix operating system.)

The source code for gawk generally attempts to adhere to formal stan-
dards wherever possible. This means that gawk uses library routines that
are speci�ed by the ANSI C standard and by the POSIX operating system

Appendix B: Installing gawk 283

interface standard. When using an ANSI C compiler, function prototypes
are used to help improve the compile-time checking.

Many Unix systems do not support all of either the ANSI or the POSIX
standards. The `missing' subdirectory in the gawk distribution contains
replacement versions of those subroutines that are most likely to be missing.

The `config.h' �le that is created by the configure program contains
de�nitions that describe features of the particular operating system where
you are attempting to compile gawk. The three things described by this
�le are what header �les are available, so that they can be correctly in-
cluded, what (supposedly) standard functions are actually available in your
C libraries, and other miscellaneous facts about your variant of Unix. For
example, there may not be an st_blksize element in the stat structure.
In this case `HAVE_ST_BLKSIZE' would be unde�ned.

It is possible for your C compiler to lie to configure. It may do so by not
exiting with an error when a library function is not available. To get around
this, you can edit the �le `custom.h'. Use an `#ifdef' that is appropriate
for your system, and either #define any constants that configure should
have de�ned but didn't, or #undef any constants that configure de�ned
and should not have. `custom.h' is automatically included by `config.h'.

It is also possible that the configure program generated by autoconf

will not work on your system in some other fashion. If you do have a prob-
lem, the �le `configure.in' is the input for autoconf. You may be able to
change this �le, and generate a new version of configure that will work on
your system. See Section B.7 [Reporting Problems and Bugs], page 292, for
information on how to report problems in con�guring gawk. The same mech-
anism may be used to send in updates to `configure.in' and/or `custom.h'.

B.3 How to Compile and Install gawk on VMS

This section describes how to compile and install gawk under VMS.

B.3.1 Compiling gawk on VMS

To compile gawk under VMS, there is a DCL command procedure that will
issue all the necessary CC and LINK commands, and there is also a `Makefile'
for use with the MMS utility. From the source directory, use either

$ @[.VMS]VMSBUILD.COM

or

$ MMS/DESCRIPTION=[.VMS]DESCRIP.MMS GAWK

Depending upon which C compiler you are using, follow one of the sets
of instructions in this table:

284 AWK Language Programming

VAX C V3.x
Use either `vmsbuild.com' or `descrip.mms' as is. These use
CC/OPTIMIZE=NOLINE, which is essential for Version 3.0.

VAX C V2.x
You must have Version 2.3 or 2.4; older ones won't work. Edit
either `vmsbuild.com' or `descrip.mms' according to the com-
ments in them. For `vmsbuild.com', this just entails removing
two `!' delimiters. Also edit `config.h' (which is a copy of �le
`[.config]vms-conf.h') and comment out or delete the two
lines `#define __STDC__ 0' and `#define VAXC_BUILTINS' near
the end.

GNU C Edit `vmsbuild.com' or `descrip.mms'; the changes are di�erent
from those for VAX C V2.x, but equally straightforward. No
changes to `config.h' should be needed.

DEC C Edit `vmsbuild.com' or `descrip.mms' according to their com-
ments. No changes to `config.h' should be needed.

gawk has been tested under VAX/VMS 5.5-1 using VAX C V3.2, GNU C
1.40 and 2.3. It should work without modi�cations for VMS V4.6 and up.

B.3.2 Installing gawk on VMS

To install gawk, all you need is a \foreign" command, which is a DCL

symbol whose value begins with a dollar sign. For example:

$ GAWK :== $disk1:[gnubin]GAWK

(Substitute the actual location of gawk.exe for `$disk1:[gnubin]'.) The
symbol should be placed in the `login.com' of any user who wishes to run
gawk, so that it will be de�ned every time the user logs on. Alternatively, the
symbol may be placed in the system-wide `sylogin.com' procedure, which
will allow all users to run gawk.

Optionally, the help entry can be loaded into a VMS help library:

$ LIBRARY/HELP SYS$HELP:HELPLIB [.VMS]GAWK.HLP

(You may want to substitute a site-speci�c help library rather than the
standard VMS library `HELPLIB'.) After loading the help text,

$ HELP GAWK

will provide information about both the gawk implementation and the awk

programming language.

The logical name `AWK_LIBRARY' can designate a default location for awk
program �les. For the `-f' option, if the speci�ed �lename has no device
or directory path information in it, gawk will look in the current directory
�rst, then in the directory speci�ed by the translation of `AWK_LIBRARY' if

Appendix B: Installing gawk 285

the �le was not found. If after searching in both directories, the �le still is
not found, then gawk appends the su�x `.awk' to the �lename and the �le
search will be re-tried. If `AWK_LIBRARY' is not de�ned, that portion of the
�le search will fail benignly.

B.3.3 Running gawk on VMS

Command line parsing and quoting conventions are signi�cantly di�erent
on VMS, so examples in this book or from other sources often need minor
changes. They are minor though, and all awk programs should run correctly.

Here are a couple of trivial tests:

$ gawk -- "BEGIN {print ""Hello, World!""}"

$ gawk -"W" version

! could also be -"W version" or "-W version"

Note that upper-case and mixed-case text must be quoted.

The VMS port of gawk includes a DCL-style interface in addition to the
original shell-style interface (see the help entry for details). One side-e�ect
of dual command line parsing is that if there is only a single parameter (as
in the quoted string program above), the command becomes ambiguous. To
work around this, the normally optional `--'
ag is required to force Unix
style rather than DCL parsing. If any other dash-type options (or multi-
ple parameters such as data �les to be processed) are present, there is no
ambiguity and `--' can be omitted.

The default search path when looking for awk program �les speci�ed
by the `-f' option is "SYS$DISK:[],AWK_LIBRARY:". The logical name
`AWKPATH' can be used to override this default. The format of `AWKPATH'
is a comma-separated list of directory speci�cations. When de�ning it, the
value should be quoted so that it retains a single translation, and not a
multi-translation RMS searchlist.

B.3.4 Building and Using gawk on VMS POSIX

Ignore the instructions above, although `vms/gawk.hlp' should still be
made available in a help library. Make sure that the configure script is
executable; use `chmod +x' on it if necessary. Then execute the following
commands:

$ POSIX

psx> CC=vms/posix-cc.sh configure

psx> CC=c89 make gawk

The �rst command will construct �les `config.h' and `Makefile' out of tem-
plates. The second command will compile and link gawk. Ignore the warning
"Could not find lib m in lib list"; it is harmless, caused by the explicit

286 AWK Language Programming

use of `-lm' as a linker option which is not needed under VMS POSIX. Un-
der V1.1 (but not V1.0) a problem with the yacc skeleton `/etc/yyparse.c'
will cause a compiler warning for `awktab.c', followed by a linker warning
about compilation warnings in the resulting object module. These warnings
can be ignored.

Once built, gawk will work like any other shell utility. Unlike the normal
VMS port of gawk, no special command line manipulation is needed in the
VMS POSIX environment.

B.4 MS-DOS and OS/2 Installation and
Compilation

If you have received a binary distribution prepared by the DOS main-
tainers, then gawk and the necessary support �les will appear under the
`gnu' directory, with executables in `gnu/bin', libraries in `gnu/lib/awk',
and manual pages under `gnu/man'. This is designed for easy installation
to a `/gnu' directory on your drive, but the �les can be installed anywhere
provided AWKPATH is set properly. Regardless of the installation directory,
the �rst line of `igawk.cmd' and `igawk.bat' (in `gnu/bin') may need to be
edited.

The binary distribution will contain a separate �le describing the con-
tents. In particular, it may include more than one version of the gawk

executable. OS/2 binary distributions may have a di�erent arrangement,
but installation is similar.

The OS/2 and MS-DOS versions of gawk search for program �les as
described in Section 14.3 [The AWKPATH Environment Variable], page 166.
However, semicolons (rather than colons) separate elements in the AWKPATH
variable. If AWKPATH is not set or is empty, then the default search path is
".;c:/lib/awk;c:/gnu/lib/awk".

An sh-like shell (as opposed to command.com under MS-DOS or cmd.exe
under OS/2) may be useful for awk programming. Ian Stewartson has writ-
ten an excellent shell for MS-DOS and OS/2, and a ksh clone and GNU
Bash are available for OS/2. The �le `README_d/README.pc' in the gawk

distribution contains information on these shells. Users of Stewartson's shell
on DOS should examine its documentation on handling of command-lines.
In particular, the setting for gawk in the shell con�guration may need to be
changed, and the ignoretype option may also be of interest.

gawk can be compiled for MS-DOS and OS/2 using the GNU development
tools from DJ Delorie (DJGPP, MS-DOS-only) or Eberhard Mattes (EMX,
MS-DOS and OS/2). Microsoft C can be used to build 16-bit versions for
MS-DOS and OS/2. The �le `README_d/README.pc' in the gawk distribution
contains additional notes, and `pc/Makefile' contains important notes on
compilation options.

Appendix B: Installing gawk 287

To build gawk, copy the �les in the `pc' directory to the directory with
the rest of the gawk sources. The `Makefile' contains a con�guration section
with comments, and may need to be edited in order to work with your make
utility.

The `Makefile' contains a number of targets for building various MS-
DOS and OS/2 versions. A list of targets will be printed if the make command
is given without a target. As an example, to build gawk using the DJGPP
tools, enter `make djgpp'.

Using make to run the standard tests and to install gawk requires addi-
tional Unix-like tools, including sh, sed, and cp. In order to run the tests,
the `test/*.ok' �les may need to be converted so that they have the usual
DOS-style end-of-line markers. Most of the tests will work properly with
Stewartson's shell along with the companion utilities or appropriate GNU
utilities. However, some editing of `test/Makefile' is required. It is recom-
mended that the �le `pc/Makefile.tst' be copied to `test/Makefile' as a
replacement. Details can be found in `README_d/README.pc'.

B.5 Installing gawk on the Atari ST

There are no substantial di�erences when installing gawk on various Atari
models. Compiled gawk executables do not require a large amount of memory
with most awk programs and should run on all Motorola processor based
models (called further ST, even if that is not exactly right).

In order to use gawk, you need to have a shell, either text or graphics,
that does not map all the characters of a command line to upper-case. Main-
taining case distinction in option
ags is very important (see Section 14.1
[Command Line Options], page 161). These days this is the default, and it
may only be a problem for some very old machines. If your system does not
preserve the case of option
ags, you will need to upgrade your tools. Sup-
port for I/O redirection is necessary to make it easy to import awk programs
from other environments. Pipes are nice to have, but not vital.

B.5.1 Compiling gawk on the Atari ST

A proper compilation of gawk sources when sizeof(int) di�ers from
sizeof(void *) requires an ANSI C compiler. An initial port was done
with gcc. You may actually prefer executables where ints are four bytes
wide, but the other variant works as well.

You may need quite a bit of memory when trying to recompile the gawk
sources, as some source �les (`regex.c' in particular) are quite big. If you
run out of memory compiling such a �le, try reducing the optimization level
for this particular �le; this may help.

288 AWK Language Programming

With a reasonable shell (Bash will do), and in particular if you run Linux,
MiNT or a similar operating system, you have a pretty good chance that the
configure utility will succeed. Otherwise sample versions of `config.h'
and `Makefile.st' are given in the `atari' subdirectory and can be edited
and copied to the corresponding �les in the main source directory. Even if
configure produced something, it might be advisable to compare its results
with the sample versions and possibly make adjustments.

Some gawk source code fragments depend on a preprocessor de�ne
`atarist'. This basically assumes the TOS environment with gcc. Modify
these sections as appropriate if they are not right for your environment. Also
see the remarks about AWKPATH and envsep in Section B.5.2 [Running gawk

on the Atari ST], page 290.

As shipped, the sample `config.h' claims that the system function is
missing from the libraries, which is not true, and an alternative implemen-
tation of this function is provided in `atari/system.c'. Depending upon
your particular combination of shell and operating system, you may wish to
change the �le to indicate that system is available.

B.5.2 Running gawk on the Atari ST

An executable version of gawk should be placed, as usual, anywhere in
your PATH where your shell can �nd it.

While executing, gawk creates a number of temporary �les. When using
gcc libraries for TOS, gawk looks for either of the environment variables
TEMP or TMPDIR, in that order. If either one is found, its value is assumed to
be a directory for temporary �les. This directory must exist, and if you can
spare the memory, it is a good idea to put it on a RAM drive. If neither TEMP
nor TMPDIR are found, then gawk uses the current directory for its temporary
�les.

The ST version of gawk searches for its program �les as described in
Section 14.3 [The AWKPATH Environment Variable], page 166. The default
value for the AWKPATH variable is taken from DEFPATH de�ned in `Makefile'.
The sample gcc/TOS `Makefile' for the ST in the distribution sets DEFPATH
to ".,c:\lib\awk,c:\gnu\lib\awk". The search path can be modi�ed by
explicitly setting AWKPATH to whatever you wish. Note that colons cannot
be used on the ST to separate elements in the AWKPATH variable, since they
have another, reserved, meaning. Instead, you must use a comma to separate
elements in the path. When recompiling, the separating character can be
modi�ed by initializing the envsep variable in `atari/gawkmisc.atr' to
another value.

Although awk allows great
exibility in doing I/O redirections from within
a program, this facility should be used with care on the ST running under
TOS. In some circumstances the OS routines for �le handle pool processing

Appendix B: Installing gawk 289

lose track of certain events, causing the computer to crash, and requiring
a reboot. Often a warm reboot is su�cient. Fortunately, this happens
infrequently, and in rather esoteric situations. In particular, avoid having
one part of an awk program using print statements explicitly redirected
to "/dev/stdout", while other print statements use the default standard
output, and a calling shell has redirected standard output to a �le.

When gawk is compiled with the ST version of gcc and its usual libraries,
it will accept both `/' and `\' as path separators. While this is convenient,
it should be remembered that this removes one, technically valid, charac-
ter (`/') from your �le names, and that it may create problems for external
programs, called via the system function, which may not support this con-
vention. Whenever it is possible that a �le created by gawk will be used
by some other program, use only backslashes. Also remember that in awk,
backslashes in strings have to be doubled in order to get literal backslashes
(see Section 4.2 [Escape Sequences], page 24).

B.6 Installing gawk on an Amiga

You can install gawk on an Amiga system using a Unix emulation envi-
ronment available via anonymous ftp from wuarchive.wustl.edu in the
directory `pub/aminet/dev/gcc'. This includes a shell based on pdksh.
The primary component of this environment is a Unix emulation library,
`ixemul.lib'.

A more complete distribution for the Amiga is available on the FreshFish
CD-ROM from:

Amiga Library Services
610 North Alma School Road, Suite 18
Chandler, AZ 85224 USA
Phone: +1-602-491-0048
FAX: +1-602-491-0048
E-mail: orders@amigalib.com

Once you have the distribution, you can con�gure gawk simply by running
configure:

configure -v m68k-cbm-amigados

Then run make, and you should be all set! (If these steps do not work,
please send in a bug report; see Section B.7 [Reporting Problems and Bugs],
page 292.)

290 AWK Language Programming

B.7 Reporting Problems and Bugs

If you have problems with gawk or think that you have found a bug,
please report it to the developers; we cannot promise to do anything but we
might well want to �x it.

Before reporting a bug, make sure you have actually found a real bug.
Carefully reread the documentation and see if it really says you can do what
you're trying to do. If it's not clear whether you should be able to do
something or not, report that too; it's a bug in the documentation!

Before reporting a bug or trying to �x it yourself, try to isolate it to
the smallest possible awk program and input data �le that reproduces the
problem. Then send us the program and data �le, some idea of what kind
of Unix system you're using, and the exact results gawk gave you. Also say
what you expected to occur; this will help us decide whether the problem
was really in the documentation.

Once you have a precise problem, there are two e-mail addresses you can
send mail to.

Internet: `bug-gnu-utils@prep.ai.mit.edu'

UUCP: `uunet!prep.ai.mit.edu!bug-gnu-utils'

Please include the version number of gawk you are using. You can get
this information with the command `gawk --version'. You should send
a carbon copy of your mail to Arnold Robbins, who can be reached at
`arnold@gnu.ai.mit.edu'.

Important! Do not try to report bugs in gawk by posting to the
Usenet/Internet newsgroup comp.lang.awk. While the gawk developers do
occasionally read this newsgroup, there is no guarantee that we will see
your posting. The steps described above are the o�cial, recognized ways for
reporting bugs.

Non-bug suggestions are always welcome as well. If you have questions
about things that are unclear in the documentation or are just obscure fea-
tures, ask Arnold Robbins; he will try to help you out, although he may not
have the time to �x the problem. You can send him electronic mail at the
Internet address above.

If you �nd bugs in one of the non-Unix ports of gawk, please send an elec-
tronic mail message to the person who maintains that port. They are listed
below, and also in the `README' �le in the gawk distribution. Information
in the README �le should be considered authoritative if it con
icts with this
book.

The people maintaining the non-Unix ports of gawk are:

MS-DOS Scott Dei�k, `scottd@amgen.com', and Darrel Hankerson,
`hankedr@mail.auburn.edu'.

Appendix B: Installing gawk 291

OS/2 Kai Uwe Rommel, `rommel@ars.de'.

VMS Pat Rankin, `rankin@eql.caltech.edu'.

Atari ST Michal Jaegermann, `michal@gortel.phys.ualberta.ca'.

Amiga Fred Fish, `fnf@amigalib.com'.

If your bug is also reproducible under Unix, please send copies of your
report to the general GNU bug list, as well as to Arnold Robbins, at the
addresses listed above.

B.8 Other Freely Available awk Implementations

There are two other freely available awk implementations. This section
brie
y describes where to get them.

Unix awk Brian Kernighan has been able to make his implementa-
tion of awk freely available. You can get it via anony-
mous ftp to the host netlib.att.com. Change directory to
`/netlib/research'. Use \binary" or \image" mode, and re-
trieve `awk.bundle.Z'.

This is a shell archive that has been compressed with
the compress utility. It can be uncompressed with either
uncompress or the GNU gunzip utility.

This version requires an ANSI C compiler; GCC (the GNU C
compiler) works quite nicely.

mawk Michael Brennan has written an independent implementation
of awk, called mawk. It is available under the GPL (see [GNU
GENERAL PUBLIC LICENSE], page 311), just as gawk is.

You can get it via anonymous ftp to the host oxy.edu. Change
directory to `/public'. Use \binary" or \image" mode, and
retrieve `mawk1.2.1.tar.gz' (or the latest version that is there).

gunzip may be used to decompress this �le. Installation is sim-
ilar to gawk's (see Section B.2 [Compiling and Installing gawk

on Unix], page 284).

292 AWK Language Programming

Appendix C: Implementation Notes 293

AppendixC ImplementationNotes

This appendix contains information mainly of interest to implementors
and maintainers of gawk. Everything in it applies speci�cally to gawk, and
not to other implementations.

C.1 Downward Compatibility and Debugging

See Section 17.5 [Extensions in gawk Not in POSIX awk], page 254, for a
summary of the GNU extensions to the awk language and program. All of
these features can be turned o� by invoking gawk with the `--traditional'
option, or with the `--posix' option.

If gawk is compiled for debugging with `-DDEBUG', then there is one more
option available on the command line:

-W parsedebug

--parsedebug

Print out the parse stack information as the program is being
parsed.

This option is intended only for serious gawk developers, and not for the
casual user. It probably has not even been compiled into your version of
gawk, since it slows down execution.

C.2 Making Additions to gawk

If you should �nd that you wish to enhance gawk in a signi�cant fashion,
you are perfectly free to do so. That is the point of having free software;
the source code is available, and you are free to change it as you wish (see
[GNU GENERAL PUBLIC LICENSE], page 311).

This section discusses the ways you might wish to change gawk, and any
considerations you should bear in mind.

C.2.1 Adding New Features

You are free to add any new features you like to gawk. However, if you
want your changes to be incorporated into the gawk distribution, there are
several steps that you need to take in order to make it possible for me to
include to your changes.

1. Get the latest version. It is much easier for me to integrate changes
if they are relative to the most recent distributed version of gawk. If
your version of gawk is very old, I may not be able to integrate them
at all. See Section B.1.1 [Getting the gawk Distribution], page 279, for
information on getting the latest version of gawk.

294 AWK Language Programming

2. Follow the GNU Coding Standards. This document describes how GNU
software should be written. If you haven't read it, please do so, prefer-
ably before starting to modify gawk. (The GNU Coding Standards are
available as part of the Autoconf distribution, from the FSF.)

3. Use the gawk coding style. The C code for gawk follows the instructions
in the GNU Coding Standards, with minor exceptions. The code is
formatted using the traditional \K&R" style, particularly as regards
the placement of braces and the use of tabs. In brief, the coding rules
for gawk are:

� Use old style (non-prototype) function headers when de�ning func-
tions.

� Put the name of the function at the beginning of its own line.

� Put the return type of the function, even if it is int, on the line
above the line with the name and arguments of the function.

� The declarations for the function arguments should not be indented.

� Put spaces around parentheses used in control structures (if,
while, for, do, switch and return).

� Do not put spaces in front of parentheses used in function calls.

� Put spaces around all C operators, and after commas in function
calls.

� Do not use the comma operator to produce multiple side-e�ects,
except in for loop initialization and increment parts, and in macro
bodies.

� Use real tabs for indenting, not spaces.

� Use the \K&R" brace layout style.

� Use comparisons against NULL and '\0' in the conditions of if,
while and for statements, and in the cases of switch statements,
instead of just the plain pointer or character value.

� Use the TRUE, FALSE, and NULL symbolic constants, and the char-
acter constant '\0' where appropriate, instead of 1 and 0.

� Provide one-line descriptive comments for each function.

� Do not use `#elif'. Many older Unix C compilers cannot handle
it.

If I have to reformat your code to follow the coding style used in gawk,
I may not bother.

4. Be prepared to sign the appropriate paperwork. In order for the FSF to
distribute your changes, you must either place those changes in the pub-
lic domain, and submit a signed statement to that e�ect, or assign the
copyright in your changes to the FSF. Both of these actions are easy to
do, and many people have done so already. If you have questions, please

Appendix C: Implementation Notes 295

contact me (see Section B.7 [Reporting Problems and Bugs], page 292),
or gnu@prep.ai.mit.edu.

5. Update the documentation. Along with your new code, please supply
new sections and or chapters for this book. If at all possible, please
use real Texinfo, instead of just supplying unformatted ASCII text (al-
though even that is better than no documentation at all). Conventions
to be followed in AWK Language Programming are provided after the
`@bye' at the end of the Texinfo source �le. If possible, please update
the man page as well.

You will also have to sign paperwork for your documentation changes.

6. Submit changes as context di�s or uni�ed di�s. Use `diff -c -r -N'
or `diff -u -r -N' to compare the original gawk source tree with your
version. (I �nd context di�s to be more readable, but uni�ed di�s are
more compact.) I recommend using the GNU version of diff. Send
the output produced by either run of diff to me when you submit your
changes. See Section B.7 [Reporting Problems and Bugs], page 292, for
the electronic mail information.

Using this format makes it easy for me to apply your changes to the
master version of the gawk source code (using patch). If I have to apply
the changes manually, using a text editor, I may not do so, particularly
if there are lots of changes.

Although this sounds like a lot of work, please remember that while you
may write the new code, I have to maintain it and support it, and if it isn't
possible for me to do that with a minimum of extra work, then I probably
will not.

C.2.2 Porting gawk to a New Operating System

If you wish to port gawk to a new operating system, there are several
steps to follow.

1. Follow the guidelines in Section C.2.1 [Adding New Features], page 295,
concerning coding style, submission of di�s, and so on.

2. When doing a port, bear in mind that your code must co-exist peacefully
with the rest of gawk, and the other ports. Avoid gratuitous changes
to the system-independent parts of the code. If at all possible, avoid
sprinkling `#ifdef's just for your port throughout the code.

If the changes needed for a particular system a�ect too much of the code,
I probably will not accept them. In such a case, you will, of course, be
able to distribute your changes on your own, as long as you comply with
the GPL (see [GNU GENERAL PUBLIC LICENSE], page 311).

3. A number of the �les that come with gawk are maintained by other peo-
ple at the Free Software Foundation. Thus, you should not change them

296 AWK Language Programming

unless it is for a very good reason. I.e. changes are not out of the ques-
tion, but changes to these �les will be scrutinized extra carefully. The
�les are `alloca.c', `getopt.h', `getopt.c', `getopt1.c', `regex.h',
`regex.c', `dfa.h', `dfa.c', `install-sh', and `mkinstalldirs'.

4. Be willing to continue to maintain the port. Non-Unix operating sys-
tems are supported by volunteers who maintain the code needed to
compile and run gawk on their systems. If no-one volunteers to main-
tain a port, that port becomes unsupported, and it may be necessary
to remove it from the distribution.

5. Supply an appropriate `gawkmisc.???' �le. Each port has its own
`gawkmisc.???' that implements certain operating system speci�c func-
tions. This is cleaner than a plethora of `#ifdef's scattered throughout
the code. The `gawkmisc.c' in the main source directory includes the
appropriate `gawkmisc.???' �le from each subdirectory. Be sure to up-
date it as well.

Each port's `gawkmisc.???' �le has a su�x reminiscent of the machine
or operating system for the port. For example, `pc/gawkmisc.pc' and
`vms/gawkmisc.vms'. The use of separate su�xes, instead of plain
`gawkmisc.c', makes it possible to move �les from a port's subdirec-
tory into the main subdirectory, without accidentally destroying the
real `gawkmisc.c' �le. (Currently, this is only an issue for the MS-DOS
and OS/2 ports.)

6. Supply a `Makefile' and any other C source and header �les that are
necessary for your operating system. All your code should be in a
separate subdirectory, with a name that is the same as, or reminiscent
of, either your operating system or the computer system. If possible,
try to structure things so that it is not necessary to move �les out of the
subdirectory into the main source directory. If that is not possible, then
be sure to avoid using names for your �les that duplicate the names of
�les in the main source directory.

7. Update the documentation. Please write a section (or sections) for this
book describing the installation and compilation steps needed to install
and/or compile gawk for your system.

8. Be prepared to sign the appropriate paperwork. In order for the FSF
to distribute your code, you must either place your code in the public
domain, and submit a signed statement to that e�ect, or assign the
copyright in your code to the FSF.

Following these steps will make it much easier to integrate your changes
into gawk, and have them co-exist happily with the code for other operating
systems that is already there.

In the code that you supply, and that you maintain, feel free to use a
coding style and brace layout that suits your taste.

Appendix C: Implementation Notes 297

C.3 Probable Future Extensions

AWK is a language similar to PERL, only considerably more elegant.
Arnold Robbins

Hey!
Larry Wall

This section brie
y lists extensions and possible improvements that indi-
cate the directions we are currently considering for gawk. The �le `FUTURES'
in the gawk distributions lists these extensions as well.

This is a list of probable future changes that will be usable by the awk

language programmer.

Localization
The GNU project is starting to support multiple languages. It
will at least be possible to make gawk print its warnings and error
messages in languages other than English. It may be possible
for awk programs to also use the multiple language facilities,
separate from gawk itself.

Databases It may be possible to map a GDBM/NDBM/SDBM �le into an
awk array.

A PROCINFO Array
The special �les that provide process-related information (see
Section 6.7 [Special File Names in gawk], page 72) may be su-
perseded by a PROCINFO array that would provide the same in-
formation, in an easier to access fashion.

More lint warnings
There are more things that could be checked for portability.

Control of subprocess environment
Changes made in gawk to the array ENVIRON may be propagated
to subprocesses run by gawk.

This is a list of probable improvements that will make gawk perform
better.

An Improved Version of dfa
The dfa pattern matcher from GNU grep has some problems.
Either a new version or a �xed one will deal with some important
regexp matching issues.

Use of mmap
On systems that support the mmap system call, its use would
provide much faster �le input, and considerably simpli�ed input
bu�er management.

298 AWK Language Programming

Use of GNU malloc

The GNU version of malloc could potentially speed up gawk,
since it relies heavily on the use of dynamic memory allocation.

Use of the rx regexp library
The rx regular expression library could potentially speed up
all regexp operations that require knowing the exact location
of matches. This includes record termination, �eld and array
splitting, and the sub, gsub, gensub and match functions.

C.4 Suggestions for Improvements

Here are some projects that would-be gawk hackers might like to take on.
They vary in size from a few days to a few weeks of programming, depending
on which one you choose and how fast a programmer you are. Please send
any improvements you write to the maintainers at the GNU project. See
Section C.2.1 [Adding New Features], page 295, for guidelines to follow when
adding new features to gawk. See Section B.7 [Reporting Problems and
Bugs], page 292, for information on contacting the maintainers.

1. Compilation of awk programs: gawk uses a Bison (YACC-like) parser
to convert the script given it into a syntax tree; the syntax tree is then
executed by a simple recursive evaluator. This method incurs a lot of
overhead, since the recursive evaluator performs many procedure calls
to do even the simplest things.

It should be possible for gawk to convert the script's parse tree into
a C program which the user would then compile, using the normal C
compiler and a special gawk library to provide all the needed functions
(regexps, �elds, associative arrays, type coercion, and so on).

An easier possibility might be for an intermediate phase of awk to con-
vert the parse tree into a linear byte code form like the one used in
GNU Emacs Lisp. The recursive evaluator would then be replaced by a
straight line byte code interpreter that would be intermediate in speed
between running a compiled program and doing what gawk does now.

2. The programs in the test suite could use documenting in this book.

3. See the `FUTURES' �le for more ideas. Contact us if you would seriously
like to tackle any of the items listed there.

Appendix D: Glossary 299

AppendixD Glossary

Action A series of awk statements attached to a rule. If the rule's pat-
tern matches an input record, awk executes the rule's action.
Actions are always enclosed in curly braces. See Section 8.2
[Overview of Actions], page 102.

Amazing awk Assembler
Henry Spencer at the University of Toronto wrote a retargetable
assembler completely as awk scripts. It is thousands of lines
long, including machine descriptions for several eight-bit micro-
computers. It is a good example of a program that would have
been better written in another language.

Amazingly Workable Formatter (awf)
Henry Spencer at the University of Toronto wrote a formatter
that accepts a large subset of the `nroff -ms' and `nroff -man'
formatting commands, using awk and sh.

ANSI The American National Standards Institute. This organization
produces many standards, among them the standards for the C
and C++ programming languages.

Assignment
An awk expression that changes the value of some awk variable
or data object. An object that you can assign to is called an
lvalue. The assigned values are called rvalues. See Section 7.7
[Assignment Expressions], page 84.

awk Language
The language in which awk programs are written.

awk Program
An awk program consists of a series of patterns and actions,
collectively known as rules. For each input record given to the
program, the program's rules are all processed in turn. awk

programs may also contain function de�nitions.

awk Script Another name for an awk program.

Bash The GNU version of the standard shell (the Bourne-Again shell).
See \Bourne Shell."

BBS See \Bulletin Board System."

Boolean Expression
Named after the English mathematician Boole. See \Logical
Expression."

300 AWK Language Programming

Bourne Shell
The standard shell (`/bin/sh') on Unix and Unix-like systems,
originally written by Steven R. Bourne. Many shells (Bash, ksh,
pdksh, zsh) are generally upwardly compatible with the Bourne
shell.

Built-in Function
The awk language provides built-in functions that perform var-
ious numerical, time stamp related, and string computations.
Examples are sqrt (for the square root of a number) and substr
(for a substring of a string). See Chapter 12 [Built-in Functions],
page 135.

Built-in Variable
ARGC, ARGIND, ARGV, CONVFMT, ENVIRON, ERRNO, FIELDWIDTHS,
FILENAME, FNR, FS, IGNORECASE, NF, NR, OFMT, OFS, ORS,
RLENGTH, RSTART, RS, RT, and SUBSEP, are the variables that
have special meaning to awk. Changing some of them a�ects
awk's running environment. Several of these variables are spe-
ci�c to gawk. See Chapter 10 [Built-in Variables], page 115.

Braces See \Curly Braces."

Bulletin Board System
A computer system allowing users to log in and read and/or
leave messages for other users of the system, much like leaving
paper notes on a bulletin board.

C The system programming language that most GNU software is
written in. The awk programming language has C-like syntax,
and this book points out similarities between awk and C when
appropriate.

Character Set
The set of numeric codes used by a computer system to repre-
sent the characters (letters, numbers, punctuation, etc.) of a
particular country or place. The most common character set
in use today is ASCII (American Standard Code for Informa-
tion Interchange). Many European countries use an extension
of ASCII known as ISO-8859-1 (ISO Latin-1).

CHEM A preprocessor for pic that reads descriptions of molecules and
produces pic input for drawing them. It was written in awk

by Brian Kernighan and Jon Bentley, and is available from
netlib@research.att.com.

Compound Statement
A series of awk statements, enclosed in curly braces. Compound
statements may be nested. See Chapter 9 [Control Statements
in Actions], page 105.

Appendix D: Glossary 301

Concatenation
Concatenating two strings means sticking them together, one
after another, giving a new string. For example, the string `foo'
concatenated with the string `bar' gives the string `foobar'. See
Section 7.6 [String Concatenation], page 83.

Conditional Expression
An expression using the `?:' ternary operator, such as `expr1 ?

expr2 : expr3 '. The expression expr1 is evaluated; if the result
is true, the value of the whole expression is the value of expr2,
otherwise the value is expr3. In either case, only one of expr2
and expr3 is evaluated. See Section 7.12 [Conditional Expres-
sions], page 93.

Comparison Expression
A relation that is either true or false, such as `(a < b)'. Com-
parison expressions are used in if, while, do, and for state-
ments, and in patterns to select which input records to process.
See Section 7.10 [Variable Typing and Comparison Expressions],
page 88.

Curly Braces
The characters `{' and `}'. Curly braces are used in awk for
delimiting actions, compound statements, and function bodies.

Dark Corner
An area in the language where speci�cations often were (or still
are) not clear, leading to unexpected or undesirable behavior.
Such areas are marked in this book with \(d.c.)" in the text,
and are indexed under the heading \dark corner."

Data Objects
These are numbers and strings of characters. Numbers are con-
verted into strings and vice versa, as needed. See Section 7.4
[Conversion of Strings and Numbers], page 81.

Double Precision
An internal representation of numbers that can have fractional
parts. Double precision numbers keep track of more digits than
do single precision numbers, but operations on them are more
expensive. This is the way awk stores numeric values. It is the
C type double.

Dynamic Regular Expression
A dynamic regular expression is a regular expression written as
an ordinary expression. It could be a string constant, such as
"foo", but it may also be an expression whose value can vary.
See Section 4.7 [Using Dynamic Regexps], page 35.

302 AWK Language Programming

Environment
A collection of strings, of the form name=val, that each program
has available to it. Users generally place values into the envi-
ronment in order to provide information to various programs.
Typical examples are the environment variables HOME and PATH.

Empty String
See \Null String."

Escape Sequences
A special sequence of characters used for describing non-printing
characters, such as `\n' for newline, or `\033' for the ASCII ESC
(escape) character. See Section 4.2 [Escape Sequences], page 24.

Field When awk reads an input record, it splits the record into pieces
separated by whitespace (or by a separator regexp which you
can change by setting the built-in variable FS). Such pieces
are called �elds. If the pieces are of �xed length, you can use
the built-in variable FIELDWIDTHS to describe their lengths. See
Section 5.5 [Specifying How Fields are Separated], page 44, and
also see See Section 5.6 [Reading Fixed-width Data], page 49.

Floating Point Number
Often referred to in mathematical terms as a \rational" number,
this is just a number that can have a fractional part. See \Double
Precision" and \Single Precision."

Format Format strings are used to control the appearance of output in
the printf statement. Also, data conversions from numbers to
strings are controlled by the format string contained in the built-
in variable CONVFMT. See Section 6.5.2 [Format-Control Letters],
page 65.

Function A specialized group of statements used to encapsulate general or
program-speci�c tasks. awk has a number of built-in functions,
and also allows you to de�ne your own. See Chapter 12 [Built-in
Functions], page 135, and Chapter 13 [User-de�ned Functions],
page 153.

FSF See \Free Software Foundation."

Free Software Foundation
A non-pro�t organization dedicated to the production and dis-
tribution of freely distributable software. It was founded by
Richard M. Stallman, the author of the original Emacs editor.
GNU Emacs is the most widely used version of Emacs today.

gawk The GNU implementation of awk.

Appendix D: Glossary 303

General Public License
This document describes the terms under which gawk and its
source code may be distributed. (see [GNU GENERAL PUB-
LIC LICENSE], page 311)

GNU \GNU's not Unix". An on-going project of the Free Software
Foundation to create a complete, freely distributable, POSIX-
compliant computing environment.

GPL See \General Public License."

Hexadecimal
Base 16 notation, where the digits are 0-9 and A-F, with `A'
representing 10, `B' representing 11, and so on up to `F' for 15.
Hexadecimal numbers are written in C using a leading `0x', to
indicate their base. Thus, 0x12 is 18 (one times 16 plus 2).

I/O Abbreviation for \Input/Output," the act of moving data into
and/or out of a running program.

Input Record
A single chunk of data read in by awk. Usually, an awk input
record consists of one line of text. See Section 5.1 [How Input is
Split into Records], page 37.

Integer A whole number, i.e. a number that does not have a fractional
part.

Keyword In the awk language, a keyword is a word that has special mean-
ing. Keywords are reserved and may not be used as variable
names.

gawk's keywords are: BEGIN, END, if, else, while, do: : :while,
for, for: : :in, break, continue, delete, next, nextfile,
function, func, and exit.

Logical Expression
An expression using the operators for logic, AND, OR, and
NOT, written `&&', `||', and `!' in awk. Often called Boolean
expressions, after the mathematician who pioneered this kind of
mathematical logic.

Lvalue An expression that can appear on the left side of an assignment
operator. In most languages, lvalues can be variables or array
elements. In awk, a �eld designator can also be used as an lvalue.

Null String
A string with no characters in it. It is represented explicitly
in awk programs by placing two double-quote characters next
to each other (""). It can appear in input data by having two
successive occurrences of the �eld separator appear next to each
other.

304 AWK Language Programming

Number A numeric valued data object. The gawk implementation uses
double precision
oating point to represent numbers. Very old
awk implementations use single precision
oating point.

Octal Base-eight notation, where the digits are 0-7. Octal numbers are
written in C using a leading `0', to indicate their base. Thus,
013 is 11 (one times 8 plus 3).

Pattern Patterns tell awk which input records are interesting to which
rules.

A pattern is an arbitrary conditional expression against which
input is tested. If the condition is satis�ed, the pattern is said
to match the input record. A typical pattern might compare
the input record against a regular expression. See Section 8.1
[Pattern Elements], page 97.

POSIX The name for a series of standards being developed by the IEEE
that specify a Portable Operating System interface. The \IX"
denotes the Unix heritage of these standards. The main stan-
dard of interest for awk users is IEEE Standard for Information
Technology, Standard 1003.2-1992, Portable Operating System
Interface (POSIX) Part 2: Shell and Utilities. Informally, this
standard is often referred to as simply \P1003.2."

Private Variables and/or functions that are meant for use exclusively by
library functions, and not for the main awk program. Special
care must be taken when naming such variables and functions.
See Section 15.12 [Naming Library Function Global Variables],
page 201.

Range (of input lines)
A sequence of consecutive lines from the input �le. A pattern
can specify ranges of input lines for awk to process, or it can
specify single lines. See Section 8.1 [Pattern Elements], page 97.

Recursion When a function calls itself, either directly or indirectly. If this
isn't clear, refer to the entry for \recursion."

Redirection
Redirection means performing input from other than the stan-
dard input stream, or output to other than the standard output
stream.

You can redirect the output of the print and printf statements
to a �le or a system command, using the `>', `>>', and `|' op-
erators. You can redirect input to the getline statement using
the `<' and `|' operators. See Section 6.6 [Redirecting Output
of print and printf], page 70, and Section 5.8 [Explicit Input
with getline], page 54.

Appendix D: Glossary 305

Regexp Short for regular expression. A regexp is a pattern that denotes
a set of strings, possibly an in�nite set. For example, the regexp
`R.*xp' matches any string starting with the letter `R' and ending
with the letters `xp'. In awk, regexps are used in patterns and in
conditional expressions. Regexps may contain escape sequences.
See Chapter 4 [Regular Expressions], page 23.

Regular Expression
See \regexp."

Regular Expression Constant
A regular expression constant is a regular expression written
within slashes, such as /foo/. This regular expression is chosen
when you write the awk program, and cannot be changed doing
its execution. See Section 4.1 [How to Use Regular Expressions],
page 23.

Rule A segment of an awk program that speci�es how to process single
input records. A rule consists of a pattern and an action. awk

reads an input record; then, for each rule, if the input record
satis�es the rule's pattern, awk executes the rule's action. Oth-
erwise, the rule does nothing for that input record.

Rvalue A value that can appear on the right side of an assignment op-
erator. In awk, essentially every expression has a value. These
values are rvalues.

sed See \Stream Editor."

Short-Circuit
The nature of the awk logical operators `&&' and `||'. If the value
of the entire expression can be deduced from evaluating just the
left-hand side of these operators, the right-hand side will not be
evaluated (see Section 7.11 [Boolean Expressions], page 91).

Side E�ect
A side e�ect occurs when an expression has an e�ect aside from
merely producing a value. Assignment expressions, increment
and decrement expressions and function calls have side e�ects.
See Section 7.7 [Assignment Expressions], page 84.

Single Precision
An internal representation of numbers that can have fractional
parts. Single precision numbers keep track of fewer digits than
do double precision numbers, but operations on them are less
expensive in terms of CPU time. This is the type used by some
very old versions of awk to store numeric values. It is the C type
float.

306 AWK Language Programming

Space The character generated by hitting the space bar on the key-
board.

Special File
A �le name interpreted internally by gawk, instead of being
handed directly to the underlying operating system. For ex-
ample, `/dev/stderr'. See Section 6.7 [Special File Names in
gawk], page 72.

Stream Editor
A program that reads records from an input stream and pro-
cesses them one or more at a time. This is in contrast with batch
programs, which may expect to read their input �les in entirety
before starting to do anything, and with interactive programs,
which require input from the user.

String A datum consisting of a sequence of characters, such as `I am a

string'. Constant strings are written with double-quotes in the
awk language, and may contain escape sequences. See Section 4.2
[Escape Sequences], page 24.

Tab The character generated by hitting the TAB key on the keyboard.
It usually expands to up to eight spaces upon output.

Unix A computer operating system originally developed in the early
1970's at AT&T Bell Laboratories. It initially became popular in
universities around the world, and later moved into commercial
evnironments as a software development system and network
server system. There are many commercial versions of Unix, as
well as several work-alike systems whose source code is freely
available (such as Linux, NetBSD, and FreeBSD).

Whitespace
A sequence of space or tab characters occurring inside an input
record or a string.

GNU GENERAL PUBLIC LICENSE 307

GNUGENERALPUBLIC LICENSE

Version 2, June 1991

Copyright c
 1989, 1991 Free Software Foundation, Inc.
59 Temple Place | Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software|to
make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation's software and to any other
program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) o�er you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free software.
If the software is modi�ed by someone else and passed on, we want its recip-
ients to know that what they have is not the original, so that any problems
introduced by others will not re
ect on the original authors' reputations.

308 AWK Language Programming

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will in-
dividually obtain patent licenses, in e�ect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�ca-
tion follow.

TERMS ANDCONDITIONSFOR COPYING,
DISTRIBUTIONANDMODIFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed un-
der the terms of this General Public License. The \Program", below,
refers to any such program or work, and a \work based on the Pro-
gram" means either the Program or any derivative work under copy-
right law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modi�cations and/or translated into another
language. (Hereinafter, translation is included without limitation in the
term \modi�cation".) Each licensee is addressed as \you".

Activities other than copying, distribution and modi�cation are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute
such modi�cations or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating
that you changed the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any

GNU GENERAL PUBLIC LICENSE 309

part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively
when run, you must cause it, when started running for such in-
teractive use in the most ordinary way, to print or display an an-
nouncement including an appropriate copyright notice and a notice
that there is no warranty (or else, saying that you provide a war-
ranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume
of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sec-
tions 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to
give any third party, for a charge no more than your cost of physi-
cally performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

310 AWK Language Programming

c. Accompany it with the information you received as to the o�er to
distribute corresponding source code. (This alternative is allowed
only for non-commercial distribution and only if you received the
program in object code or executable form with such an o�er, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modi�cations to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface de�nition �les, plus the scripts used to control com-
pilation and installation of the executable. However, as a special ex-
ception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by o�ering access
to copy from a designated place, then o�ering equivalent access to copy
the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense or distribute the Program is void, and will au-
tomatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients' exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise)

GNU GENERAL PUBLIC LICENSE 311

that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to sat-
isfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consis-
tent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may di�er in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
speci�es a version number of this License which applies to it and \any
later version", you have the option of following the terms and condi-
tions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are di�erent, write to the author to ask

312 AWK Language Programming

for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NOWARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM \AS IS"
WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

ENDOF TERMS ANDCONDITIONS

GNU GENERAL PUBLIC LICENSE 313

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source �le to most e�ectively convey the
exclusion of warranty; and each �le should have at least the \copyright" line
and a pointer to where the full notice is found.

one line to give the program's name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place --- Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type `show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c'

for details.

The hypothetical commands `show w' and `show c' should show the ap-
propriate parts of the General Public License. Of course, the commands you
use may be called something other than `show w' and `show c'; they could
even be mouse-clicks or menu items|whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a \copyright disclaimer" for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program `Gnomovision'

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

314 AWK Language Programming

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

Index
�

315

Index

!
! operator . 91

!= operator . 89

!~ operator 23, 33, 35, 77, 89

#
(comment) . 13

#! (executable scripts) 12

$
$ (�eld operator) . 40

&
&& operator . 91

-
--assign option . 161

--compat option . 162

--copyleft option 162

--copyright option 162

--field-separator option 161

--file option . 161

--help option . 163

--lint option . 163

--lint-old option 163

--posix option . 163

--source option . 164

--traditional option. 162

--usage option . 163

--version option . 164

-f option . 12, 161

-F option . 47, 161

-v option . 161

-W option . 162

/
`/dev/fd' . 72

`/dev/pgrpid' .. 73

`/dev/pid' .. 73

`/dev/ppid' .. 73

`/dev/stderr' .. 72

`/dev/stdin' . 72

`/dev/stdout' .. 72

`/dev/user' . 73, 191

=
== operator . 89

gr init . 198

pw init . 193

tm addup . 178

tm isleap . 178

|
|| operator . 91

~
~ operator 23, 33, 35, 77, 89

>
> operator . 89

>= operator . 89

\
\' regexp operator . 32

\` regexp operator . 32

\> regexp operator . 32

\< regexp operator . 32

\B regexp operator . 32

\w regexp operator . 32

\W regexp operator . 32

\y regexp operator . 32

<
< operator . 89

<= operator . 89

A
accessing �elds . 40

account information 191, 196

acronym . 1

316 AWK Language Programming
�

action, curly braces 102

action, default . 14

action, de�nition of 102

action, empty . 14

action, separating statements 102

adding new features 295

addition . 82

Aho, Alfred . 1

alarm.awk .. 227

amiga . 291

anchors in regexps . 27

and operator . 91

anonymous ftp. 279, 293

applications of awk . 18

ARGC . 117

ARGIND .. 117, 165

argument processing 185

arguments in function call 93

arguments, command line 161

ARGV . 117, 165

arithmetic operators. 82

array assignment . 125

array reference . 124

array subscripts, uninitialized variables

. 130

arrays . 123

arrays, associative . 123

arrays, de�nition of 123

arrays, deleting an element 128

arrays, deleting entire contents 128

arrays, multi-dimensional subscripts . . 130

arrays, presence of elements 125

arrays, sparse . 124

arrays, special for statement 127

arrays, the in operator 125

ASCII . 174

assert .. 172

assert, C version . 172

assertions . 172

assignment operators 84

assignment to �elds 42

associative arrays . 123

atan2 . 136

atari . 289

automatic initialization 16

awk language, POSIX version . . 25, 27, 28,

31, 48, 64, 68, 82, 83, 86, 95, 96, 109,

110, 111, 115, 138, 144, 154

awk language, V.4 version 25, 252

AWKPATH environment variable 166

awksed .. 240

B
backslash continuation 17, 173

backslash continuation in csh 15, 17

basic function of awk 9

`BBS-list' �le . 7

BEGIN special pattern 100

beginfile .. 185

body of a loop . 106

book, using this . 5

boolean expressions 91

boolean operators . 91

break statement . 109

break, outside of loops 109

Brennan, Michael 128, 240, 293

bu�er matching operators 32

bu�ering output 145, 147

bu�ers,
ushing 145, 147

bugs, known in gawk 167

built-in functions. 135

built-in variables . 115

built-in variables, convey information

. 117

built-in variables, user modi�able 115

C
call by reference 156, 157

call by value . 156

calling a function 93, 156

case conversion. 142

case sensitivity . 33

changing contents of a �eld 42

changing the record separator 37

character classes . 28

character encodings 174

character list . 27

character list, complemented 29

character sets . 174

chr . 173

close . 74, 145

closing input �les and pipes 74

closing output �les and pipes 74

coding style used in gawk 296

collating elements . 29

collating symbols . 29

Index
�

317

command line . 161

command line formats 10

command line, setting FS on 47

comments . 13

common mistakes 35, 44, 62, 90

comp.lang.awk.. 292

comparison expressions 88

comparisons, string vs. regexp 90

compatibility mode 162, 254

complemented character list 29

compound statement 105

computed regular expressions 35

concatenation . 83

conditional expression 93

con�guring gawk . 284

constants, types of . 77

continuation of lines 17

continue statement 110

continue, outside of loops. 110

control statement . 105

conversion of case . 142

conversion of strings and numbers 81

conversions, during subscripting 129

converting dates to timestamps 176

CONVFMT .. 81, 115, 129

cos . 136

csh, backslash continuation 15, 17

curly braces . 102

custom.h con�guration �le 285

cut utility . 203

cut.awk . 204

D
d.c., see \dark corner" 6

dark corner . . 6, 26, 39, 47, 48, 51, 55, 64,

66, 67, 78, 81, 82, 88, 101, 109, 110,

113, 118, 119, 130, 139, 161, 165

data-driven languages 9

dates, converting to timestamps 176

decrement operators 87

default action . 14

default pattern . 14

de�ning functions . 153

Dei�k, Scott . 4, 292

delete statement . 128

deleting elements of arrays 128

deleting entire arrays 128

deprecated features 167

deprecated options 167

di�erences between gawk and awk . . 33, 39,

40, 46, 54, 59, 72, 75, 77, 78, 83, 93,

102, 112, 128, 135, 139, 142, 166

directory search . 166

division . 82

documenting awk programs 13, 201

dupword.awk .. 226

dynamic regular expressions 35

E
EBCDIC . 174

egrep . 11, 28

egrep utility . 208

egrep.awk .. 209

element assignment 125

element of array . 124

empty action . 14

empty pattern . 102

empty program . 161

empty string 39, 46, 81, 88

END special pattern 100

endfile . 185

endgrent . 200

endpwent . 195

ENVIRON . 118

environment variable, AWKPATH 166

environment variable, POSIXLY CORRECT

. 164

equivalence classes . 29

ERRNO. 54, 75, 118

errors, common 35, 44, 62, 90

escape processing, sub et. al. 143

escape sequence notation 24

evaluation, order of 135

examining �elds . 40

executable scripts . 12

exit statement . 112

exp . 136

explicit input . 54

exponentiation . 82

expression. 77

expression, assignment 84

expression, boolean. 91

expression, comparison 88

expression, conditional 93

expression, matching 88

extract.awk .. 237

318 AWK Language Programming
�

F
features, adding . 295

fflush .. 145

�eld operator $. 40

�eld separator, choice of 45

�eld separator, FS . 44

�eld separator, on command line 47

�eld, changing contents of 42

�elds . 40

�elds, separating . 44

FIELDWIDTHS .. 115

�le descriptors . 72

�le, awk program . 12

FILENAME .. 37, 118

Fish, Fred . 292

ushing bu�ers 145, 147

FNR . 40, 118

for (x in : : :) . 127

for statement . 107

format speci�er . 65

format string . 65

format, numeric output 64

formatted output. 64

formatted timestamps 182

Free Software Foundation 1, 279

FreeBSD . 2

Friedl, Je�rey . 4

FS . 44, 115

ftp, anonymous 279, 293

function call . 93, 156

function de�nition 153

function, recursive 154

functions, unde�ned 157

functions, user-de�ned 153

G
gawk coding style . 296

gensub .. 141

getgrent . 200

getgrent, C version 196

getgrgid . 200

getgrnam . 200

getgruser .. 200

getline .. 54

getline, return values 54

getopt .. 188

getopt, C version . 185

getpwent . 195

getpwent, C version 191

getpwnam . 194

getpwuid . 195

gettimeofday .. 182

getting gawk . 279

GNU Project . 2

grcat program . 196

grcat.c . 196

group �le . 196

group information . 196

gsub . 141

H
Hankerson, Darrel 4, 292

historical features . . 47, 109, 110, 138, 277

history of awk . 1

histsort.awk .. 236

how awk works . 14

Hughes, Phil . 4

I
I/O from BEGIN and END 102

id utility . 212

id.awk .. 213

if-else statement 105

igawk.sh . 244

IGNORECASE . 33, 116

ignoring case . 33

implementation limits 59, 72

in operator . 89

increment operators 87

index . 137

initialization, automatic 16

input . 37

input �le, sample . 7

input �les, skipping 170

input pipeline . 57

input redirection . 56

input, explicit . 54

input, getline command 54

input, multiple line records 51

input, standard . 11

installation, amiga 291

installation, atari . 289

installation, MS-DOS and OS/2 288

installation, unix . 284

installation, vms . 285

Index
�

319

int . 136

interaction, awk and other programs . . 146

interval expressions. 31

`inventory-shipped' �le 7

invocation of gawk 161

ISO 8601 . 150

ISO 8859-1 . 34, 304

ISO Latin-1 . 34, 304

J
Jaegermann, Michal 4, 292

join . 176

K
Kernighan, Brian 1, 4, 253, 293

known bugs . 167

L
labels.awk .. 232

language, awk . 5

language, data-driven 9

language, procedural 9

leftmost longest match 34, 51

length .. 138

limitations . 59, 72

line break . 16

line continuation 17, 63, 92, 93

Linux . 2, 290

locale, de�nition of 149

log . 136

logical false . 88

logical operations . 91

logical true . 88

login information. 191

long options . 161

loop . 106

loops, exiting . 109

lvalue . 84

M
mark parity . 174

match . 138

matching ranges of lines 99

matching, leftmost longest 34, 51

mawk . 293

merging strings . 175

metacharacters . 26

mistakes, common 35, 44, 62, 90

mktime .. 179

modi�ers (in format speci�ers) 66

multi-dimensional subscripts 130

multiple line records. 51

multiple passes over data 166

multiple statements on one line 18

multiplication . 82

N
names, use of . 153

namespace issues in awk 201

namespaces . 153

NetBSD . 2

new awk . 1

new awk vs. old awk . 9

newline . 16

next file statement 112

next statement . 111

nextfile function 170

nextfile statement 112

NF . 40, 118

not operator . 91

NR . 40, 119

null string . 46, 81, 88

null string, as array subscript 130

number of �elds, NF 40

number of records, NR, FNR 40

numbers, used as subscripts 129

numeric character values 173

numeric constant . 77

numeric output format 64

numeric string . 88

numeric value . 77

O
obsolete features . 167

obsolete options . 167

OFMT . 64, 82, 116

OFS . 63, 116

old awk. 1

old awk vs. new awk . 9

one-liners . 21

operations, logical . 91

operator precedence 95

operators, arithmetic 82

operators, assignment 84

320 AWK Language Programming
�

operators, boolean . 91

operators, decrement 87

operators, increment 87

operators, regexp matching 23

operators, relational 88, 89

operators, short-circuit 91

operators, string . 83

operators, string-matching 23

options, command line 161

options, long . 161

or operator. 91

ord . 173

order of evaluation 135

ORS . 63, 116

output . 61

output �eld separator, OFS 63

output format speci�er, OFMT 64

output record separator, ORS 63

output redirection . 70

output, bu�ering 145, 147

output, formatted . 64

output, piping . 71

P
passes, multiple . 166

password �le . 191

path, search. 166

pattern, BEGIN . 100

pattern, default . 14

pattern, de�nition of 97

pattern, empty . 102

pattern, END . 100

pattern, range . 99

pattern, regular expressions 23

patterns, types of . 97

per �le initialization and clean-up 184

PERL . 300

pipeline, input . 57

pipes for output . 71

portability issues. 17, 26, 75, 128, 138,

145, 154, 169

porting gawk . 297

POSIX awk 25, 27, 28, 31, 48, 64, 68,

82, 83, 86, 95, 96, 109, 110, 111, 115,

138, 144, 154

POSIX mode . 163

POSIXLY CORRECT environment variable

. 164

precedence . 95

precedence, regexp operators 31

print statement . 61

printf statement, syntax of 65

printf, format-control characters. 65

printf, modi�ers . 66

printing . 61

procedural languages 9

process information 73

processing arguments 185

program �le . 12

program, awk . 5

program, de�nition of 9

program, self contained 12

programs, documenting 13, 201

pwcat program . 192

pwcat.c . 192

Q
quotient . 82

quoting, shell . 11, 12

R
Rakitzis, Byron . 236

rand . 136

random numbers, seed of 137

range pattern . 99

Rankin, Pat 4, 86, 292

reading �les . 37

reading �les, getline command 54

reading �les, multiple line records 51

record separator, RS 37

record terminator, RT. 39

record, de�nition of 37

records, multiple line 51

recursive function . 154

redirection of input. 56

redirection of output 70

reference to array . 124

regexp . 23

regexp as expression 91

regexp comparison vs. string comparison

. 90

regexp constant . 24

regexp constants, di�erence between

slashes and quotes 35

Index
�

321

regexp match/non-match operators . . . 23,

88

regexp matching operators 23

regexp operators . 26

regexp operators, GNU speci�c 31

regexp operators, precedence of 31

regexp, anchors . 27

regexp, dynamic . 35

regexp, e�ect of command line options

. 32

regular expression . 23

regular expression metacharacters 26

regular expressions as �eld separators . . 45

regular expressions as patterns 23

regular expressions as record separators

. 39

regular expressions, computed 35

relational operators 88, 89

remainder . 82

removing elements of arrays 128

return statement . 158

RFC-1036 . 151

RFC-822 . 151

RLENGTH .. 119, 138

Robbins, Miriam . 4

Rommel, Kai Uwe 4, 292

RS . 37, 116

RSTART .. 119, 138

RT . 39, 54, 119

rule, de�nition of . 9

running awk programs 10

running long programs 12

rvalue . 84

S
sample input �le . 7

scanning an array . 127

script, de�nition of . 9

scripts, executable. 12

scripts, shell . 13

search path . 166

search path, for source �les 166

sed utility 48, 240, 244

seed for random numbers 137

self contained programs 12

shell quoting . 11, 12

shell scripts . 13

short-circuit operators 91

side e�ect . 84

simple stream editor 240

sin . 136

single character �elds. 46

single quotes, why needed 10

skipping input �les 170

skipping lines between markers 100

sparse arrays . 124

split . 139

split utility . 215

split.awk .. 215

sprintf . 139

sqrt . 136

srand . 137

standard error output 72

standard input 11, 37, 72

standard output . 72

statement, compound 105

stream editor . 48

stream editor, simple 240

strftime . 148

string comparison vs. regexp comparison

. 90

string constants . 77

string operators . 83

string-matching operators 23

sub . 140

subscripts in arrays 130

SUBSEP . 117, 130

substr .. 142

subtraction . 82

system .. 146

systime . 148

T
Tcl . 202

tee utility . 217

tee.awk . 217

terminator, record . 39

time of day . 147

timestamps . 147

timestamps, converting from dates . . . 176

timestamps, formatted 182

tolower . 142

toupper . 143

translate.awk.. 230

Trueman, David . 4

truth values . 88

322 AWK Language Programming

type conversion . 81

types of variables 85, 88

U
unde�ned functions 157

undocumented features 167

uninitialized variables, as array subscripts

. 130

uniq utility . 218

uniq.awk . 219

use of comments . 13

user information . 191

user-de�ned functions 153

user-de�ned variables. 79

uses of awk . 5

using this book . 5

V
values of characters as numbers 173

variable shadowing 154

variable typing . 88

variables, user-de�ned 79

W
Wall, Larry . 300

wc utility . 223

wc.awk .. 223

Weinberger, Peter . 1

when to use awk . 18

while statement . 106

word boundaries, matching 32

word, regexp de�nition of 31

wordfreq.sh .. 235

i

Short Contents

Preface . 1
1 Introduction . 5
2 Getting Started with awk . 9
3 Useful One Line Programs . 21
4 Regular Expressions . 23
5 Reading Input Files . 37
6 Printing Output . 61
7 Expressions . 77
8 Patterns and Actions . 97
9 Control Statements in Actions . 105
10 Built-in Variables . 115
11 Arrays in awk . 123
12 Built-in Functions . 135
13 User-de�ned Functions . 153
14 Running awk . 161
15 A Library of awk Functions . 169
16 Practical awk Programs . 203
17 The Evolution of the awk Language 251
Appendix A gawk Summary . 257
Appendix B Installing gawk . 277
Appendix C Implementation Notes . 293
Appendix D Glossary . 299
GNU GENERAL PUBLIC LICENSE . 307
Index . 315

ii AWK Language Programming

iii

Table of Contents

Preface . 1
History of awk and gawk . 1
The GNU Project and This Book . 1
Acknowledgements . 3

1 Introduction . 5
1.1 Using This Book . 5

Dark Corners . 6
1.2 Typographical Conventions . 6
1.3 Data Files for the Examples . 7

2 Getting Started with awk . 9
2.1 A Rose By Any Other Name . 9
2.2 How to Run awk Programs . 10

2.2.1 One-shot Throw-away awk Programs 10
2.2.2 Running awk without Input Files 11
2.2.3 Running Long Programs . 12
2.2.4 Executable awk Programs . 12
2.2.5 Comments in awk Programs . 13

2.3 A Very Simple Example . 14
2.4 An Example with Two Rules . 14
2.5 A More Complex Example . 15
2.6 awk Statements Versus Lines . 16
2.7 Other Features of awk . 18
2.8 When to Use awk. 18

3 Useful One Line Programs 21

4 Regular Expressions . 23
4.1 How to Use Regular Expressions . 23
4.2 Escape Sequences . 24
4.3 Regular Expression Operators . 26
4.4 Additional Regexp Operators Only in gawk 31
4.5 Case-sensitivity in Matching . 33
4.6 How Much Text Matches? . 34
4.7 Using Dynamic Regexps . 35

5 Reading Input Files . 37
5.1 How Input is Split into Records . 37
5.2 Examining Fields . 40

iv AWK Language Programming

5.3 Non-constant Field Numbers . 41
5.4 Changing the Contents of a Field . 42
5.5 Specifying How Fields are Separated . 44

5.5.1 The Basics of Field Separating 44
5.5.2 Using Regular Expressions to Separate Fields 45
5.5.3 Making Each Character a Separate Field 46
5.5.4 Setting FS from the Command Line 47
5.5.5 Field Splitting Summary . 48

5.6 Reading Fixed-width Data . 49
5.7 Multiple-Line Records . 51
5.8 Explicit Input with getline . 53

5.8.1 Introduction to getline . 54
5.8.2 Using getline with No Arguments 54
5.8.3 Using getline Into a Variable 55
5.8.4 Using getline from a File . 56
5.8.5 Using getline Into a Variable from a File 56
5.8.6 Using getline from a Pipe . 57
5.8.7 Using getline Into a Variable from a Pipe 58
5.8.8 Summary of getline Variants 58

6 Printing Output . 61
6.1 The print Statement . 61
6.2 Examples of print Statements . 62
6.3 Output Separators . 63
6.4 Controlling Numeric Output with print 64
6.5 Using printf Statements for Fancier Printing 64

6.5.1 Introduction to the printf Statement 65
6.5.2 Format-Control Letters . 65
6.5.3 Modi�ers for printf Formats 66
6.5.4 Examples Using printf . 68

6.6 Redirecting Output of print and printf 70
6.7 Special File Names in gawk . 72
6.8 Closing Input and Output Files and Pipes. 74

7 Expressions . 77
7.1 Constant Expressions . 77

7.1.1 Numeric and String Constants 77
7.1.2 Regular Expression Constants 77

7.2 Using Regular Expression Constants . 78
7.3 Variables . 79

7.3.1 Using Variables in a Program 79
7.3.2 Assigning Variables on the Command Line 80

7.4 Conversion of Strings and Numbers . 81
7.5 Arithmetic Operators . 82

v

7.6 String Concatenation . 83
7.7 Assignment Expressions . 84
7.8 Increment and Decrement Operators . 87
7.9 True and False in awk . 88
7.10 Variable Typing and Comparison Expressions 88
7.11 Boolean Expressions . 91
7.12 Conditional Expressions . 93
7.13 Function Calls . 93
7.14 Operator Precedence (How Operators Nest) 94

8 Patterns and Actions . 97
8.1 Pattern Elements . 97

8.1.1 Kinds of Patterns . 97
8.1.2 Regular Expressions as Patterns 97
8.1.3 Expressions as Patterns . 98
8.1.4 Specifying Record Ranges with Patterns 99
8.1.5 The BEGIN and END Special Patterns 100

8.1.5.1 Startup and Cleanup Actions 100
8.1.5.2 Input/Output from BEGIN and END Rules

. 102
8.1.6 The Empty Pattern . 102

8.2 Overview of Actions . 102

9 Control Statements in Actions 105
9.1 The if-else Statement . 105
9.2 The while Statement . 106
9.3 The do-while Statement . 106
9.4 The for Statement . 107
9.5 The break Statement . 109
9.6 The continue Statement . 110
9.7 The next Statement . 111
9.8 The nextfile Statement . 112
9.9 The exit Statement . 112

10 Built-in Variables . 115
10.1 Built-in Variables that Control awk . 115
10.2 Built-in Variables that Convey Information. 117
10.3 Using ARGC and ARGV . 119

vi AWK Language Programming

11 Arrays in awk . 123
11.1 Introduction to Arrays . 123
11.2 Referring to an Array Element . 124
11.3 Assigning Array Elements . 125
11.4 Basic Array Example . 125
11.5 Scanning All Elements of an Array . 127
11.6 The delete Statement . 128
11.7 Using Numbers to Subscript Arrays 129
11.8 Using Uninitialized Variables as Subscripts 130
11.9 Multi-dimensional Arrays . 130
11.10 Scanning Multi-dimensional Arrays 132

12 Built-in Functions . 135
12.1 Calling Built-in Functions . 135
12.2 Numeric Built-in Functions . 136
12.3 Built-in Functions for String Manipulation 137
12.4 Built-in Functions for Input/Output 145
12.5 Functions for Dealing with Time Stamps 148

13 User-de�ned Functions . 153
13.1 Function De�nition Syntax . 153
13.2 Function De�nition Examples . 154
13.3 Calling User-de�ned Functions . 156
13.4 The return Statement . 158

14 Running awk . 161
14.1 Command Line Options . 161
14.2 Other Command Line Arguments . 165
14.3 The AWKPATH Environment Variable 166
14.4 Obsolete Options and/or Features . 167
14.5 Undocumented Options and Features 167
14.6 Known Bugs in gawk . 167

15 A Library of awk Functions 169
15.1 Simulating gawk-speci�c Features . 169
15.2 Implementing nextfile as a Function 170
15.3 Assertions . 172
15.4 Translating Between Characters and Numbers 173
15.5 Merging an Array Into a String . 175
15.6 Turning Dates Into Timestamps . 176
15.7 Managing the Time of Day . 182
15.8 Noting Data File Boundaries . 184
15.9 Processing Command Line Options . 185

vii

15.10 Reading the User Database . 191
15.11 Reading the Group Database . 196
15.12 Naming Library Function Global Variables 201

16 Practical awk Programs . 203
16.1 Re-inventing Wheels for Fun and Pro�t 203

16.1.1 Cutting Out Fields and Columns 203
16.1.2 Searching for Regular Expressions in Files 208
16.1.3 Printing Out User Information 212
16.1.4 Splitting a Large File Into Pieces 215
16.1.5 Duplicating Output Into Multiple Files 217
16.1.6 Printing Non-duplicated Lines of Text 218
16.1.7 Counting Things . 223

16.2 A Grab Bag of awk Programs . 225
16.2.1 Finding Duplicated Words in a Document 226
16.2.2 An Alarm Clock Program . 226
16.2.3 Transliterating Characters. 229
16.2.4 Printing Mailing Labels . 231
16.2.5 Generating Word Usage Counts 234
16.2.6 Removing Duplicates from Unsorted Text 236
16.2.7 Extracting Programs from Texinfo Source Files

. 237
16.2.8 A Simple Stream Editor. 240
16.2.9 An Easy Way to Use Library Functions 242

17 The Evolution of the awk Language 251
17.1 Major Changes between V7 and SVR3.1 251
17.2 Changes between SVR3.1 and SVR4 252
17.3 Changes between SVR4 and POSIX awk 253
17.4 Extensions in the AT&T Bell Laboratories awk 253
17.5 Extensions in gawk Not in POSIX awk 254

Appendix A gawk Summary 257
A.1 Command Line Options Summary . 257
A.2 Language Summary . 259
A.3 Variables and Fields . 259

A.3.1 Fields . 260
A.3.2 Built-in Variables . 260
A.3.3 Arrays . 262
A.3.4 Data Types . 262

A.4 Patterns . 263
A.4.1 Pattern Summary . 264
A.4.2 Regular Expressions . 265

A.5 Actions . 266

viii AWK Language Programming

A.5.1 Operators . 267
A.5.2 Control Statements . 268
A.5.3 I/O Statements . 268
A.5.4 printf Summary . 270
A.5.5 Special File Names . 271
A.5.6 Built-in Functions . 272
A.5.7 Time Functions . 274
A.5.8 String Constants . 274

A.6 User-de�ned Functions . 275
A.7 Historical Features . 276

Appendix B Installing gawk 277
B.1 The gawk Distribution . 277

B.1.1 Getting the gawk Distribution 277
B.1.2 Extracting the Distribution 279
B.1.3 Contents of the gawk Distribution 279

B.2 Compiling and Installing gawk on Unix 282
B.2.1 Compiling gawk for Unix. 282
B.2.2 The Con�guration Process . 282

B.3 How to Compile and Install gawk on VMS 283
B.3.1 Compiling gawk on VMS . 283
B.3.2 Installing gawk on VMS . 284
B.3.3 Running gawk on VMS . 285
B.3.4 Building and Using gawk on VMS POSIX 285

B.4 MS-DOS and OS/2 Installation and Compilation 286
B.5 Installing gawk on the Atari ST . 287

B.5.1 Compiling gawk on the Atari ST 287
B.5.2 Running gawk on the Atari ST 288

B.6 Installing gawk on an Amiga . 289
B.7 Reporting Problems and Bugs . 290
B.8 Other Freely Available awk Implementations 291

Appendix C Implementation Notes 293
C.1 Downward Compatibility and Debugging 293
C.2 Making Additions to gawk . 293

C.2.1 Adding New Features. 293
C.2.2 Porting gawk to a New Operating System 295

C.3 Probable Future Extensions . 297
C.4 Suggestions for Improvements . 298

Appendix D Glossary . 299

ix

GNU GENERAL PUBLIC LICENSE 307
Preamble . 307
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 308
How to Apply These Terms to Your New Programs 313

Index . 315

x AWK Language Programming

