Instruction Manual

For DC Input Variable Speed Controls

P.0. Box 10

5000 W. 106th Street
Zionsville, Indiana 46077

Phone (317) 873-5211
Fax (317) 873-1105 www.dartcontrols.com

TABLE OF CONTENTS

WARRANTY 1
STANDARD FEATURES 1
CONTROL DIMENSIONS 1
MOUNTING DIMENSIONS 2
INSTALLATION 2
HOOK-UP DIAGRAMS 2-3
INHIBITING THE CONTROL 3
TRIMPOT ADJUSTMENTS 3-4
IN CASE OF DIFFICULTY 4
MODEL SELECTION 4
SPECIFICATIONS 4
65E SERIES PARTS PLACEMENT \& LIST 5
65E SERIES SCHEMATIC 6
REPAIR PROCEDURE \& PRODUCT LINE BACK COVER

WARRANTY

Dart Controls, Inc. (DCI) warrants its products to be free from defects in material and workmanship. The exclusive remedy for this warranty is DCI factory replacement of any part or parts of such product which shall within 12 months after delivery to the purchaser be returned to DCl factory with all transportation charges prepaid and which DCI determines to its satisfaction to be defective. This warranty shall not extend to defects in assembly by other than DCl or to any article which has been repaired or altered by other than DCI or to any article which DCl determines has been subjected to improper use. DCl assumes no responsibility for the design characteristics of any unit or its operation in any circuit or assembly. This warranty is in lieu of all other warranties, express or implied; all other liabilities or obligations on the part of DCI, including consequential damages, are hereby expressly excluded.
NOTE: Carefully check the control for shipping damage. Report any damage to the carrier immediately. Do not attempt to operate the drive if visible damage is evident to either the circuit or to the electronic components.
All information contained in this manual is intended to be correct, however information and data in this manual are subject to change without notice. DCI makes no warranty of any kind with regard to this information or data. Further, DCI is not responsible for any omissions or errors or consequential damage caused by the user of the product. DCI reserves the right to make manufacturing changes which may not be included in this manual.

WARNING

Improper installation or operation of this control may cause injury to personnel or control failure. The control must be installed in accordance with local, state, and national safety codes. Make certain that the power supply is disconnected before attempting to service or remove any components!!! If the power disconnect point is out of sight, lock it in disconnected position and tag to prevent unexpected application of power. Only a qualified electrician or service personnel should perform any electrical troubleshooting or maintenance. At no time should circuit continuity be checked by shorting terminals with a screwdriver or other metal device.

STANDARD FEATURES

- Provides smooth variable speed capability for mobile equipment
- Maintains variable speed control as batteries discharge
- Adjustable maximum speed, minimum speed, current limit, I.R. compensation, and accel
- Inhibit terminal permits optional start-stop without breaking battery lines
- Speed potentiometer, knob, and dialplate included
- Increases range or running time of battery operated equipment through high efficiency
- 65E40 and 65E60 series only - Automatic current limit foldback decreases current limit to 50\% of setpoint when heatsink temperatures reach $80^{\circ} \mathrm{C}$. - provides protection from overheating

CONTROL DIMENSIONS

MODEL	WIDTH	LENGTH	DEPTH	WEIGHT
	inches (centimeters)			OZ. (gms.)
65E20	$3.7(9.40)$	$7.0(17.8)$	$1.70(4.32)$	$10.5(297)$
$65 E 40$	$3.7(9.40)$	$7.0(17.8)$	$1.70(4.32)$	$13.4(379)$
$65 E 60$	$6.7(17.1)$	$9.0(22.9)$	$2.27(5.77)$	$34.0(962)$

MOUNTING DIMENSIONS

Caution: Do not mount controller where ambient temperature is outside the range of $-10^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{F}\right)$ to $45^{\circ}\left(115^{\circ} \mathrm{F}\right)$.
INSTALLATION
Before attempting to wire the control, make sure all power is disconnected. Recheck code designation to assure proper voltage is present for the control. Caution should be used in selecting proper size of hook-up wire for current and voltage drop. Note: the battery and armature wire size on 65E models must be a minimum of 12 gauge.

HOOK-UP DIAGRAMS

WARNING:

DO NOT REVERSE POSITIVE AND NEGATIVE BATTERY LEADS. THIS WILL DAMAGE THE CONTROL. TO CHANGE MOTOR DIRECTION, INTERCHANGE THE POSITIVE AND NEGATIVE ARMATURE LEADS.

Refer to the wiring diagrams below for proper connection of DC Voltage, Armature, and Speedpot wiring to the control.

CAUTION !! TURN POWER OFF WHILE MAKING CONNECTIONS .

To properly adjust the CURRENT LIMIT setting, a DC ammeter should be placed in series with the armature line. This meter can be removed after the control is adjusted.

65E REVERSING HOOK-UP DIAGRAM

INHIBITING THE CONTROL

Using inhibit input - provide fast startstop by bypassing accel/decel circuit

Inhibit via speedpot - provides starting and stopping through accel/decel parameters

Note: Always use a shielded cable when connecting to the inhibit terminal. The shield of the cable should connect to the Common terminal of the control.

TRIMPOT ADJUSTMENTS

Before the power is applied, the speed potentiometer and trimpots should be preset as follows:

TRIMPOT PRESET

1. Preset speedpot fully CCW, preset Max trimpot CW $1 / 2$ way, preset Current Limit trimpot fully CW, preset Min trimpot fully CCW, preset Accel trimpot CW 1/2 way, preset I.R. trimpot fully CW.
DC power can now be applied to the system and the control adjusted as directed below:

TRIMPOT ADJUSTMENT

2. Increase the MIN trimpot in a clockwise direction until the desired minimum speed is reached.
3. Turn the Speedpot fully clockwise and adjust the MAX trimpot until the desired maximum speed is reached.
4. Adjust the ACCEL trimpot to achieve the desired soft start time. CW rotation will increase accel time.
5. Rotate the CURRENT LIMIT trimpot fully CCW until the motor begins to stall. Apply a full load to the motor. While motor is stalled adjust the CURRENT LIMIT trimpot CW until a desired current setting is obtained.
6. Adjust I.R. trimpot CW $1 / 2$ way. If motor RPM is inconsistent (jumpy), rotate I.R. trimpot CCW until rotation is stable.

IN CASE OF DIFFICULTY

If a newly installed control will not operate, it is likely that a terminal or connection is loose. Check to make sure connections are secure and correct. If the control is still inoperative, refer to the following chart for reference:

PROBLEM	POSSIBLE CAUSE(S)	CORRECTIVE ACTION
Motor doesn't run	- Incorrect or no power	Install proper service
	•Speedpot set at zero	Rotate speedpot fully CW
	• Worn motor brushes	Replace motor brushes
	- Current limit set too low	Adjust current limit trimpot CW
Motor "hunts"	- Max trimpot set too high	See "Trimpot Adjustments" - page 3-4
	- I.R. Comp. trimpot set too high	See "Trimpot Adjustments" - page 3-4
Motor runs at "full speed"	- Loose speedpot connections	Secure all connections
uncontrollable	- Min. or Max. trimpots not properly adjusted	See "Trimpot Adjustments" - page 3-4
Motor rotates in wrong direction	• Motor armature hooked up backwards	Send to Dart Controls, Inc.
Motor stalls under a light load	• Current limit trimpot improperly adjusted	See "Trimpot Adjustments" - page 3-4

MODEL SELECTION

INPUT VOLTAGE	OUTPUT VOLTAGE	CONTINUOUS CURRENT	MODEL NUMBER
$12 \mathrm{VDC} \pm 15 \%$	0-12 VDC	20 amps D.C.	65E20-12
$12 \mathrm{VDC} \pm 15 \%$	0-12 VDC	40 amps D.C.	65E40-12
$12 \mathrm{VDC} \pm 15 \%$	0-12 VDC	60 amps D.C.	65E60-12
24 VDC $\pm 15 \%$	0-24 VDC	20 amps D.C.	65E20*
24 VDC $\pm 15 \%$	0-24 VDC	40 amps D.C.	65E40*
$24 \mathrm{VDC} \pm 15 \%$	0-24VDC	60 amps D.C.	65E60*
36 VDC $\pm 15 \%$	0-36 VDC	20 amps D.C.	65E20*
36 VDC $\pm 15 \%$	0-36 VDC	40 amps D.C.	65E40*
36 VDC $\pm 15 \%$	0-36 VDC	60 amps D.C.	65E60*

* 24 volt and 36 volt units with the same current ratings are interchangeable (ie. 24 volt unit will operate with 36 volt input and a 36 volt unit will operate with 24 volt input, same current rating).

SPECIFICATIONS

	65E20	65E40	65E60
Load current (continuous)	20 amps	40 amps	60 amps
Speed adjustment	$5 \mathrm{~K} \Omega$ potentiometer or 0 to +10 VDC input signal		
Speed range	$30: 1$		
Overload capacity	200\% for 10 seconds; 150% for one minute		
Current limit	adjustable 100% to 200% of full motor load, up to continuous current rating (page 4)		
Acceleration	adjustable - 0 to 10 seconds		
Deceleration	non-adjustable - 0.5 seconds		
Maximum speed	adjustable - 50 to 100% of base speed		
Minimum speed	adjustable - 30% of max speed		
Connections	barrier terminal block (12Ga. to a maximum 6 Ga .)		
Speed regulation	1% of base speed via adjustable I.R. Compensation trimpot		
Operating temperature	$-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$		
Package configuration	black anodized aluminum extrusion		
Internal operating frequency	approximately 1.6K Hertz		
Thermal protection	N/A	Current foldback at $80^{\circ} \mathrm{C}$. heatsink temperature	

65E40 / 65E60 PART PLACEMENT \& LIST

RESISTORS
R1 300\& 5 W
$\begin{array}{ll}\text { R1 } & \text { 300\& 5W } \\ \text { R2 } & \text { 47K } \\ \text { R3 } & \text { 470\& } \\ \text { R4 } & \text { 47K } \\ \text { R5 } & \text { 470\& } \\ \text { R6 } & \text { 10K } \\ \text { R7 } & \text { 20K MAX } \\ \text { R8 } & 33 \mathrm{~K} \\ \text { R9 } & \text { 220K } \\ \text { R10 } & \text { 47K } \\ \text { R11 } & \text { 10K } \\ \text { R12 } & \text { 100K } \\ \text { R13 } & \text { 10K } \\ \text { R14 } & 180 \mathrm{~K} \\ \text { R15 } & 250 \mathrm{~K} \text { ACCEL } \\ \text { R16 } & 20 \mathrm{~K} 1 / 4 \mathrm{~W} 1 \% \\ \text { R17 } & 470 \mathrm{~K} \\ \text { R18 } & 300 \mathrm{~K} \\ \text { R19 } & 47 \mathrm{~K} \\ \text { R20 } & 5 \mathrm{~K} \mathrm{MIN} \\ \text { R21 } & 82 \mathrm{~K} \\ \text { R22 } & 10 \mathrm{~K} \\ \text { R23 } & 4.7 \mathrm{~K} \\ \text { R24 } & 6.8 \mathrm{~K} \\ \text { R25 } & 10 \mathrm{~K} \\ \text { R26 } & 4.7 \mathrm{~K} \\ \text { R27 } & 47 \mathrm{~K} \\ \text { R28 } & 10 \mathrm{~K} \\ \text { R29 } & 300 \mathrm{~K} \\ \text { R30 } & 20 \mathrm{~K} \text { CUR. LIM. } \\ \text { R31 } & 4.7 \mathrm{~K} \\ \text { R32 } & 5 \mathrm{~K} \mathrm{I.R.} \mathrm{COMP} \\ \text { R33 } & 100 \mathrm{~K} \\ \text { R34 } & 47 \mathrm{~K} \\ \text { R35 } & 2.7 \mathrm{~K} \\ \text { R36 } & 22 \& \\ \text { R37 } & 22 \& \\ \text { R38 } & 22 \& \\ \text { R39 } & 22 \& \\ \text { R40 } & 22 \& \\ \text { R41 } & 22 \& \\ \text { R42 } & 47 \mathrm{~K} \\ \text { R43 } & 1.2 \mathrm{M} \\ \text { R44 } & 150 \& \\ \text { R45 } & 5 \mathrm{~K} \mathrm{SPEEDPOT*} \\ \text { R46 } & 22 \mathrm{~K} \\ \text { R47 } & 680 \mathrm{~K} \\ \text { R48 } & 2.7 \mathrm{~K} \\ \text { R49 } & 100 \mathrm{~K} \\ \text { R50 } & 100 \mathrm{~K} \\ \text { R51 } & 15 \mathrm{~K} \\ & \end{array}$

CAPACITORS

C1	. $1 \mathrm{\mu} \mathrm{~F} 63 \mathrm{~V}$
C2	.1 1 F 6 63 V
${ }^{3}$. $22 \mu \mathrm{~F} 100 \mathrm{~V}$
C4	.14F 63V
C5	.1 1 F F 63 V
C6	. $22 \mu \mathrm{~F} 100 \mathrm{~V}$
C7	.14F 63 V
C8	.014F 100V
C9	.011F 100 V
C10	47 FF 16 V
C11	$1000 \mu \mathrm{~F} 50 \mathrm{~V}$
C12	$1000 \mu \mathrm{~F} 50 \mathrm{~V}$
C13	.11F 63V
C14	.14F 63 V
C15	. $01 \mu \mathrm{~F} 100$

DIODE

D1	1N4005
D2	1N405
D3	1N5349B
D4	1N963B
D5	1N94B
D6	1N5233B
D7	1N914B

ACTIVE DEVICES

Q1	IRFZ44
Q2	IRFZ44
Q3	IRFZ44
Q4	IRFZ44
Q5	IRFZ44
Q6	IRFZ44
Q7	IRFZ44
Q8	IRFZ44
Q9	IRFZ44
Q1	IRFZ44

IC PACKAGES

U1	40106 IC
U2	LM32 IC
U3	LM 324 IC
U4	

MISCELLANEOUS

PCB
P1 (-1 thru -5$)$
P2 (-1 thru -5$)$
RL1
RL2
RL3
SW1

A-4-2519B PRINTED CIRCUIT BOARD 5 POS. TERMINAL BLOCK 5 POS. TERMINAL BLOCK
5 POS. BARRIER TERMINAL STRIP 5POS. BARRIER
RLB2508X RAIL RLPRNO10 RALL RLB25011XB RAIL 67 F080 TEMP .SWITCH

65E20-12 CHANGES:

65E20 CHANGES:

* SPEEDPOT IS MOUNTED REMOTE NOTE: ALL RESISTORS 1/8W UNLESS NOTED OTHERWISE

65E40/60-12 CHANGES:

R1	$10 \& 1 \mathrm{~W}$
R6	22 K
R31	2.2 K
R35	1 K
R42	22 K
R48	1 K

65E SERIES SCHEMATIC

REPAIR PROCEDURE

In the event that a Product manufactured by Dart Controls Incorporated (DCI) is in need of repair service, it should be shipped, freight paid, to: Dart Controls, Inc., 5000 W. 106th Street, Zionsville, IN. 46077, ATTN: Repair Department.

Please include with each order a P.O. number to cover any repair charges (a P.O. is needed even on warranty returns to cover misuse or other failures that have voided warranty), and include a note with a brief description of the problem experienced. NO WORK WILL BE DONE ON ANY ORDER WITHOUT A P.O. NUMBER.
Completed repairs are returned with a Repair Report that states the problem with the control and the possible cause. Repair orders are returned via UPS Ground unless other arrangements are made. If you have further questions regarding repair procedures, contact your Dart Distributor or Representative.

YOUR MOTION SYSTEMS SOLUTION PROVIDER

125D SERIES
ac input-variable dc output 1/50 HP through 1.0 HP

700/COMMUTROLSERIES
DC BRUSHLESS 5 \& 20 Amp for 12,24,\& 36VDC Inputs

Dart Controls, Inc. is a designer, manufacturer, and marketer of analog and digital electronic variable speed drives, controls, and accessories for AC, DC, and DC brushless motor applications.

Shown above is just a sampling of the expanded line of Dart controls that feature the latest in electronic technology and engineering. Products are manufactured in the U.S.A. at our Zionsville (Indianapolis,

250G SERIES
AC INPUT - VARIABLE DC OUTPUT $1 / 50 \mathrm{HP}$ through 2.0 HP

MDP SERIES
PROGRAMMABLE CLOSED LOOP DC SPEED CONTROL

Indiana) production and headquarters facility - with over 2,000,000 variable speed units in the field.

In addition to the standard off-the-shelf products, you can select from a wide variety of options to customize controls for your specific application. For further information and application assistance, contactyour local Dart sales representative, stocking distributor, or Dart Controls, Inc.

65 SERIES
DC INPUT - VARIABLE DC OUTPUT CURRENT RATINGS OF 20, 40, AND 60 AMPS

DM SERIES FIELD PROGRAMMABLE DIGITAL TACHOMETER

Dart Controls, Inc.
Manufacturer of high quality DC and AC motor speed controls and accessories since 1963.
P.O. Box 10

5000 W. 106th Street
Zionsville, Indiana 46077
Phone: (317) 733-2133
Fax: (317) 873-1105

