Srđan theorem

Marjanović Srđan
M.Biljanica
16201 Manojlovce
Serbia
ms.biljanica@gmail.com

1 Pythagorean theorem

Pythagorean theorem : sides of a triangle (a, b) whose angle 90°, side (c) is obtained, squared side (c) equal to the sum of squares of sides (a, b) , $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.

2 Srđan theorem

Srđan theorem : sides (pseudosides) of a triangle ($\mathrm{a}_{p}, \mathrm{~b}_{p}$) for any angle , side (c) is obtained, squared side (c) equal to the sum of squares of sides or pseudosides ($\mathrm{a}_{p}, \mathrm{~b}_{p}$),
$\mathrm{c}^{2}=\mathrm{a}_{p}{ }^{2}+\mathrm{b}_{p}{ }^{2}$

3 Solving

We have a sides (a, b) which are constant, the angle between them which is an independent variable, side (c) that the dependent variable. Since this is a geometric function, we can not be solved as a function of current, because the independent variable (angle) changes constants (sides a and b) in the variables $\left(\mathrm{a}_{p}=(\operatorname{asin} \gamma)^{2}, \mathrm{~b}_{p}=(\mathrm{b}-(\operatorname{acos} \gamma))^{2}\right)$

3.1 Angle 45°

$\mathrm{c}^{2}=\mathrm{a}_{p}{ }^{2}+\mathrm{b}_{p}{ }^{2}$
$c^{2}=(\operatorname{asin} \gamma)^{2}+(b-(\operatorname{acos} \gamma))^{2}$
$\mathrm{c}^{2}=\left(\operatorname{asin} 45^{\circ}\right)^{2}+\left(\mathrm{b}-\left(\operatorname{acos} 45^{\circ}\right)\right)^{2}$
$c^{2}=(0.707 a)^{2}+(b-0.707 a)^{2}$

```
3.2 Angle \(90^{\circ}\)
    \(\mathrm{c}^{2}=\mathrm{a}_{p}{ }^{2}+\mathrm{b}_{p}{ }^{2}\)
\(\left.c^{2}=(\operatorname{asin} \gamma)^{2}+(\mathrm{b}-(\mathrm{a} \cos \gamma))^{2}\right)\)
\(c^{2}=\left(\operatorname{asin} 90^{\circ}\right)^{2}+\left(\mathrm{b}-\left(\operatorname{acos} 90^{\circ}\right)\right)^{2}\)
\(c^{2}=(1 a)^{2}+(b-0)^{2}\)
\(c^{2}=a^{2}+b^{2}\) - pythagorean theorem
```


3.3 Angle 135°

$\mathrm{c}^{2}=\mathrm{a}_{p}{ }^{2}+\mathrm{b}_{p}{ }^{2}$
$c^{2}=(\operatorname{asin} \gamma)^{2}+(b-(a \cos \gamma))^{2}$
$c^{2}=\left(\operatorname{asin} 135^{\circ}\right)^{2}+\left(b-\left(\operatorname{acos} 135^{\circ}\right)\right)^{2}$
$c^{2}=(0.707 a)^{2}+\left(\mathrm{b}-(-0.707 a)^{2}\right.$
$c^{2}=(0.707 a)^{2}+(b+0.707 a)^{2}$

