

CONTENTS

1.	APPLICATION			. 3
2.	TECH	CHNICAL SPECIFICATIONS		
3.	OPERATION		. 5	
	3.1.	Gen	eral programming sequence	. 5
	3.2.	Swit	tching among parameter levels	. 5
	3.3.	Para	ameter adjustment	. 5
	3.4.	Con	troller programming	. 6
	3.	4.1.	Level 1: "Main parameters" - Set point, alarms, auto-tuning, manual control	. 6
	3.4.2. 3.4.3.		Level 2: "PID (ON/OFF) parameters and access to the other levels"	. 7
			Level 3: "Additional parameters" - input type, control algorithm type, alarm type and parameters, calibration and others	10
	3.	4.4.	Level 4: "Configuration level" - parameter enabling, input and output configuration	14
4.	APPE		CES	16
	4.1.	Inpu	it type and range codes	16
	4.2.	Alar	m type and function	17
	4.3.	Erro	or messages	17
	4.4.	Line	ear input adjustment	19
	4.5.	Ana	log output adjustment	19
	4.6.	RAN	IP-SOAK adjustment	20
	4.7.	Prof	file (pattern) control programming	20
5.	MOU	NTIN	G AND WIRING	22
	5.1.	Mou	inting	22
	5.2.	Wiri	ng	22
	5.3.	Inpu	It type selection	23
	5.4.	Elec	tro-magnetic interference (EMI) issues	24
6.	SERIAL INTERFACE			24

1. APPLICATION

RT1800 is a compact, multifunctional all-purpose microprocessor controller. Its user-configurable analog input allows on-site adaptation to various thermocouple and RTD sensors as well as current and voltage output transducers for pressure, relative humidity, flow, etc. The RT1800 controller may be ordered with a second analog input for cascaded operation or remote set-point setting.

A set-point profile control is an additional option.

The device may be equipped with up to 4 relay and/or analog outputs that may serve as control outputs, limit comparators, alarm outputs, etc. The built-in timer may be programmed to fully control one of the output relays providing convenient delay at start-up.

The controller offers all standard PID features including bumpless auto/manual changeover. The two displays — one for the process variable and another for the set point — plus the control-action bar-graph allow all necessary information to be read at a glance.

The optional digital interface, either RS232 or RS485, provides connection to an operator station driven network as well as hierarchical control.

The switch-mode power supply provides for trouble-free operation under heavy mains voltage variations (from 85 to 265 VAC).

The unit is specially designed to sustain the heavy electromagnetic disturbances that often arouse in industrial environment by the means of optical decoupling of all inputs and outputs and special noise suppression circuits.

2. TECHNICAL SPECIFICATIONS

2.1. Indication: LED, IP56

Casa	Indication				
Case	PV Display	SV Display	Bar-graph	LEDs	
'B'	4 red digits, 14 mm bigh	4 green digits, 10 mm high "SET POINT value"	10-point, yellow, 0100% OUT1 control	8 LEDs for: outputs OUT1 and OUT2 (green); alarms AL1, AL2, AL3 (red); auto-tuning AT (yellow); manual control MAN (yellow); profile control PRO (yellow)	
'Q'	"MEASURED value"				
'H' / 'V'	4 red digits, 8 mm high	4 green digits, 8 mm high "SET POINT value"			
'S'	"MEASURED value"		none	6 LEDs (no LEDs for AL3 and MAN)	

2.2. Keyboard: membrane, IP56

Case	Keys and functions				
Case	SET	•		▼	A/M
'B'	setting parameter value; displaying next parameter; level switching	starting parameter value adjustment; selecting digit	increasing value	decreasing value	Manual/ Auto
'H' / 'V'					
ġ					
'S'					no manual control

2.3. Power supply: switch-mode

Supply voltage: 85...265 VAC Consumption: less than 4 VA

2.4. Inputs:

2-wire - for voltage and current signals; 3-wire - for resistive signals.

- 2.4.1. Main input: universal, programmable For available sensor types and input ranges — see Appendix 4.1.
- 2.4.2. Auxiliary input (option): linear current, 0(4)...20 mA Serves for remote set point or for valve position control feedback. For cases 'B', 'H', and 'V' is feasible only with absence of interface. For case 'S' — feasible only with absence of retransmission analog output and interface. For case 'Q' mounted instead of output AL2.

2.5. Outputs: max. 4 (3 for case 'Q')

2.5.1. Relay outputs: 2 control and 2 alarm or 1 control and 3 alarm (2 control and 1 alarm or 1 control and 2 alarm for case 'Q')

Description	Parameters	Location
electromechanical relay	max. 3 A / 250 VAC	
solid state relay (SSR)	max. 1 A / 250 VAC	
MOS gate	max. 0.1 A / 60 V	0011, 0012, ALI, ALZ
output for external SSR	24 V, 20 mA	

2.5.2. Analog outputs: max. 3 (2 control + 1 retransmission)

Description	Parameters	Location
control	(0)420 mA, 010 V	instead of OUT1 or OUT2
retransmission	(0)420 mA, 010 V	instead of AL2

For case 'S', the retransmission output is feasible only with absence of interface or instead of AL1.

2.5.3. Serial interface (option): RS232 or RS485

For cases 'B', 'H', and 'V' — feasible only with absence of auxiliary input. For case 'S' — only with absence of retransmission analog output or instead of AL1.

2.6. Operating conditions

Operating temperature / humidity Protection, front / rear Maximum temperature drift Maximum warm-up time 0...50 °C / 20...85% RH IP56 / IP20 0.01% from span for 1 °C 15 min

2.7. Storage conditions

Temperature / humidity

-20...65 °C / 0...95% RH

3. OPERATION

3.1. General programming sequence

Controller parameters are grouped in 4 levels (parameter groups) according to their frequency of use. The following order of parameter programming is recommended:

- 1. Enter level 2 and set the parameter $\lfloor \lfloor L \rfloor = 1 \rfloor \rfloor$ to get access to level 4.
- Enter level 4 to configure basic controller settings (input and output number and use, which
 parameters of the other levels will be available for adjustment and which will be hidden ...).
- 3. Switch back to level 2 and set the parameter $\lfloor \Box \Box \Box \Box \Box \Box \Box \Box$ to get access to level 3.
- 4. Enter level 3 and set its parameters (input type, alarm type, output action direction ...).
- 5. Enter level 2 and set preliminary values for the PID (ON/OFF) parameters (proportional gain, hysteresis ...).
- 6. Enter level 1 and adjust the set point, alarm limits, etc.
- 7. When the controller is already mounted in place and the system starts functioning, readjust PID (ON/OFF) control parameters to achieve satisfactory system performance.
- 8. Switch over to level 2 and set the parameter L [H =] [] I or [] | I or [] | to prevent unauthorized personnel from changing vital controller parameters (level access locking).

3.2. Switching among parameter levels

<u>Normally, the controller operates at level 1 and shows the set-point value on its lower display</u> and the measured value — on the upper display.

Switching over to level 1 may be done in either of the following ways:

- Automatically, when no key has been pressed for 1 minute, regardless of the level.
- By using the A/M key, regardless of the level.
- Automatically, after power-on. At start-up, the input type and range appear consecutively on the display, followed by the measured value and the set point from level 1.
- Automatically, after exiting level 2, 3, or 4. Entering level 2:
- While the device operates at level 1, press and hold **SET** for 5 seconds. Exiting level 2 may be done in either of the following ways:
- By holding SET depressed for 5 seconds.
- By pressing **A/M**. Mind that this also toggles between AUTO and MANUAL modes. Does not function while parameter value is being adjusted (finish parameter adjustment first by pressing **SET**).

To get access to level 3, set [U = 0 0 0 0] from level 2 beforehand. To get access to level 4, set [U = 1 1 1] from level 2 beforehand. Switching over to level 3 or 4:

- While the device operates at level 1 or 2, press and hold **SET** and **◄** for 5 seconds. Exiting level 3 or 4 may be done in either of the following ways:
- By holding **SET** and **◄** depressed for 5 seconds.
- By pressing A/M. Mind that this also toggles between AUTO and MANUAL modes. Does not function while parameter value is being adjusted (finish parameter adjustment first by pressing SET).
 If, after parameter adjustment at level 4, the device expects readjustment at levels 2 and 3, the value of the parameter L_LL externet inclusions to RDDD.

of the parameter $\c L$ [$\c L$ automatically changes to [] [] [] .

3.3. Parameter adjustment

- Display the parameter symbol on the upper (red) display and the current value on the lower (green) display.
- Press ◄ to enter parameter value adjustment mode. The rightmost digit starts blinking. To select another digit, use ◄. To increase or decrease the blinking digit value, use respectively ▲ or ▼.

- Press SET to confirm the adjusted value and exit parameter value adjustment mode.
- To display the next parameter in the row, press **SET**.

3.4. Controller programming

Automatic PID control parameter tuning (Auto-tune)

Before starting the Auto-tune function, ensure the controller is properly installed, the system is functional, and the main parameters from levels 3 and 4 are already adjusted. The auto-tuning function automatically sets the values of the following parameters: P_1 , I_1 , J_2 , J_1 , P_2 , I_2 , J_2 . The operator must set manually the duration of the on/off output relay cycle $[Y_1 I_1, [Y_1 I_2] I_2]$. For current output — set to 0, for relay output — try with 10.

- a) Set the parameter ΠE to $\Psi E 5$.
- b) Set a temporary automatic decrease of the set point during auto tuning via the RE''L parameter. With RE'L = 0, the tuning process will be performed around the set point. With RE'L = 5 °C and set point SV = 200 °C, the auto-tuning will be performed around 195 °C (this avoids overheating due to the process variable cycling during the auto-tuning process). If in doubt, set RE'L = 0.
- c) Unsuccessful auto-tuning. Possible reasons are:
 - Too high **AL UL** value (if in doubt, set to 0).
 - Great system inertia. Set PID parameters manually.

3.4.1. Programming at LEVEL 1

Normally, the controller is at level 1 and displays the measured value. To view the next parameter from this level, press **SET**.

· · · · · · · · · · · · · · ·	
95	PV Measured value
100	SV Set point
↓ SET	
OUEL	In manual mode: output value in percents from 0 to 100%
100	In auto mode scales down control output; it is recommended to keep the value = 100%
↓ SET	
RF	Enable/disable auto-tuning
962/n0	See "Automatic PID control parameter tuning (Auto-tune)" above
↓ SET	
RL I	Alarm 1 limit
۵	
↓ SET	
815	Alarm 2 limit
۵	
↓ SET	
AL 3 000 0	Alarm 3 limit (Ramp slope)
↓ SET over again	! With ☐ ∐ 上 L = ☐ during PID control, the output is switched off. To achieve proper output operation in AUTO mode, set ☐ ∐ 上 L = 1 ☐ ☐.

3.4.2. Programming at LEVEL 2

Normally, the controller is at level 1 and displays the measured value. To switch over to level 2, press and hold **SET** for 5 seconds. To switch back to level 1, depress **SET** again.

P ¦	Proportional band for main control output OUT1
3	Range: 0 to 200%.
↓ SET	Great values correspond to small proportional gain; value 0 sets ON/OFF control
11	Integration time (reset time) for main control output
240	Range: 0 to 3600 s
↓ SET	value 0 turns integration off
d	Derivative time for main control output
60	Range: 0 to 900 s
↓ SET	value 0 turns differentiation off
db	Dead-band time for main output
0	Range: 0 to 1000 s
↓ SET	If in doubt, set to 0
8£"L	Set-point shift during auto-tuning
0	Range: 0 to USPL
↓ set	If in doubt, set to 0
[YE	output ON / OFF period duration for the main output OUT1 (total time of both ON and OFF periods during PID control)
10	Range: 0 to 150 s
↓ SET	In case of SSR — set to 0, with mechanical relay— try with 10
H	Hysteresis for main output (visible only if $P_{l} = 0$, i.e. ON/OFF control)
1	Range: 0 to 1000
↓ SET	Small values result in lower cycling range, but much frequent output switching
P2	Proportional band for second control output OUT2
З	Range: 0 to 200%
↓ SET	As for P
,2	Integration time (reset time) for second control output
240	Range: 0 to 3600 s
↓ SET	As for ,

62	Derivative time for second control output
60	Range: 0 to 900 s
↓ SET	As for 🚽 🛔
[75]	output ON / OFF period duration for the second output OUT2 (total time of both ON and OFF periods during PID control)
10	Range: 0 to 150 s
↓ SET	As for [YE]
HY52	Hysteresis for second output
1	Range: 0 to 1000
↓ set	As for HY5 1
GRP I	Dead band for main output OUT1 (only for two-output controllers)
0	Sets a gap before the set point, in which the output is inactive
↓ set	If in doubt, set to 0
6882	Dead band for second output OUT2 (only for two-output controllers)
0	As for LP 1
↓ SET	If in doubt, set to 0
LER	Level access control (parameter locking)
0000	See explanation below

↓ SET over again

Level access control (parameter L 드 낟)

- $L \subseteq U = \Box | \Box \Box =$ levels 1 and 2 are accessible, and their parameters may be adjusted;
- \overline{L} \overline{L} \overline{P} = \overline{D} \overline{L} \overline{D} levels 1 and 2 are accessible, but only the parameters from level 1 may be adjusted;
- $L \subseteq U = \Box \Box \Box \Box I$ levels 1 and 2 are accessible, but their parameters (except for set point) may not be

adjusted;

 $L \subseteq H = \Box | \Box |$ - only level access control parameter may be adjusted.

The level access control parameter may always be adjusted.

 $L \subseteq U = \square \square \square \square$ allows access to level 3 (from level 2, press and hold **SET** $\mu \triangleleft$ for 5 s)

 $\lfloor \lfloor \lfloor L \rfloor = 1 \rfloor \rfloor$ allows access to level 4 (from level 2, press and hold SET u \triangleleft for 5 s)

Proportional band (parameters P { and P_{2})

The relation between the proportional band P and the proportional gain K_P is as follows:

K_P = 10 000 / (P * INPUT_RANGE),

 K_{P} [%/°C] is the proportional gain, P[%] is the proportional band,

INPUT_RANGE [°C] is the input range high limit (e.g. with input range -200...400 °C, INPUT_RANGE = 400)

Relationship between PID input and output when both integration and differentiation are switched off

PID control internal structure

3.4.3. Programming at LEVEL 3 To access level 3, first set [[]]] from level 2. To enter level 3, press and hold SET and ◀ for 5 seconds. To switch back to level 1, depress SET and ◀ again.

inP l	Input type selection – sensor type and range
65	select input range and type
↓ set	See Appendix 4.1. Input type and range codes. Switching from T/C (voltage) to RTD input type or vice-versa requires hardware adjustment (see 5.3).
Ant I	Zero adjustment of the analog input for the main output
0	Range: L 5 P L to U 5 P L
↓ SET	Makes sense only when the selected input type code is among Rn 1 Rn 5 See Appendix 4.4. Linear input adjustment
8nH	Span adjustment of the analog input for the main output
5000	As for HnL 1
↓ SET	See Appendix 4.4. Linear input adjustment
dP	Measured value decimal point position (display accuracy)
0000	Sets decimal point position
\downarrow Set	
LSPL	Low limit for measured value and set point
0.0	Sets low limit for measured value and set point (narrows input range)
\downarrow SET	With linear input, sets display value at low limit of the input range (e.g. 2 Bar for 4 mA)
USPL	Higher limit for measured value and set point
400.0	Sets higher limit for measured value and set point (narrows input range)
↓ SET	With linear input, sets display value at high limit of the input range (e.g. 16 Bar for 20 mA)
Aurs	Zero adjustment of the analog input for the second output
0	Range: L 5 P L to U 5 P L
↓ SET	Makes sense only when the selected input type code is among $R_n + R_n S$
8nH2	Span adjustment of the analog input for the second output
5000	As for AnL 2

	Alarm #L / type
01	Range: 00 to 19 (See Appendix 4.2. Alarm type and function)
↓ SET	-
ALF I	Delay of alarm #L l activation in profile control mode
0	Range: 0 to 99.59 min
↓ SET	0 = flicker alarm, 99.59 = continued, other values = on-delay time
8695	Alarm #L 2 type
01	Range: 00 to 19
↓ SET	
ALF5	Delay of alarm 🕂 🕹 activation in profile control mode
0	Range: 0 to 99.59 min
↓ SET	0 = flicker alarm, 99.59 = continued, other values = on-delay time
RLd3	Alarm AL 3 type
01	Range: 00 to 19
\downarrow Set	
ALF3	Delay of alarm 🕂 🛃 activation in profile control mode
0	Range: 0 to 99.59 min
↓ SET	0 = flicker alarm, 99.59 = continued, other values = on-delay time
HYSA	Alarm hysteresis
0	Range: 0 to 1000
↓ SET	-
CL0 I	Calibration of the low limit of the main control output (in case of analog output)
150	Range: LSPL to USPL
↓ SET	See Appendix 4.5. Analog output adjustment
C H O I	Calibration of the high limit of the main control output (in case of analog output)
3500	Range: 0 to 9999
↓ SET	See Appendix 4.5. Analog output adjustment

CL 02	Calibration of the low limit of the second control output (in case of analog output)
150	Range: L SPL to USPL
↓ SET	
C H D 2	Calibration of the high limit of the second control output (in case of analog output)
3500	Range: 0 to 9999
↓ set	
CL03	Calibration of the low limit of the retransmission output (in case of analog output)
	As for []]
↓ SET	
C H D 3	Calibration of the high limit of the retransmission output (in case of analog output)
	As for [H]]
↓ SET	
rU[Y	Full travel time of motor valve (w/o slide-wire position feedback)
00	Range: 0 to 150 s
↓ SET	
JR IE	WAIT - Waiting for the current segment to end after the time is up in profile control mode
0	0 = no waiting; other values = max. admissible diversion of PV from the set point, at reaching which the segment may end
↓ SET	
SEER	Additional settings
SEER 0000	Additional settings SETA.1/2/3=1 changes the relays AL1/2/3 action to reverse (NC) SETA4.4=0 or 1 sets profile program RUN ALARM or END ALARM
5 <i>E</i>	Additional settings SETA.1/2/3=1 changes the relays AL1/2/3 action to reverse (NC) SETA4.4=0 or 1 sets profile program RUN ALARM or END ALARM
5EER 0000 ↓ set idn0	Additional settings SETA.1/2/3=1 changes the relays AL1/2/3 action to reverse (NC) SETA4.4=0 or 1 sets profile program RUN ALARM or END ALARM ID number for serial communication
5EER 0000 ↓ SET idn0	Additional settings SETA.1/2/3=1 changes the relays AL1/2/3 action to reverse (NC) SETA4.4=0 or 1 sets profile program RUN ALARM or END ALARM ID number for serial communication
5EER 0000 ↓ SET idn0 ↓ SET	Additional settings SETA.1/2/3=1 changes the relays AL1/2/3 action to reverse (NC) SETA4.4=0 or 1 sets profile program RUN ALARM or END ALARM ID number for serial communication
5EER 0000 ↓ SET idn0 ↓ SET bRUd	Additional settings SETA.1/2/3=1 changes the relays AL1/2/3 action to reverse (NC) SETA4.4=0 or 1 sets profile program RUN ALARM or END ALARM ID number for serial communication Serial communication baud rate
5EER 0000 ↓ SET idn0 ↓ SET bRUd 2400	Additional settings SETA.1/2/3=1 changes the relays AL1/2/3 action to reverse (NC) SETA4.4=0 or 1 sets profile program RUN ALARM or END ALARM ID number for serial communication Serial communication baud rate Range: 110 to 9600 bps
5EER 0000 ↓ SET idn0 ↓ SET bRUd 2400 ↓ SET	Additional settings SETA.1/2/3=1 changes the relays AL1/2/3 action to reverse (NC) SETA4.4=0 or 1 sets profile program RUN ALARM or END ALARM ID number for serial communication Serial communication baud rate Range: 110 to 9600 bps

.

5205	Set-point shift
0	Range: -1000 to 1000
↓ SET	Unless there is a particular reason, it is recommended to set $5205 = 0$
P <u>"</u> 05	Measured-value shift
0	Range: L 5 P L to U 5 P L
↓ SET	Convenient for calibration
Un it	Measurement unit for measured value and set point
Ľ	Range: [= °C, F = °F, 🖪 = analog input
↓ SET	
PYFF	PV filter
1000	Smaller values result in faster reaction, greater values - in better filtering
↓ SET	Adjust the filtering to avoid flickering of input measurement
E 85E	(reserved)
↓ SET	
004	Output action direction
HERF	HERE = heating action of output OUT1 , cocl = cooling action of output OUT1
↓ SET	Correspond respectively to direct and reverse action. The action of OUT2 is always the opposite of that of OUT1
OPRd	Control algorithm
P 'q	Range: PID, Fuzzy
↓ SET	PID control incorporates PID Auto-tune and ON/OFF
H <u>-</u>	Power supply frequency
50	Range: 50 Hz or 60 Hz
↓ SET over again	Match local mains frequency!

3.4.4. Programming at LEVEL 4

To access level 4, first set $\lfloor [L] = 1 \rfloor \rfloor$ from level 2. To enter level 4, press and hold **SET** and \blacktriangleleft for 5 seconds. To switch back to level 1, depress **SET** and \blacktriangleleft again.

The parameters from level 4 grant (1) and deny (0) access to parameters from levels 1, 2, and 3. Other parameters from level 4 enable (1) and disable (0) certain controller functions.

Parameter symbols $-5EED \dots 5EED$ - appear on the upper (red) display. To browse among the parameters, use **SET**.

Each of the four digits of the lower (green) display grants/denies parameter access or enables/disables function. Thereby, a single parameter (e.g. 5EL) with its four digits controls four parameters or functions.

0 = denies access to parameter / disables function, 1 = grants access to parameter / enables function

↓ SET

4. **APPENDICES**

Input type and range codes $(\prod_{i} P_{i})$ 4.1.

TYPE	CODE	RANGE	
к	51	0.0 ÷ 200.0 °C	
	55	0.0 ÷ 400.0 °C	
	53	0 ÷ 600 °C	
	ĽЧ	0 ÷ 800 °C	
	25	0 ÷ 1000 °C	
	26	0 ÷ 1200 °C	
]	0.0 ÷ 200.0 °C	
	75	0.0 ÷ 400.0 °C	
	73	0 ÷ 600 °C	
J	JЧ	0 ÷ 800 °C	
	72	0 ÷ 1000 °C	
	36	0 ÷ 1200 °C	
D	r	0 ÷ 1600 °C	
R.	гZ	0 ÷ 1769 °C	
S	51	0 ÷ 1600 °C	
3	52	0 ÷ 1769 °C	
В	Ь 1	0 ÷ 1820 °C	
E	Εl	0 ÷ 800 °C	
	62	0 ÷ 1000 °C	
Ν	n	0 ÷ 1200 °C	
	n2	0 ÷ 1300 °C	
Т	Εl	-199.9 ÷ 400 °C	
	55	-199.9 ÷ 200 °C	
	£3	0.0 ÷ 350.0 °C	
W	ūΪ	0 ÷ 2000 °C	
	ūΖ	0 ÷ 2320 °C	
PLII	PL I	0 ÷ 1300 °C	
	PL2	0 ÷ 1390 °C	
	UI	-199.9 ÷ 600.0 °C	
U	80	-199.9 ÷ 200.0 °C	
	8	0.0 ÷ 400.0 °C	

TYPE	CODE	RANGE	
L	LI	0 ÷ 400 °C	
	75 7	0 ÷ 800 °C	
	JP (-199.9 ÷ 600.0 °C	
	765	-199.9 ÷ 400.0 °C	
JIS	JP 3	-199.9 ÷ 200.0 °C	
Pt100	јрч	0 ÷ 200 °C	
	JPS	0 ÷ 400 °C	
	JP6	0 ÷ 600 °C	
	dP ¦	-199.9 ÷ 600.0 °C	
	965	-199.9 ÷ 400.0 °C	
DIN	dP3	-199.9 ÷ 200.0 °C	
Pt100	dРЧ	0 ÷ 200 °C	
	dPS	0 ÷ 400 °C	
	dP6	0 ÷ 600 °C	
	JP. 1	-199.9 ÷ 600.0 °C	
	382	-199.9 ÷ 400.0 °C	
JIS	JP.3	-199.9 ÷ 200.0 °C	
Pt50	JP.4	0 ÷ 200 °C	
	JP.S	0 ÷ 400 °C	
	JP.6	0 ÷ 600 °C	
AN1	8n l	-10 ÷ 10 mV 1999 ÷ 9999	
	8n2	0 ÷ 10 mV	
AN2		0 ÷ 20 mA w/ 0.5 Ω^*	
		1999 ÷ 9999	
	An 3	0 ÷ 20 mV	
AN3		0 ÷ 20 mA w/ 1 Ω*	
		1999 ÷ 9999	
AN4	ጸনዓ	0 ÷ 50 mV	
		0 ÷ 20 MA W/ 2.5 52 1000 ± 0000	
AN5		$10 \pm 50 \text{ mV}$	
	8n5	4 ÷ 20 mA w/ 2.5 Ω*	
		1999 ÷ 9999	

* A 0.5% tolerance resistor should be connected in parallel with the input.

If not specially requested, the input is factory configured to type K (*L* 2).
 To change the input type from thermocouple to RTD or vice-versa, open / close respective jumper pads on the PCB (see detailed explanation bellow).

4.2. Alarm type and function

CODE	ALARM TYPE	SUPPRESSION
00/10	No alarm	
01	Deviation from set point - high limit	YES
11	Deviation from set point - high limit	NO
02	Deviation from set point - low limit	YES
12	Deviation from set point - low limit	NO
03	Deviation from set point – low and high limits	YES
13	Deviation from set point – low and high limits	NO
04/14	Deviation from set point INVERTED – low and high limits	NO
05	Exceeding absolute value	YES
15	Exceeding absolute value	NO
06	Falling below absolute value	YES
16	Falling below absolute value	NO
07	End of period (only for profile control)	-
17	End of program (only for profile control)	-
08	System error – alarm goes ON	-
18	System error – alarm goes OFF	-
09	Enables RAMP-SOAK function	-
19	Timer alarm activated after predefined time	-

* "suppression" means that after power-on, alarm action is suppressed until the alarm situation normalizes at least for a moment. In this way, alarm activation is avoided while the system is reaching steady state.

Detailed alarm function diagrams are given on the next page.

4.3. Error Messages

in IE	sensor open
RdEF	* DAC failure
E JE E	* input measurement circuit failure or loose / missing cold junction temperature compensation sensor on controller back
ingE	additional input open
UUU I	measured value above high set-point limit (parameter 🏭 🦕 P L)
nnn	measured value below low set-point limit (parameter ${\tt L}$ 5 ${\tt P}{\tt L}$)
0002	additional input signal above high range limit
იიი2	additional input signal below low range limit
r R <u>P</u> F	* RAM failure
intF	interface problem
AUFE	unsuccessful auto-tuning

! When a message marked with " * " appears and stays, send the controller for repair.

SV (set point)

Alarm limit

4.4. Linear input adjustment

When the device input is programmed as analog linear input, the correspondence between input voltage (current) and displayed value may be specified. For instance, the correspondence may be from 10 mV input \rightarrow 0 °C to 50 mV input \rightarrow 1000 °C. For this purpose, the following parameters are used: Π_{Π} , Π_{Π} , Π_{Π} , and Π_{Π} . The displayed range defined by Π_{Π} , $\Pi_{$

- Connect a calibrator to the controller analog input.
- From level 4, grant access to parameters $\mathbf{P}_{\mathbf{n}}$ [$I, \mathbf{P}_{\mathbf{n}}$ H I, and \mathbf{d} P by setting $\mathbf{S} \in \mathbf{E} = \mathbf{X} \mathbf{X}$ \mathbf{X} .
- Enter level 3 and select the desired range of the analog input by setting , $P_{n}P_{n}$ (see Appendix 4.1).
- Set the calibrator to generate a signal (voltage or current) corresponding to the lower end of the input range.
- From level 3, enter parameter value adjustment mode for R_nL / for the displayed value at the lower end of the input range. Values appear on both displays. The value on the upper display is the measured value that the device would display with the current input value. To make the adjustment, increase or decrease the value on the lower display <u>until the upper display shows the desired measured value to be displayed in normal operation at lower input range</u>.
- Set the calibrator to generate a signal (voltage or current) corresponding to the higher end of the input range.
- From level 3, enter parameter value adjustment mode for $\mathcal{H}_{\Pi}\mathcal{H}$ i for the displayed value at the higher end of the input range. Values appear on both displays. Increase or decrease the value on the lower display <u>until the upper display shows the desired measured value to be displayed in normal operation at higher input range</u>.
- Repeat the last four steps until satisfactory correspondence is achieved at both input range ends.
- If necessary, from level 3, adjust the position of the display decimal point via dP.

4.5. Analog output adjustment

When the device has a linear output, it is factory tuned by default. If readjustment is necessary, follow this procedure:

- For easier adjustment, switch to manual mode by pressing the A/M key (The MAN LED should light up).
- Connect a mA-meter to the controller analog output.
- From level 4, grant access to parameters [[]] and [H]] | by setting 5 E E H = 1XXX.
- From level 2, set to the parameter P 1 a value other than zero. Set also [4] = [].
- From level 1, set [] [] [] (minimum output value). At this moment, if factory setting is correct, the output current should be 4 mA.
- If adjustment of the output setting is needed, from level 3, change the value of parameter [[]] for low control range limit. Increased / decreased the value, until the miliammeter reads 4 mA. Try with [[]] =]]]]

ATTENTION: At an attempt to achieve currents lower than 2-3 mA, considerable nonlinearity appears, since the device is designed for output 4...20 mA, and not for 0...20 mA.

- Set $\Box \sqcup L = I \Box \Box$. At this moment, if factory setting is correct, the output current should be 20 mA.
- If adjustment is needed, from level 3, change the value of parameter [H] | for high control range limit. Increased / decreased the value, until the miliammeter reads 20 mA. Try with [H] | = 3095.
- Repeat the last four steps until satisfactory correspondence is achieved at both range ends.
- Note: In the case of such configuration first control output analog, second control output relay type for better operation of the analog output, is advisable to disable the relay control output by setting, from level 4, [] [] L L = [].

4.6. RAMP-SOAK adjustment

The Ramp-Soak function is available ONLY for models with standard PID-Fuzzy algorithm (not with pattern set point)! To program the RAMP function, follow the procedure below:

- From level 4, set SEL2 = XXX 1 to enable RL3 access
- From level 4, set SEE4 = XXX | to access RL d 3
- From level 3, set A = 9 to enable RAMP function it will replace A = 9 by A = 9
- From level 1, adjust the ⊢ 用□P slope from 00.00 to 99.99 [°C/min]

To program the SOAK function, follow the procedure below:

- From level 3, set $\exists l d l (\exists l d d) = l d$ to use SOAK timer function
- From level 1, adjust the **AL I** (**AL Z**) Soak time from 00.00 to 99.59 [h.min] The following example illustrates RAMP-SOAK function:
 - Let 5¹/₁ = 100 °C, A⁻/₂P = 10.00 °C/min, A⁺/₁ = 00.10 min, P⁺/₂ = 25 °C

4.7. Profile (pattern) control programming

The profile control with is available ONLY for models with PID-Fuzzy algorithm with pattern set point! To program the profile control, follow the procedure below:

- From level 4, set 5 E L B to adjust profile program repeat, start and power failure options
- From level 4, set 5 E E 9 to adjust time units
- From level 3, set $5\overline{E}\overline{E}\overline{R}$ to adjust profile program run or end alarm
- From level 3, set IR IE to adjust WAIT option
- Set the alarm type "07" and alarm functions as described in 4.2
- From level 1 follow the steps below to create a pattern, consisting of RAMP and SOAK segments (up to 2 patterns with 8 segments or 1 pattern with 16 segments can be created)

Note: If you want the program to stop before the 8th or 16th segment just set the last segment [] [] to '0'.

4.7.1. Keyboard operating commands

- Program starts by pressing \blacktriangle . PRO front panel LED starts to blink
- Program holds by pressing $\mathbf{\nabla}$ (pause). PRO stops blinking but lights
- To jump to previous segment press ▲+SET
- Program stops (RESET) by pressing ▼+SET. PRO front panel LED will be off.

LEVEL 1			
↓ set			
РЕП	Set-point patterns (profile programs)		
1	Range: 1 - for 1 pattern with 8 segments, 2 - for 2 patterns with 8 segments each 1 - links 2 patterns together (16 segments)		
↓ SET			
5EG	Displays the current pattern segment		
1_1	Range: 1_1 (1 st pattern_1 st segment) to 2_8, 1_0 means program stopped		
↓ SET			
t "Cr	Program countdown timer - displays the rest segment time		
00.00	Range: 0 to 99:59 (hours or minutes, depending on SET9.2)		
↓ SET	-		
512 1	Set-point value at the end of segment 1		
	Range: L 5 P L to U 5 P L		
↓ SET	-		
£7.1	Time duration of segment 1		
00.00	Range: 0 to 99:59 (hours or minutes, depending on SET9.2)		
↓ SET			
0UE I	Output limit of segment 1		
100.0	Range: 0 to 100% (100 - no limit, 0 - cancels the segment and ends the program)		
•••	-		
51.8	Set-point value at the end of segment 8		
	Range: L 5 P L to U 5 P L		
↓ set			
£7.8	Time duration of segment 8		
00.00	Range: 0 to 99:59 (hours or minutes, depending on SET9.2)		
↓ set			
0068	Output limit of segment 8		
100.0	Range: 0 to 100% (100 - no limit, 0 - cancels the segment and ends the program)		
↓ SET	Returns to LEVEL 1		

5. MOUNTING AND WIRING

5.1. Mounting

The controller overall dimensions, recommended panel cut-outs and controller-to-controller minimum clearance for the different case types are given in the table below.

I

┥

С

►

5.2. Wiring

The wiring diagrams showing input, output, and power supply connections for the different case types are given below. The cold junction temperature compensation sensor is represented by diode symbol.

5.3. Input type selection

If the input type has to be changed from thermocouple (voltage) to RTD (resistance) or vice-versa, two couples of pads on controller circuit board have to be connected or disconnected respectively.

5.4. Electro-magnetic interference (EMI) issues

If high-energy electric spikes are allowed to get into device circuitry, the microprocessor may be misled and unpredictable erroneous functioning may result.

Devices that may cause all the types of noise coupling described above, especially when switched on and off, are: big electromechanical relays, contactors, electrical motors, gas-filled lamps (tubes), welding equipment, solid state inverters, and light dimmers, and the cables leading to such devices.

As a summary, the cause of interference in most cases above is generally the abrupt current switching. There are two general approaches to avoiding electromagnetic interference:

- to suppress noise at the source - this is the best approach but is applicable only to major noise sources;

- to protect your device and especially the signal and power lines connected to it from unwelcome EMI.

5.4.1. Protecting the cables leading to your device

- Use cables in compliance with the particular device application.
- Never lay signal wires close in parallel with power supply or actuator wires. If this happens you will never get a steady measurement. Leave 10...15 cm between long parallel signal and power cables.
- Only similar signals may be run close together. Package input signal wires into twisted couples and shield.
- Arrange power and signal cables crossing at right angle and at the maximum possible distance.
- Signal cable branching and terminals are susceptible to noise and should be arranged away from noise sources.
- Connect reliably the ground at measurement point and controller ground with thick stranded wire.
- All shields must be reliably grounded at one end, preferably at your device end. An ungrounded shield may be worse than no shield at all.

5.4.2. Supply circuit recommendations

The AC supply voltage and frequency must be kept within the stated limits. Use stabilizer if necessary. Avoid sharing supply lines with powerful consumers, especially inductive loads switched on and off (e.g. motors, lighting, etc.). To provide current supply for your device and at the same time stop unwelcome interference signals, use shielded 1:1 isolation transformer (there are special designs of anti-interference transformers). A high quality anti-interference filter may also prove useful.

5.4.3. Suppressing major noise sources

Major noise sources are usually inductive loads switched on and off (motors, solenoids, relays, etc). A voltage-surge suppressor should be connected in parallel with the inductance or, if this is not possible, in parallel with the switching contacts. A metal-oxide varistor (MOV) and RC network should be used.

Inductive loads

To suppress high-voltage spikes, connect a metal-oxide varistor (MOV) in parallel with and as closer as possible to the inductance. An RC network in parallel with the varistor is highly recommended. It should constitute of a wire-wound or carbon resistor in series with a X/Y-type AC high-voltage capacitor. Select resistor power in relation to the inductance voltage. Keep RC network leads as short as possible.

Contacts

When a contact opens and breaks inductive load circuit, a certain amount of energy stored in the inductance has to be released. If there is no varistor or RC network to dissipate it, the voltage rises abruptly and an electric arc is formed between opening contacts. This causes both electromagnetic interference and contact life shortening. To 'quieten' the arc, connect an RC network in parallel with the contact. To provide extra circuit protection in cases of voltages higher than 200 V, add MOV in parallel. Please note that at 230 V, 50 Hz supply, up to 7 mA current may flow through the network. A varistor may be added, but the RC network should already be present.

Direct current (DC) circuits

In parallel with the inductive load, connect a network consisting of a diode in series with a resistor. Mind that the resistance should be less than that of the inductive load.

6. SERIAL INTERFACE

If serial interface is installed, follow the additional requirements given in the supplemental COMMUNICATION MANUAL (CD or printed version) or download it from <u>http://www.comeco.org/downloads</u>.