IC Audio Power Amplifiers: Circuit Design For Audio Quality and EMC

Stephen Crump http://e2e.ti.com Audio Power Amplifier Applications Audio and Imaging Products 18 August 2010

Contents

- IC Audio Power Amplifier (APA) Circuits
- APA Input Circuits
- APA Power Supply Circuits
- APA Output Circuits
- APA Reference and Control Circuits
- Appendix: Component Data

IC Audio Power Amplifier Circuits

- IC audio power amplifier (APA) circuits include sub-circuits with different requirements.
- We will examine how to design these circuits for best performance.

IC Audio Power Amplifier Circuits

Audio Power Amplifier Input Circuits

- Gain Setting and Input Impedance
 - Input Source Configurations
 - Input DC Blocking Capacitors
- Input Filters for Sigma-Delta DACs

Gain Setting

- Fixed Gain
 - Fixed by internal resistors

- Internal Gain Steps or Volume Control
 - Gain set by variable resistors

- External Input Resistors
 - Gain set by external resistors

Gain and Input Impedance

- Input impedance depends on gain because resistors depend on gain.
- Input Z is usually lowest at highest gain. Gain and input Z are specified in IC APA data sheets.
- For external resistors Zin = external R.
- (For a differential input, input impedance is for <u>each side</u>.)

Input Source Configurations

- Single ended source:
 - DC blocking caps required.
 - Turn-on/off must be slow to avoid pop.
- Ground a differential APA input at the source, not the APA.
- This lets APA CMRR reject ground noise between APA and source.

Input Source Configurations Cont'd.

- Differential source:
 - DC blocking caps not required IF DC bias is within APA input common-mode range.
 - Pop does not require slow turn-on/off and is much less difficult.
- Input capacitors may still be used to produce a high-pass response if this is desirable.

Input DC Blocking Capacitors

- When DC blocking capacitors are used, a cap is required at each side of a differential input.
- The cap, Cin, and APA input impedance, Zin, create a high-pass response.

High-Pass Frequency vs. Gain

- When gain or volume is changed, high-pass frequency f.hp can change as well, because Zin changes.
- Choose Cin for target f.hp at the highest gain.
- f.hp will be lower at lower gain, and so frequency response will remain good.

Input Capacitor Material

- High-K capacitors that have large temperature coefficients typically also have wide tolerances, so their variability is large.
- This includes material like Y5V or Z5U.
- These capacitors can cause large variations in high-pass f.hp.

Input Capacitor Material Cont'd.

- High-K capacitors also have large coefficients of capacitance versus DC and AC voltage.
- Their capacitance falls with DC bias, by as much as 80% or more at rated DC voltage.
- This effect will increase f.hp dramatically.

Input Capacitor Material Cont'd.

- A large coefficient of capacitance versus DC voltage is the worst effect in a high-K cap.
- Low-frequency AC across these caps will modulate capacitance, causing high distortion at low frequencies where cap voltage is high.
- This effect is much smaller for X5R and X7R material.

Input Capacitor Matching

- If input capacitors at a differential input are not well matched, they will charge at different rates.
- The difference creates a net input which produces a pop.
- This pop is avoided if the tolerance of the input capacitors is 5%.

Input Capacitor Selection

- These are all good reasons to avoid using capacitors made from materials like Y5V!
- We recommend using capacitors made from materials like X5R or better with 5% tolerance.
- Film capacitors may be required in the most demanding applications.
- Capacitor voltage rating should be at least twice the application voltage (power supply voltage).
 - For inputs, the application voltage is the input stage supply voltage.
 - For outputs it is the output stage supply voltage.

Input Capacitor Selection

 These rules apply generally to all capacitors used in audio circuits - better materials help maintain audio quality, including good frequency response and low THD.

Input Capacitor Relationships

- Most IC APAs require bypass capacitors on critical analog reference voltages.
- The value of the input caps usually must be a specific multiple of the value of the bypass caps to prevent turn-on and turn-off pop.
- These relationships are described in data sheets for individual IC APAs.
- NOTE that rules about cap material for input caps also apply to bypass caps.

Sigma-Delta DAC Noise

- All DACs produce noise that extends well above audio frequencies.
- This effect is strongest in sigma-delta DACs.
- Some of the out-of-band noise of a sigma-delta DAC can be modulated into the audio range where it will increase APA output noise.

Filters for Sigma-Delta DAC Sources

- This problem can Rlp Clp occur in Class-AB or Class-D APAs. <u>ΣΔ</u> • Fortunately, it can <u>Source</u> be eliminated with Rlp Clp a simple RC low-pass filter at the APA input. f.lp = 30 to 50 kHz; -3dB at f.lp Make Rlp << Zin; then response f.lp = 1 / (2pi * Rlp * Clp).-20dB/decade
- Set f.lp between 30kHz and 50kHz.

frequency

Audio Power Amplifier Power Supply Circuits

- APA Circuit Resistances
 - Decoupling Capacitors

APA Circuit Impedances

• Audio power amplifier circuits include other impedances than load & APA output devices.

• Power supply, ground and output impedances Zp-s, Zgnd and Zout must be small compared to load impedance to maintain efficiency.

Decoupling Capacitors

- APA circuits require decoupling caps in their power supply circuits, as shown in this schematic from Differential the TPA3100D2 Analog AGND Inputs 71_{1.0}E data sheet. 4-Step Gain Control GAIN ynchronize Multiple Class-D Device
- These include high-frequency caps (1µF here) and bulk caps (220µF here).

High-Frequency Decoupling Caps

- High-frequency decoupling caps are required to provide very low power supply impedance at high frequencies.
- For this reason high-frequency caps should be placed no more than 1mm from APA power and ground pins.

* Cap placed 1mm from the IC, with strong power & ground connections

High-Frequency Decoupling Cont'd.

- Proper use and placement of high-frequency decoupling caps is especially important with class-D APAs.
- By providing low impedance at high frequency, good high-frequency decoupling traps switching currents in tight loops immediately at the APA.

• This prevents these currents from flowing into other parts of the circuit.

High-Frequency Decoupling Cont'd.

 Good high-frequency decoupling caps also minimizes overshoot and ringing on the power supply line caused by current transients in power supply parasitic inductance.

• All of this is important for audio performance, reliability and EMC.

High-Frequency Decoupling Cont'd.

- High-frequency caps also store a small amount of energy to stabilize power supply voltage.
- However, this is enough to help ONLY at very high frequencies: 1A from a 1µF cap for even 1uS reduces its voltage $\Delta V = I * \Delta t / C = 1V$.
- So an APA also requires low-frequency bulk decoupling capacitance, much larger than the high-frequency capacitance.
- A low-impedance power supply connection is still vital decoupling does not replace it.

Bulk (Low-Frequency) Decoupling

- Bulk decoupling caps are required to stabilize power supply voltage at the IC APA when large low-frequency load currents are generated.
- For this reason bulk decoupling caps should be placed as close as possible to APA power and ground pins.

- * Cap placed so its leads are within 10mm of the IC, with strong power & ground connections
- This is important for stabilizing supply voltage.

Decoupling Cap Characteristics

- High-frequency decoupling caps should be high quality ceramic SMD components.
- Just as capacitors made of materials like Y5V should not be used in audio circuits, they should not be used in decoupling circuits, because their capacitance is undependable.
- To be sure of achieving the needed capacitance, use capacitors made of X5R or better material with tolerances of 10%.

Decoupling Caps Cont'd.

- Bulk decoupling caps in low-power circuits can also be good quality ceramic SMD components, in X5R or better material.
- Use high-quality electrolytics as bulk decoupling caps in high-power circuits to give the needed capacitance in reasonably small volume.
- These should be radial-lead parts, because selfinductance is lower than in axial parts.
- They should be low-ESR caps with ripple current ratings greater than peak load currents, to avoid issues with ripple currents flowing in them.

Audio Power Amplifier Output Circuits

- Output DC Blocking Capacitors
- EMC Filters (LC and Ferrite Bead)
 - Output and EMC Snubbers

Output DC Blocking Capacitors

- Single-ended APAs with single power supplies require DC blocking caps at their outputs.
- The cap, Cout, and load impedance, Zload, create a high-pass response.
- f.hp = 1 / (2pi * Cout * Zload)

DC Blocking Cap Characteristics

- As with low-frequency bulk decoupling caps, use high-quality electrolytics as DC blocking caps feeding loudspeaker loads to give the needed capacitance in reasonably small volume.
- These should be radial-lead parts, because selfinductance is lower than in axial parts.
- They should be low-ESR caps with ripple current ratings greater than peak load currents, to avoid issues with load currents flowing in them.

Class-D APA Output Filters for EMC

- Switching outputs of Class-D APAs can produce harmonics that extend to several hundred MHz, so they may require output filters for EMC.
 - LC filters are usually needed for switching voltages above 12V or output cables more than ~22 inches, ~56 cm, long.
 - Ferrite-bead + capacitor filters may work for lower switching voltages or shorter output cables.
- TI APAs that use BD modulation often do not require filters for EMC when used with output cables less than ~3 inches, ~7.6 cm, long.

Inductor+Capacitor Output Filters

- LC filters like the differential output filter shown here are intended to attenuate the full band of RF harmonics.
- Characteristic frequency of this LC filter is f.flt = 1 / (2pi * sqrt(Cflt*Lflt)).
- Q of the differential output to the load = Rload / (2*sqrt(Lflt/Cflt)).

LC Filter Audio Response

- If filter differential Q = 0.707, response is -3dB at f.flt, with no peaking.
- Higher Q produces a response peak, but this will not be a problem if f.flt is well above 20kHz.
- All loudspeakers include inductance, and load inductance can cause ripples in response!

Increasing LC Filter Frequency

- So it is tempting to increase LC filter frequency.
 - Higher frequency filters use lower-value inductors, and these are smaller and cheaper.
 - Higher frequency filters force filter response peaks farther above 20kHz, so peaks matter less.
- HOWEVER, there are good reasons to minimize LC filter frequency, too we will look at these.
 - Higher frequency filters have less attenuation at RF frequencies and so are less likely to provide EMC.
 - Higher frequency filters may conduct common-mode currents at the switching frequency.

LC Filter RF Response

- Higher filter frequencies roll off later, reducing filter RF attenuation.
- In addition, real LC filter components include parasitic elements like
 C.L and L.C in the schematic at right.
- These limit attenuation even more, as shown in the graph at right.

Differential versus Common-Mode

- We usually think of an APA driving a filter with differential signals.
- The load resistance provides damping and keeps filter Q low.
- However, there is some common-mode signal as well as differential signal in all APA outputs.

LC Filter Common-Mode Response

- With equal voltages at each terminal the load cannot provide damping.
- So common-mode filter impedance has a notch at f.flt as shown at right.
- If this notch is close to the switching frequency f.sw, the filter will resonate and draw excessive current.

Choosing LC Filter Frequency

- So it is important to choose LC filter frequency in the range of about 30kHz to about 70kHz.
 - This places filter frequency above the audio range, to minimize errors in frequency response.
 - This also places filter frequency well below typical Class-D APA switching frequencies, 200 to 400 kHz, to avoid drawing extra current, increasing quiescent current by burning extra power.
 - This also keeps filter frequency to a fairly low value, so filter RF attenuation will be strong.
 - This permits using inductors with values between 33µH and 10µH.

LC Filter Component Characteristics

- To optimize LC filter performance and cost, we must understand component characteristics.
- We have already talked about SMD capacitors: the rules that apply for input capacitors also apply for output filter capacitors.
- Inductors also have limitations.
 - As noted above, parasitic capacitance in inductors reduces their usefulness above self-resonance.
 - Saturation causes loss of inductance at high currents.
 - DC resistance and core losses cause output losses.

Inductor Core Saturation

- At higher currents an inductor's core saturates, its permeability falls, and so inductance falls.
- Inductor saturation can reduce effectiveness of an LC filter.

 Inductor manufacturers specify I.sat at different percentages of inductance loss, so review their data sheets for this information.

Inductor Saturation Cont'd.

- Also, if inductance is not nearly constant at lower currents, the inductor can cause distortion.
- A loss of inductance of more than about 3% at peak load current can increase THD.

 For higher power H-bridges with overcurrent resistors, inductance must remain at least 5µH up to twice the OC setting for effective OCP.

Inductor Loss Elements

- Inductors also have DC resistance and core losses, which can cause significant losses in output power if they are not kept small.
- Core losses are negligible at audio frequencies, but in some inductors they are significant at switching frequencies.
- To avoid significant reduction of audio output power, total DC losses resistance plus inductor core losses should be limited to a small percentage of load power.

Ferrite-Bead+Capacitor Filters

- Filters with ferrite beads like the differential output filter at right attenuate higher RF harmonics.
- Characteristic frequency of the ferrite-bead filter is far above 20kHz, so it does not affect audio frequency response.

Simple Ferrite-Bead Model

- A simple model for a ferrite bead is a parallel L, R and C.
- An equivalent circuit for <u>+</u> a differential ferrite-bead filter, including filter cap with parasitic inductance, is shown at right.
- Lbd, Rbd and Cbd are bead L, R and C.

Ferrite-Bead Filter RF Response

- Bead impedance is shown in at right.
- Nominal RF response of a filter using this bead is shown in the bottom graph.
- Attenuation increases where the bead is inductive or resistive but falls where the cap is inductive.

Ferrite-Bead Saturation

- However, ferrite beads typically saturate more easily than inductors – bead impedance in many beads, lowat zero DC mpedance bead impedance frequency impedance current at 20% of rated falls by a factor of 10 x10 or current more! or more at a fraction of rated current! 00 frequency
- Ferrite bead current ratings are thermal and are not related to impedance!

Ferrite-Bead Saturation Cont'd.

- Audio currents are low enough in frequency to saturate ferrite beads like DC currents during their current peaks.
- Switching currents in ferrite beads can also cause saturation.
- Saturation can reduce low and mid frequency attenuation 20dB and more from levels we calculate with zero current impedance.

Ferrite-Bead Saturation Cont'd.

- Before using a bead, make sure its impedance remains high enough to provide adequate filtering at the peak currents it will carry!
- Not all bead vendors publish this information insist on getting it from the vendor before designing in a bead!
- The appendix includes some examples of vendor data about saturation.

EMC and Output Snubbers

- RC snubbers are used on the outputs of some ICs and output filters to improve EMC and THD.
- Component values for these snubbers are specified in data sheets and user guides.
- To achieve optimal performance follow these recommendations.

Audio Power Amplifier References and Control Circuits

- Analog Reference Voltages
- Class-D Triangle-Wave Oscillators
- Reference and Oscillator Grounding
 - Control Circuits

Analog Reference Voltages

- Analog references and regulators like VREG and VBYP are critical.
- They are typically bypassed with ceramic caps.
- The rules for these caps are the same as for input and decoupling caps.

Class-D Triangle-Wave Oscillators

Inputs

4-Step

onize Multiple

- A triangle oscillator controls Class-D APA switch timing.
- It may be controlled by a resistor and Differential Analog capacitor or just a resistor. Gain Control
- The triangle wave must be very pure to avoid adding noise and distortion.

<u>≦</u>20 ∩

33 µH

33 µH

Reference and Oscillator Grounding

- Any interference in components for references or the oscillator will cause noise and distortion.
- Ground them first to APA AGND, then to APA central ground.
- Differential Analog AGND Inputs INP VCLAMPE /1_μΕ LINN TPA3100D2 NC VCLAMP GAIN 4-Step Gain Control GA IN1 MSTR/SLV Synchronize Multiple Class-D Devices 55 SSLN ŝ NC ş 100 kΩ ≥ 220nF 33 µH 33 u.H
- This vital for good performance.

33 µH

33 µH

PVCC

PGNDR

PONDE

PGNDL

PGND

PVCC

₽ NC

220 µF

220 :

Ŧ

220n8

<u>≦</u>20 ∩

22.0nl

COUTP COUTP

10 V - 26 V

NC :AULT 3LUN

Logic and DC Input Control Circuits

- Logic inputs control shutdown, mute and other APA parameters, as well as gain in some APAs.
- When these are grounded they may be returned to central ground for the APA.
- Volume of some APAs is controlled by DC voltages from potentiometers or other circuits.
- Potentiometers should be grounded to AGND of the APA, not PGND, to prevent interference from power and output currents.
- Refer to instructions in data sheets about how to connect potentiometers to avoid problems.

QUESTIONS?

APPENDIX: Component Data

Capacitors

- Capacitor manufacturers generally provide graphs of impedance vs. frequency.
- The graph below is by Kemet. The added red line approximates Z of 1nF.

High-K Ceramic Capacitors

- It may seem desirable to use high-K (high dielectric coefficient) ceramic capacitors in audio circuits for their small size and low cost.
- HOWEVER: be aware that in application the actual working capacitance of these parts is typically much less than their nominal values!!!

High-K Capacitor Sensitivity

- Capacitance of high-K ceramic capacitors is sensitive to a number of factors.
 - Temperature.
 - Applied DC voltage.
 - Applied AC voltage.
 - Applied frequency.
- The worst of these are temperature and DC voltage.

Sensitivity to Temperature

• Capacitors made with high-K material can vary dramatically over temperature.

Typical tolerance and temperature coefficient of capacitance by material				
Material:	COG/NP0	X7R	X5R	Y5V
Typ.tolerance:	+/-5%	+/-10%	+/-10%	+80/-20%
TempCo:	+/-30ppm	+/-15%	+/-15%	+22/-82%
Range,C:	-55/+125C	-55/+125C	-55/+85C	-30/+85C

- A capacitor made with X5R material can lose 15% of its capacitance at a temperature in its working range!
- Y5V is much worse!

Sensitivity to DC Voltage

 The graph below illustrates the WORST loss of capacitance versus DC bias that we have observed for X5R and Y5V capacitors.

Effect of These Sensitivities

- Capacitance of high-K parts can be reduced to less than half of nominal at 50% of their rated DC voltage !!
- Combined effects of temperature and DC voltage can easily reduce capacitance to well under 50% of nominal !!
- There are also sensitivities to AC voltage and frequency. These are far less severe but they still make things a little worse!

Inductors

- Inductor manufacturers generally provide some information on saturation & resonant frequency.
- Here is an example. Resonance in Attenuation vs. Frequency reflects parasitic capacitance.

Ferrite Bead Saturation

- The graphs at right are from Fair-Rite, who provide relatively complete information on their beads.
- This is 2518121217Y3, the 120-ohm, 3A, 1812 bead used in our TPA3008D2 EVM.

More on Ferrite Bead Saturation

- TDK has provided this graph of impedance vs.
 DC current for their lowercurrent MMZ bead series.
- This can be used to predict saturation in higher-current beads like MPZ2012S221A, a 220ohm 3A 0805.

