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Abstract. We introduce the language QML, a functional language for
quantum computations on finite types. Its design is guided by its categor-
ical semantics: QML programs are interpreted by morphisms in the cate-
gory FQC of finite quantum computations, which provides a constructive
semantics of irreversible quantum computations realizable as quantum
gates. QML integrates reversible and irreversible quantum computations
in one language, using first order strict linear logic to make weakenings
explicit. Strict programs are free from decoherence and hence preserve
superpositions and entanglement – which is essential for quantum paral-
lelism.

1 Introduction

The discovery of efficient quantum algorithms by Shor [10] and Grover [2] has
triggered much interest in the field of quantum programming. However, it is still
a very hard task to find new quantum algorithms. One of the reasons for this
situation might be that quantum programs are very low level: they are usually
represented as quantum circuits, or in some combinator language which gives
rise to circuits. Here we attempt to remedy this situation by introducing the
quantum programming language QML, which is based on high-level constructs
known from conventional functional programming. Though functional (programs
are expressions), our language is first order and finitary; all datatypes are finite.
We will discuss possible extensions in the conclusions, but we believe that the
approach presented here represents a significant progress towards the goal of a
natural quantum programming language.

We present a semantics of our language by interpreting terms as morphisms in
the category of finite quantum computations FQC, which we introduce here. The
FQC semantics gives rise to a denotational semantics in terms of superoperators,
the accepted domain of irreversible quantum computation, and at the same
time to a compiler into quantum circuits, an accepted operational semantics for
quantum programs.

As an illustration, one of the basic quantum circuits is the Hadamard gate,
which is usually defined by presenting its matrix:

H =
1√
2

(
1 1
1 −1

)



But what does this mean in programming terms? In QML this operation is
implemented by the following program

had : Q2 ( Q2

had x = if◦ x
then {qfalse | (−1) qtrue}
else {qfalse | qtrue}

We can read H as an operation which, depending on its input qbit x, returns
one of two superpositions of a qbit. We can also easily calculate that applying
H twice gets us back where we started by cancelling out amplitudes.

An important feature of quantum programming is the possibility to create
superpositions which have non-local effects. A simple application of this idea is
the following algorithm to determine whether to bits, represented as qbits, are
equal, which is based on Deutsch’ algorithm (see [6], pp.32):

eq : Q2 ( Q2 ( Q2

eq a b = let (x , y) = if◦{qfalse | qtrue}
then (qtrue, if◦ a

then ({qfalse | (−1) qtrue}, (qtrue, b))
else ({(−1) qfalse | qtrue}, (qfalse, b)))

else (qfalse, if◦ b
then ({(−1) qfalse | qtrue}, (a, qtrue))
else ({qfalse | (−1) qtrue}, (a, qfalse)))

in had x
It exploits quantum parallelism by querying both inputs at the same time;

this corresponds to the fact that the expressions if◦ a and if◦ b in our program
are not nested. The famous algorithms by Shor and Grover rely on a more subtle
exploitation of this effect.

The reader may have noticed that we do not insist on quantum programs
being reversible. We will discuss this further in section 3, by comparing classical
and quantum computation. It turns out that in both cases irreversible computa-
tions can be reduced to reversible ones in a similar fashion. However, reversibility
plays a more central role in quantum computation due to the fact that forget-
ting information leads to decoherence, which destroys entanglement, and hence
negatively affects quantum parallelism. Thus one of the central features of our
language is control of decoherence, which is achieved by keeping track of weak-
ening through the use of strict linear logic and by offering different if-then-else
(or, generally, case) operators, one that measures the qbit, if , and a second, if◦,
that doesn’t – but which can only be used in certain situations.

2 Related work

Peter Selinger’s influential paper [8] introduces a single-assignment (essentially
functional) quantum programming language, which is based on the separation
of classical control and quantum data. This language combines high-level classi-
cal structures with operations on quantum data, and has a clear mathematical
semantics in the form of superoperators. Quantum data can be manipulated by
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using unitary operators or by measurement, which can affect the classical con-
trol flow. Our approach can be summarized as quantum control and quantum
data, and goes beyond Selinger’s approach by offering high level structures for
operating on quantum data. It is conceivable that the two approaches may be
combined leading to a hybrid language which uses QML expressions for opera-
tions on quantum terms.

There are a number of papers on simulating or integrating quantum program-
ming within conventional functional programming, e.g. [5] and [7]. The paper
by Sabry introduces an elegant approach to structure the access to quantum
data within a functional language. This is also useful when simulating quantum
programs in a classical setting. However, it also follows in principle the paradigm
of classical control and quantum data.

Yet another approach was suggested by Sanders and Zuliani [13], which ex-
tends the probabilistic guarded command language [4] by quantum registers and
operations on quantum registers. Yet like all the other approaches suggested so
far, it doesn’t offer high level operations on quantum data.

Andre van Tonder has proposed a quantum λ-calculus incorporating higher
order [11, 12] programs, however measurements are not treated explicitely and
he also follows the classical control and quantum data paradigm.

3 Finite classical and quantum computation

It is frequently emphasised that quantum computation relies on reversibility be-
cause quantum physics models reversible processes. This is true, but the same
holds for classical computation — whether we base our notion of computation
on Newtonian physics or Maxwellian electrodynamics, the underlying physical
processes are reversible. Hence we should explain irreversible classical computa-
tion based on a reversible mechanism. We will develop a picture which applies to
classical and quantum computation. This makes it easy to identify the essential
differences and also guides the design of QML which realises structures common
to both computational paradigms by syntactic constructs established in classical
functional programming.

We introduce the category FQC of finite quantum computations and, for
purposes of comparison, the category FCC of finite classical computations1.
We will interpret QML programs by FQC morphisms. It is straightforward
to identify a classical sublanguage of QML which can be interpreted in FCC;
however we will not carry this out in detail.

Objects of both categories are finite sets, for which we use the letters A,B,C.
While classical computations are carried out on the elements of those sets, quan-
tum computations take place in finite dimensional Hilbert spaces; we write CA

for the space generated by A. A reversible finite computation, that is a closed
computational system, is modelled by a reversible operation φ, which is a bi-
jection of finite sets in the classical case, and a unitary operator on the Hilbert
1 FCC may be viewed as a categorical account of a finite version of Bennet’s results

[1]
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spaces in the quantum case. We write A (unitary B for unitary operators, which
in the finite-dimensional case correspond exactly to norm-preserving linear iso-
morphisms. The initial state of a computation is divided into the input A and
the initial heap H, and the final state into the output B and garbage G; using
cartesian product (×) in the classical and tensor product (⊗) in the quantum
case. To actually perform a computation we also need a heap initialisation con-
stant h, which intuitively sets all memory cells in a defined state, e.g. 0. In the
classical case this is just an element of the set h ∈ H, while in the quantum case
it is an element of the vector space h ∈ CH . Such a computational system can
be visualised by the following diagram:

A B

φ

h
�

H G
�

Note that in the above diagram heap inputs are initialised with a `, and
garbage outputs are terminated with a a. To summarise, given finite sets A,B
a morphism (H,h,G, φ) ∈ FCCAB is given by:

– a finite set of initial heaps H,
– an initial heap h ∈ H,
– a finite set of garbage states G,
– a bijection φ ∈ A×H ' B ×G,

while a morphism (H,h,G, φ) ∈ FQCAB is given by

– a finite set H, the basis of the space of initial heaps,
– a heap initialisation vector h ∈ CH ,
– a finite set G, the basis of the space of garbage states,
– a unitary operator φ ∈ A⊗H (unitary B ⊗G.

Given two computational systems we can compose them by combining initial
and final heaps:

A
φα

B
φβ

C

Hα
�

>>
>>

>>

88
88

8 Gα
�

Hβ
�

������

����� Gβ
�

φβ◦α
More formally, given the morphisms α and β:

α = (Hα, hα, Gα, φα) ∈ FCCAB

β = (Hβ , hβ , Gβ , φβ) ∈ FCCBC

the composite morphism β ◦ α = (H,h,G, φ) is given by:

H = Hα ×Hβ

h = (hα, hβ)
G = Gα ×Gβ

φ = (Gα × φβ) ◦ (Hβ × φα)
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Note that we have omitted some obvious symmetric monoidal isomorphisms for
× from the definition of φ.

We leave it to the reader to construct the identity computation.
Analogously, given morphisms

α = (Hα, hα, Gα, φα) ∈ FQCAB

β = (Hβ , hβ , Gβ , φβ) ∈ FQCBC

the composite β ◦ α = (H,h,G, φ) is given by

H = Hα ⊗Hβ

h = hα ⊗ hβ

G = Gα ⊗Gβ

φ = (Gα ⊗ φβ) ◦ (Hβ ⊗ φα)

Note that ⊗ is actually × on the underlying finite sets, since CA⊗CB ' CA×B .
However, we shall use the tensor symbol because we interpret the constructed
set as the basis of the tensor product of the associated vector spaces. As in the
classical case we omit symmetric monoidal isomorphisms for ⊗.

We consider two computational systems as extensionally equal if they map
the same inputs to the same outputs. That is, for FCC, a morphism α =
(H,h,G, φ) ∈ FCCAB gives rise to a function on finite sets UFCC α ∈ A→ B
by

A×H
φ

// B ×G

π1

��
A

(−,h)

OO

UFCC α
// B

How do we do this for FQC? There is no sensible projection operation on
tensor products. Indeed, forgetting a part of a pure state (i.e. a vector of the
Hilbert space) leads to a mixed state, which is modelled by a density operator
δ ∈ A ( A. This is a self-adjoint operator, whose eigenvalues are interpreted as
the probability that the system is in the corresponding eigenstate. Extensionally,
quantum computations give rise to completely positive mappings, also called
superoperators, see [3], pp. 136 or [8] for details. Given α = (H,h,G, φ) ∈
FQCAB we write φ̂ ∈ A ⊗H (super B ⊗ G for the associated superoperator
φ̂ ρ = φ ◦ ρ ◦ φ†. The heap initialisation vector h ∈ CH can be lifted to a density
matrix h̃ ∈ DensH by h̃ = |h〉 〈h|. Combining this with the partial trace operator
trG ∈ B ⊗G (super B we obtain UFQC α ∈ A (super B by

A⊗H
φ̂

// B ⊗G

trG

��
A

−⊗h̃

OO

UFQC α
// B
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in the category of superoperators.
We say that two computations α, β ∈ F AB are extensionally equal (α =ext

β), if the induced maps are equal; UF α = UF β where F ∈ {FCC,FQC}. We
redefine the homsets of FCC,FQC as the quotients of the underlying repre-
sentation by extensional equality. We have verified that composition respects
extensional equality but omit the proof for reasons of space.

As a consequence of our definition we obtain that the assignment of maps
to computations gives rise to forgetful functors UFCC ∈ FCC → FinSet and
UFQC ∈ FQC → Super. Both functors are full and faithful. Hence, our cate-
gories FCC and FQC can be viewed just as different presentations of FinSet
and Super. However, going via FCC and FQC has the benefit that we get an
implementation of our programs as reversible circuits in the classical case and
quantum circuits in the quantum case.

An important class of morphisms are the ones which do not produce garbage,
i.e. where G = 1, they give rise subcategories FCC◦,FQC◦ of strict morphisms.
We have shown that the image of FCC◦ under UFCC are the injective maps,
however FQC◦ does not classify monos in Super 2.

While FQC and FCC are very similar indeed, the fact that FQC is based
on wave mechanics enables non-local interaction which is exploited in quantum
programming. However, there is also a new challenge: the possibility of decoher-
ence. Let δ ∈ 2 → 2 × 2 (this becomes Q2 ( Q2 ⊗ Q2 in the quantum case)
be defined as δ x = (x, x); which can be easily realised by a cnot gate (either
classically or quantum). We can compose this with π1 ∈ 2×2 which leads to the
following picture:

2 • 2

0 � �������� �

φδ φπ1

Clearly, classically we have just defined an inefficient version of the identity
π1 ◦ δ = I; we copy a bit and then throw the copy away. However, the situation
is quite different in the quantum case: while the implementation is given by the
same diagram by replacing classical reversible circuits with quantum circuits,
the composition is not the identity, it is a measurement operation. That is, if
we input a pure state like R = { 1√

2
|0〉 + 1√

2
|1〉} the output is a mixed state

1
2{|0〉} + 1

2{|1〉} corresponding to a random qbit. We have lost the advantage
of quantum computation and are back in the world of classical probabilistic
computations.

As a consequence of this observation we draw the conclusion that one of the
main issues a quantum programming language has to address is the control of
decoherence. This is somehow the opposite of the common view which insists that
the no cloning theorem outlaws contraction. We observe that the implementation
of δ copies a qbit, but it doesn’t clone it; considering R again we obtain the EPR
state { 1√

2
|00〉+ 1√

2
|11〉} after executing only δ. We claim that this is a natural

explanation of contraction because it is completely uniform in both the classical

2 Thanks to Peter Selinger for this observation.
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and the quantum case. Indeed, classical functional languages do not implement
contraction by copying data either. δ maps pure states to pure states, indeed
it shares this behaviour with any computation which doesn’t produce garbage;
i.e. where G = 1. In contrast, operations like π1 are interpreted by a non-trivial
partial trace which introduces decoherence. Hence it is weakening which deserves
our attention, not contraction.

4 QML: Rules and semantics

We introduce here the typing rules and the denotational semantics of QML, the
latter gives rise to a compilation of QML programs to quantum circuits.

4.1 Typing rules

We will only present the typed syntax of QML, which is based on strict linear
logic. We do allow explicit weakenings annotating a term by by a context. This
leads to an unambiguous type assignment. Any weakening will be translated into
the use of a non-trivial partial trace, and hence decoherence in the dynamic se-
mantics, introduced in the next section. Another source of decoherence is the use
of case, or its special instance if-then-else. We make this explicit by introducing
two different case-operators: one which observes a qbit and thus leads to deco-
herence; and another which is free of decoherence but requires that we derive
that the two alternatives live in orthogonal spaces. For this purpose we introduce
a judgement t ⊥ u. Another novelty of our language is a term–former to create
superpositions; we can,for example, write {(qtrue, qtrue) | (qfalse, qfalse)}, to
create an EPR state. Note that we are ignoring the factor 1√

2
which can be

automatically inserted by the compiler. The construction of a superposition also
requires to show that the participating terms are orthogonal.

Our basic typing judgements are Γ ` t : σ and Γ `◦ t : σ for decoherence-free
terms, we embed ` in `◦:

Γ `◦ t : σ

Γ ` t : σ

To avoid repetition, we also use the schematic rule Γ `a t : σ where a ∈ {−, ◦}.
We use σ,τ and ρ to quantify over types, which are generated by 1, σ⊕ τ, σ⊗ τ .
Qbits are defined as Q2 = 1⊕ 1.

Γ is a context, i.e. a function from a finite set of variables domΓ into the
set of types. We write contexts as Γ = x1 : τ1, . . . , xn : τn and use • for the
empty context. Γ, x : τ is the context Γ extended by x : τ . This operation is
only defined if Γ does not already assign a type to x. t is a term of our language,
and we introduce the syntax when we present the typing rules, and σ is a type.

For the additive rules, we introduce the operator ⊗ mapping pairs of contexts
to contexts:

Γ, x : σ ⊗∆,x : σ = (Γ ⊗∆), x : σ
Γ, x : σ ⊗∆ = (Γ ⊗∆), x : σ if x /∈ dom∆
• ⊗∆ = ∆
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This operation is partial – it is only well-defined if the two contexts do not assign
different types to the same variable.

4.2 Denotational semantics

We assign to every type σ the number |σ| which is the size of a quantum register
needed to store elements of σ, we also interpret expressions of the form σ t τ :

|1| = 0
|σ t τ | = max {|σ|, |τ |}
|σ ⊕ τ | = |σ t τ |+ 1
|σ ⊗ τ | = |σ|+ |τ |

The interpretation of a type is the FQC object of quantum registers of the
right size: JσK = Q2

|σ|. Contexts Γ = x1 : τ1, . . . , xn : τn are interpreted as the
tensor product of their components JΓ K = Jτ1K ⊗ Jτ2K ⊗ . . . ⊗ JτnK. A typing
derivation Γ ` t : σ is interpreted as an FQC morphism JtK ∈ FQC JΓ K JσK,
correspondingly, Γ `◦ t : σ is interpreted as JtK ∈ FQC◦ JΓ K JσK.

The interpretation of orthogonality is more involved. Let Γ ` t : σ and
∆ ` u : σ. Then the interpretation of t ⊥ u is Jt ⊥ uK = (S, φ) where S is an
object of FQC, φ ∈ Q2⊗S (unitary JσK, such that there are f ∈ FQC JΓ KS and
g ∈ FQC JΓ KS such that JtK = φ◦(qtrue⊗−)◦f and JuK = φ◦(qfalse⊗−)◦g.

To interpret the operator ⊗ on contexts we define an FQC◦ morphism
CΓ,∆ ∈ FQC◦ JΓ ⊗∆K (JΓ K⊗ J∆K)

Γ ⊗∆
φCΓ,∆

Γ

HΓ,∆
�

∆

by induction over the definition of Γ ⊗ ∆: If a variable x : σ appears in both
contexts we have to use δσ ∈ FQC◦ JσK (JσK⊗JσK) which generalises δ2, discussed
earlier, by applying it in parallel to all qbits. All the other cases can be dealt with
by applying monoidal isomorphisms. Similarily, we define an explicit weakening
operator WΓ,∆ ∈ FQC JΓ ⊗∆K (JΓ K).

4.3 Structural rules

We start with the strict variable rule and the non-strict weakening and their
interpretations

var
x : σ `◦ x : σ

Γ ` t : σ
weak

Γ ⊗∆ ` tdom ∆ : σ

σ σ Γ ⊗∆
φWΓ,∆

Γ

φt

σ

99
99

9 Gt
�

Ht
�

����� GΓ−∆
�
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Next, we introduce a let-rule which is also the basic vehicle to define first
order programs.

Γ `a t : σ
∆, x : σ `b u : τ

let
Γ ⊗∆ `aub let x = t in u : τ

◦ u ◦ = ◦ and − otherwise. We leave the condition that Γ ⊗∆ is defined as an
implicit precondition of this and subsequent rules using ⊗. The interpretation
of the let-rule is given by the following circuit:

Γ ⊗∆
φCΓ,∆

Γ

99
99 ∆

φuHΓ,∆
�

∆

����
φt

σ τ

Ht
�

99
99

9
33

33 Gt
�

Hu
�

�����
���� Gu

�

Weakenings can affect the meaning of a program. As an example consider:

y : Q2 ` let x = y in x{} : Q2

This program will be interpreted as the identity circuit, in particular it is decoherence-
free. However, consider

y : Q2 ` let x = y in x{y} : Q2

This program is interpreted by a circuit equivalent to the one corresponding to
π1 ◦ δ shown earlier; hence it introduces a measurement.

4.4 Rules for ⊗

The rules for 1, ⊗ are the standard rules from linear logic. In the case of 1 instead
of an explicit elimination rule we allow implicit weakening:

1− intro
• `◦ () : 1

Γ, x : 1 `a t : σ
1− weak

Γ `a t : σ

The interpretation of the rules for 1 in terms of circuits is invisible, since 1 doesn’t
carry any information. The interpretation of the rules for ⊗ is more interesting
— the introduction rule simply merges the components

Γ `a t : σ ∆ `a u : τ
⊗− intro

Γ ⊗∆ `a (t, u) : σ ⊗ τ

Γ ⊗∆
φCΓ,∆

Γ

φt

σ σ

HΓ,∆
�

∆

99
99

77
77

7 τ

Ht
�

�����
φu

τ

���� Gt
�

Hu
�

Gu
�
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The interpretation of the elimination rule is similar to the let-rule:

Γ `a t : σ ⊗ τ
∆, x : σ, y : τ `b u : ρ

⊗− elim
Γ ⊗∆ `aub let (x, y) = t in u : ρ

Γ ⊗∆
φCΓ,∆

Γ

99
99 ∆

φu

HΓ,∆
�

∆

����

φt

σ

τ ρ

Ht
�

99
99

9
33

33 Gt
�

Hu
�

�����
���� Gu

�

As an example, here is a simple program which swaps two qbits:

p : Q2 ⊗Q2 ` let (x, y) = p in (y{}, x{}) : Q2 ⊗Q2

Again it is important to mark the variables with the empty set of variables. The
alternative program

p : Q2 ⊗Q2 ` let (x, y) = p in (y{p}, x{p}) : Q2 ⊗Q2

would measure the qbits while swapping them.

4.5 Rules for ⊕

We represent values in σ⊕ τ as words of fixed length, as in classical computing.
Unfolding our type interpretation we have that Jσ ⊕ τK = Q2 ⊗ Jσ t τK where
Jσ t τK can store a value either of JσK or JτK. To adjust the size we use an easily
definable padding operator Pσtτ ∈ FQC JσK Jσ t τK, which simply sets unused
bits to 0.

The introduction rules for ⊕ are the usual classical rules for +; note that
they preserve strictness.

Γ `a t : σ
+ intro1

Γ `a inl t : σ ⊕ τ

Γ `a t : τ
+ intro2

Γ `a inr t : σ ⊕ τ

Γ
φt

σ

φPσtτ
Ht

�
==

== σ t τ
Ht−s

�
����

33
33 Q2

Q2 X
�

���� Gt
�

Γ
φs

τ

φPτtσ
Hs

�

77
77

7 σ t τ
Ht−s

�
����

33
33 Q2

Q2
�

���� Gs
�

We define qtrueX = inl ()X : Q2 and qfalseX = inr ()X : Q2.To be able
to interpret case expressions we introduce a biconditional operation on unitary
operators. Given φ, ψ ∈ A (unitary B we construct

[φ|ψ] ∈ Q2 ⊗A (unitary Q2 ⊗B
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by the following matrix

[φ|ψ] (true, a) (true, b) = φa b

[φ|ψ] (false, a) (false, b) = ψ a b

[φ|ψ] (x, a) (y, b) = 0 everywhere else

As already indicated we have two different elimination rules — we begin with
the one which measures a qbit, since it is basically the classical rule modulo
additivity of contexts.

Γ ` c : σ ⊕ τ
∆, x : σ ` t : ρ
∆, y : τ ` u : ρ

⊕− elim
Γ ⊗∆ ` case c of {inl x⇒ t | inr y ⇒ u} : ρ

We have JtK ∈ FQC J∆ ⊗ σK JρK and JuK ∈ FQC J∆ ⊗ τK JρK. By padding
the input we turn them into dJtKe, dJuKe ∈ FQC J∆ ⊗ (σ t τ)K JρK. Note, we
have, for the underlying unitary operators, that the heaps H and garbage G
are equal, because unitary operators exist only between spaces with isomorphic
bases. Hence we can apply the choice operator to construct φ[t|u] = [φdJtKe|φdJuKe],
and with some plumbing we obtain:

Γ ⊗∆
φCΓ,∆

Γ

99
99

φ[f |g]

HΓ,∆
�

∆

����

φc

σ t τ S

φ⊥
ρ

Q2 Q2

Hc
�

CC
CC

C G
�

Hf−g
�

{{{{{ Gc
�

We can derive if-then-else as
if b then t else u = case b of {inl ⇒ t | inr ⇒ u }

and use this to implement a form of negation:
mnot : Q2 ( Q2

mnot x = if x then qfalse else qtrue
However, this program will measure the qbit before negating it. If we want to
avoid this we have to use the decoherence-free version of case, which relies on
the orthogonality judgement: t ⊥ u, which is defined for terms in the same type
and context Γ ` t, u : A. We will introduce the orthogonality judgement later.
Intuitively, t ⊥ u holds if the outputs t and u are always orthogonal, e.g. we will
be able to derive qtrue{} ⊥ qfalse{}. Hence, we introduce the strict case by:

Γ `a c : σ ⊕ τ
∆, x : σ `◦ t : ρ
∆, y : τ `◦ u : ρ t ⊥ u

⊕− elim◦

Γ ⊗∆ `a case◦ c of {inl x⇒ t | inr y ⇒ u} : ρ
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We have to exploit the data from the orthogonality judgement Jt ⊥ uK = (S, φ)
where φ ∈ S ⊗Q2 (unitary JρK. Applying the same padding technique as before
we obtain dfe, dge ∈ FQC (J∆K ⊗ Jσ t τK)S and from this φ[f |g] = [φdfe|φdge].
Now, the main observation is that we just have to apply the unitary operator
φt⊥u to make the qbit disappear, leading to the following diagram:

Γ ⊗∆
φCΓ,∆

Γ

99
99

φ[f |g]

HΓ,∆
�

∆

����

φc

σ t τ S

φt⊥u

ρ

Q2 Q2

Hc
�

CC
CC

C G
�

Hf−g
�

{{{{{ Gc
�

Note that we only allow strict terms in the branches of a strict case. In a previous
draft of this paper we tried to be more liberal, however, this causes problems be-
cause the qbit we are branching over can be indirectly measured by the garbage.
This problem was pointed out by Peter Selinger.

Using the decoherence-free version if◦ we can implement standard reversible
and hence quantum operations such as qnot :

qnot : Q2 ( Q2

qnot x = if◦ x
then qfalse
else qtrue

and the conditional not cnot :
cnot : Q2 ( Q2 ( Q2 ⊗Q2

cnot c x = if◦ c
then (qtrue, qnot x )
else (qfalse, x )

and finally the Toffolli operator which is basically a conditional cnot :
toff : Q2 ( Q2 ( Q2 ( Q2 ⊗ (Q2 ⊗Q2)
toff c x y = if◦ c

then (qtrue, cnot x y)
else (qfalse, (x , y))

4.6 Superpositions

There is a simple syntactic translation we use to reduce the superposition oper-
ator to the problem of creating an arbitrary 1-qbit state:

Γ `◦ t, u : σ t ⊥ u
||λ||2 + ||λ′||2 = 1 λ, λ′ 6= 0

Γ `◦ {(λ)t | (λ′)u} : σ
≡ if◦ {(λ)qtrue | (λ′)qfalse} then t else u

12



The algorithm for the preparation of the one-qbit state to a given degree of
precision (which is a parameter of the compilation) can be obtained from the
one-qbit case of the Kitaev-Solovay theorem, see [6], page 616-624.

4.7 Orthogonality

The idea of t ⊥ u is that there is a boolean observation which tells the two
terms apart in every environment. Given Γ ` t, u : ρ, the interpretation Jt ⊥
uK = (St⊥u, φt⊥u), where φt⊥u ∈ St⊥u ⊗Q2 (unitary JρK is defined by induction
over the derivation.

inl t ⊥ inr u inr t ⊥ inl u

Given Γ `◦ t : σ and Γ `◦ u : τ , we define S = σ t τ and φt⊥u is simply the
identity in the first case but negates the qbit in the second.

t ⊥ u

inl t ⊥ inl u inr t ⊥ inr u

Just consider the first rule: We set Sinl t⊥inl u = St⊥u ⊗ Q2, to derive
φinl t⊥inl u ∈ (St⊥u ⊗ Q2) ⊗ Q2 (unitary Q2 ⊗ Jσ t τK from φt⊥u ∈ St⊥u ⊗
Q2 (unitary JρK we just have to swap two qbits. The other case proceeds analo-
gously.

t ⊥ u

(t, v) ⊥ (u,w) (v, t) ⊥ (w, u)

Again we only consider the first rule: Given Γ `◦ t, u : σ and Γ `◦ v, w : τ . We
set S(t,v)⊥(u,w) = St⊥u⊗τ , to derive φ(t,v)⊥(u,w) ∈ St⊥u⊗τ⊗Q2 (unitary Jσ⊗τK
from φt⊥u ∈ St⊥u ⊗Q2 (unitary JρK requires just basic rewiring.

t0 ⊥ u1 t1 ⊥ u0 λ∗0κ1 = −λ∗1κ0

{(λ0)t0 | (λ1)t1} ⊥ {(κ0)u0 | (κ1)u1}

We reduce this case to the situation where we have two orthogonal qbits, i.e.

{(λ0)qtrue | (λ1)qfalse} ⊥ {(κ0)qtrue | (κ1)qfalse}

where λ∗0κ1 = −λ∗1κ0, in which case the matrix(
λ0 λ1

κ0 κ1

)
gives rise to φ{(λ0)qtrue|(λ1)qfalse}⊥{(κ0)qtrue | (κ1)qfalse}. The general situation can
be reduced to this via some plumbing.
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4.8 Programs

So far we have introduced a language of expressions. It is straightforward to
extend this to a notion of first order programs. E.g. we consider a program
Σ to be a sequence of function definitions of the form F Γ = t : σ, we have to
parameterise every judgement by Σ and require that Γ `Σ t : σ for the definition
to be a wellformed extension of Σ. We also have to introduce a rule for function-
application which can just be translated into an iterated let-expression.

5 Conclusions and further work

We have introduced a language for finite quantum programs which uniformly
extends a finitary classical language. The classical part of our language may be of
interest for its own sake because it introduces a natural way to compile functional
terms into space efficient reversible circuits, as we avoid creating unnecessary
garbage. This uniformity is one of the main design principles of our language,
which, we hope, makes it a natural vehicle to express quantum programming
and to develop quantum thinking.

We are currently implementing a compiler for QML in Haskell. The compiler
produces a representation of quantum circuits which can be simulated (ineffi-
cently, of course) by our own simulator or by using a standard simulator for
quantum gates.

There are other design ideas for quantum programming languages. A poten-
tial criticism of our approach is that we leave contractions implicit, which is an
operation which depends on the choice of basis. However, our type assignment
system clearly fixes the places where contractions have to happen, and moreover,
and we believe more importantly, it fixes the places where projections, or trac-
ing, is happening. A central feature of any reasonable quantum programming
language is the control of decoherence.

Having pointed this out it seems that decoherence is something you always
want to minimise. It is straightforward to design an inference algorithm which
infers the context annotations xdom Γ such that decoherence is minimised. Maybe
this should be the default, which can be overridden, if the programmer wants to
enforce measurement.

There are obvious directions in which to continue this work. Higher order
programming would be a worthwhile addition to reflect the way many quantum
algorithms are presented: e.g. the Quantum Fourier Transform can be param-
eterised by a function on quantum words. Recently, Selinger investigated this
problem [9] and it seems that currently no canonical higher order structure on
Super is known. Using our principle of uniformity with classical computing the
space generated by the function space of the bases appears to be a natural can-
didate to model higher order types. We leave the investigation of this proposal
to future work.

Another line of work is to reap the benefits of the fact that our language
uses high level constructs, and develop high level reasoning principles for QML
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programs. This may be guided from an investigation of the categorical infras-
tructure of the categories involved — in particular we would like to make the
analogy of FCC and FQC precise. A first observation in this direction may be
that that the category of bijections on finite sets is the free symmetric monoidal
category over one generator, while it seems possible to describe the correspond-
ing quantum category, the category of unitary operators on finite dimensional
Hilbert spaces3, as freely generated by a collection of one-qbit quantum gates.

It has been suggested to introduce infinite quantum data structures to model
computations of arbitrary size. Another direction which seems more feasible
would be to index quantum structures by classical values at compile time. We
have some doubts whether the understanding of recursion in quantum program-
ming is essential since it is not clear how to observe the termination of a quantum
program of unknown runtime without disturbing the computation.
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