3 Axis Unipolar Controller Board Data

Introduction

This is a simple 3 axis unipolar stepper board that can control stepper motors with power supplies rated to 30VDC. The FET drivers are rated at 50A, but in practicality this board should not be used with motors anywhere near that current for several reasons. The power supply voltage, heat sinks and cooling used for the FET's of your own application play an extremely important part in making that determination. The FET package is designed for 50 Watts of dissipative power. If you're not wise in electronics, the board should be built in stages and tested during each stage to eliminate problems.

Current Limiting Resistors (IMPORTANT)

Anytime a power supply for the stepper motor is used that is greater than the rated voltage of the motor, current limiting resistors are required. This board does not contain room for current limiting resistors as they can be quite large sometimes. The coil resistance of the motor can be computed by dividing the rated voltage by the rated current. For example a motor rated at 5.2 volts @ $1.6 \mathrm{~A}(5.2 / 1.6)$ has a coil resistance of 3.25 ohms . To compute the size of the current limiting resistor subtract the motor voltage rating from the power supply voltage and divide it by the current rating. For example using a 12v power supply with the above motor (12-5.2/1.6), you would need a 4.25 ohm resistor. The wattage rating of that resistor is the current squared times the resistor value $(1.6 * 1.6 * 4.25)$ or in this case 10.88 watts minimum. Power resistors come in standard wattage ratings or $1,5,10,25,50$ watts.

Setting the Step Direction

JP1 thru JP3 are motor direction jumpers. JP1 Y axis, JP3 X axis, JP2 Z axis.

Optional Logic Probe

Many times in troubleshooting a simple logic probe that visually gives an indication of a high or low logic state is helpful. Components R26, R27, R28, R30, T1, and LED2 make up the logic probe. By installing a wire in the probe pad to use as a test lead with those components installed the LED, will slightly illuminate when the test lead is left open, become brighter when connected to a logic hi, it will not illuminate when touched to a logic low.

Parts List

Part	Value/Device	Package	DigiKey P\#	Quantity
C1-3,8	.1uf(100n)	Radial 0.2	BC1133CT-ND	4
C4-7,9-12	220p	Radial 0.2	1375PH-ND	6
C6,7	10uF	Radial 0.2	P11250-ND	2
IC1	74HC14N	DIL14	MM74HC14N-ND	1
IC2	7805	TO220	$296-1974-5-N D$	1
IC3,4,6	4030 N	DIL14	$296-2047-5-N D$	3
IC5,7,8	$4013 N$	DIL14	$296-2033-5-N D$	3
JP1-3	PINHD-1X2	pinhead	WM6402-ND	1
LED2	Red LED	3MM	$67-1066-N D$	1
Q1-12	IRLZ44	TO220BV	IRLZ44-ND	12
R1,2,4,27,28	$47 K$	Axial 1/4W	47 KQBK-ND	5
R5-9,16	10K	Axial 1/4W	10KQBK-ND	6
R10-15,17-25	1K	Axial 1/4W	$1.0 K Q B K-N D$	15
R26	330	Axial 1/4W	330QBK-ND	1
S1-7	2 Way Screw		281-1435-ND	7
T1	BC547B-NPN	TO92	BC547BOS-ND	1

For reference only these are not true to size

Image as you look at the bottom Copper on the board

Image as printed for Toner Transfer

Software Setup

$\begin{array}{\|l} \text { DB25 } \\ \text { Pin } \end{array}$	Function	$\begin{aligned} & \text { DB25 } \\ & \text { Pin } \end{aligned}$	Function
	Switch	13	Switch
	X Dir	14	
	X Step	15	Switch
	NU (Pad D2)	16	
50	Y Dir	17	
60	Y Step	18	GND
	NU (Pad D5)	19	GND
80	Z Dir	20	GND
	Z Step	21	GND
10 I	Switch	22	GND
11 I	Switch	23	GND
12 I	Switch	24	GND
			GND
$\mathrm{I}=$ Input to PC			
O = Output from PC			
G = PC Common			

Motors will step on a high to low transition at the computer. JP1, JP2, JP3 allow to reverse the direction via hardware of the direction signal.

