http://www.intranetjournal.com

Planning the CMS
To begin with, we'll plan how our PHP-based content management system will work. In subsequent articles, I'll demonstrate how each of the major components are implemented, leading to a complete system.
The first step is a basic specification of what our CMS must do. Obviously, this will depend on your needs:
· Content Management: Probably the most vital function of the system, it must store content such as documents and news in a database, and display to the user whatever he or she requests. An easy-to-use interface is required to allow editors to add, remove, or modify content.

· User authentication: There may be certain areas of the intranet or Internet site to which we wish to limit access. At the very least this will be the "admin" area, where the editor of the site will be able to add, edit or modify content. You may also wish to have areas only available to certain departments or staff.

· Page uniformity/templates: The system should have a uniform look and feel, and this design element needs to be separated from the logic element, e.g., the programming required to display an article should be separated from how that article looks (stylistically) on the screen.

Object-Oriented Programming
PHP helps the design process by supporting object-oriented programming (OOP). When putting together our system, there are certain chunks of programming that are needed again and again, such as database access, user authentication, etc. To keep this code neat and tidy, we bundle it together in PHP files called "classes." We can then create instances (or "objects") of these classes whenever they are needed. Thus, the class can be thought of as a blueprint for one or more instances.
For example, we could create a class with code for connecting to a database, and then create an instance of that class whenever we need to query the database. If this isn't immediately clear then don't worry, it will become more obvious when we start coding. This method of programming allows a complex system to be broken down into smaller and simpler blocks, which makes life easier when it comes to management, modification, and error finding.
Let's now consider how the system will fit together. This will doubtless be tweaked as you consider the requirements for your own system, but below is a basic outline:

[image: image6.png]

We have four main PHP modules (or "classes") that will be widely used in the system. These are tasked with accessing the database, allowing the user to upload files to the site, reading and writing templates, and logging users in and out. These classes all "extend" one parent class called "systemObject."
Think of these four as being independent of one another, yet all inheriting whatever data we put in systemObject. This technique of hierarchy allows us to make changes effecting all four system classes, just by adding or modifying the code in the systemObject parent class. Again, this concept will become clearer when we start coding. In the middle of the diagram are the basic areas of the administration system, and each will need one or more PHP pages to perform the required tasks.
Join me next month, when we'll start implementing the most important classes for the content management mystem. In the mean time, you may wish to familiarize yourself with object-oriented PHP programming, and consider the requirements for your own intranet site.
Our CMS will be stored in a number of folders, structured as follows:
	[image: image2.png]

[image: image3.png]

	[image: image1.png]systemObject

Admin System

add/ edit
articles

add [edit add/ edit
sections templates

 cmsadmin
	 includes
	 templates
	 images

	 (The admin area of the Intranet)
	 (The PHP code that will be included in a number of different pages)
	 (Templates for pages on the Intranet)
	 (Pictures that will appear on the Intranet)

You may wish to create these four folders now. We're going to start by creating the PHP class which all others will "extend." This will be the root of the administration system, and anything we put in it (such as variables and functions) will trickle down to the other classes.
This root class will be called 'SystemComponent'. The code follows, and a full explanation is below:
This root class will be called 'SystemComponent'. The code follows, and a full explanation is below:
<?php
class SystemComponent {
var $settings;
function getSettings() {
// System variables
$settings['siteDir'] = '/path/to/your/intranet/';
// Database variables
$settings['dbhost'] = 'hostname';
$settings['dbusername'] = 'dbuser';
$settings['dbpassword'] = 'dbpass';
$settings['dbname'] = 'mydb';
return $settings;
}
}
?>
Save this code to a file called SystemComponent.php in the 'includes' folder you created. Now let's do something with this class.

All of the information to be displayed in our Content Management System will be stored in a database. It is sensible, therefore, to create a reusable PHP class that we can call upon whenever we need to access our data. The code listed here is for connecting to a MySQL database. If you'll be using a different system, such as PostgreSQL, MS SQL or SQLite, then change the code appropriately. It's obviously quite a bit longer than our previous class, but it performs a number of very important tasks. The code follows:
<?php
//
// Class: DbConnector
// Purpose: Connect to a database, MySQL version
///
require_once 'SystemComponent.php';
class DbConnector extends SystemComponent {
var $theQuery;
var $link;
//*** Function: DbConnector, Purpose: Connect to the database ***
function DbConnector(){
// Load settings from parent class
$settings = SystemComponent::getSettings();

// Get the main settings from the array we just loaded
$host = $settings['dbhost'];
$db = $settings['dbname'];
$user = $settings['dbusername'];
$pass = $settings['dbpassword'];

// Connect to the database
$this->link = mysql_connect($host, $user, $pass);
mysql_select_db($db);
register_shutdown_function(array(&$this, 'close'));
}
//*** Function: query, Purpose: Execute a database query ***
function query($query) {
$this->theQuery = $query;
return mysql_query($query, $this->link);
}
//*** Function: fetchArray, Purpose: Get array of query results ***
function fetchArray($result) {
return mysql_fetch_array($result);
}
//*** Function: close, Purpose: Close the connection ***
function close() {
mysql_close($this->link);
}

}
?>
Some explanation is required. After we've named the class 'DbConnector', we state 'extends SystemComponent'. This tells PHP to grab all of the data and functions from SystemComponent, and provide us with access to them (we'll need this in order to get the $settings variable we created earlier).
The first function, 'DbConnector', has the same name as the class that contains it, meaning it's run automatically when DbConnector loads. It firstly calls the 'getSettings' function we wrote earlier, and extracts from it the various database settings. It then uses these settings to connect to the database. (Note that we have no code to deal with errors, this will be covered in detail next time.)
The other functions are explained below:

	Function
	Purpose

	
	

	 query
	Execute a database query

	fetchArray
	Create an array containing each record found using the 'query' function (above)

	close
	Closes the database connection. The register_shutdown_function command in the DbConnector function ensures this happens automatically when the object is no longer in use.

Save the above code (also attached at the bottom of this article) to the 'includes' folder, with the name DbConnector.php. This class will be widely used in the Intranet system, so let me give you an example of how we'd create an instance of DbConnector, extract some data, and display it to the user. Let's imagine that our database stores the details of one customer, and we want to get hold of his / her name and display it. Here's the code:
<?php
// Get the PHP file containing the DbConnector class
require_once('DbConnector.php');
// Create an instance of DbConnector
$connector = new DbConnector();
// Use the query function of DbConnector to run a database query
// (The arrow -> is used to access a function of an object)
$result = $connector->query('SELECT firstname FROM customers');
// Get the result
$row = $connector->fetchArray($result);
// Show it to the user
echo $row['firstname'];
?>
If you'd like to try out the DbConnector class now, you'll need to save the above code in the includes folder in a php file, and set up a 'customers' table in your database. I'll be covering the set up of our Intranet's database next time.
The importance and power of using a database is clear — we can store information in a formal way, and rapidly access, manipulate and change it. The information we extract or store is specified using the 'query' function of the DbConnector class, and we create instances of DbConnector using the 'new' command, as shown above. This also demonstrates the usefulness of classes — if the settings are changed in SystemComponent, then all of the classes that extend it will automatically be changed.
Creating the Database
The first table we're going to add to our database will store articles, for display on the Intranet. The ability to share information is the most important function of an Intranet, and the job of the Content Management System is to make doing this as easy as possible. Consider your own data requirements, a few important ones spring to mind for most articles tables:
	 Field
	 Purpose
	Type

	
	
	

	ID
	A unique number given to each article, and the primary key of the table.
	Integer

	Title
	The title of the article
	Varchar(300)

	Tagline
	A very short summary of the article
	Varchar(600)

	Section
	The category to which the article belongs
	Integer

	TheArticle
	The article itself
	Text

Before we can create the system itself, we need to create the database to store our information. The code below will set this up if you're using the MySQL database system - uses of other systems should modify the commands appropriately. Copy and paste the following into the MySQL admin tool, or use one of the many free 'client' programs available:
CREATE TABLE `databasename`.`cmsarticles` (
`ID` int(6) unsigned NOT NULL auto_increment COMMENT 'The unique ID of the article',
`title` varchar(200) NULL COMMENT 'The article title',
`tagline` varchar(255) NULL COMMENT 'Short summary of the article',
`section` int(4) NULL DEFAULT 0 COMMENT 'The section of the article',
`thearticle` text NULL COMMENT 'The article itself',
PRIMARY KEY (`ID`)
);
If all has gone to plan, you should now have a working table in the database. We're now going to create a page to allow you or your staff to enter articles into the system.
Creating the editor
Firstly, design a form using the HTML editor of your choice. Create text fields for each database field (excluding ID).

Set the action of the form to be newArticle.php (with the method 'post'), and save this page in a folder called cmsadmin (described in the previous article). If any of this is unclear, just browse through the attached file at the end of the article. Note that the 'section' field is currently a text box, by the time we've finished it'll be a drop-down list, allowing you to choose a section of the site in which to place the article.
Next, we'll create the PHP code to deal with whatever is typed into this form, and save it to the database for later retrieval. The code is below, with explanation beneath:
<?php
// Get the PHP file containing the DbConnector class
require_once('../includes/DbConnector.php');
// Check whether a form has been submitted. If so, carry on
if ($HTTP_POST_VARS){
// Create an instance of DbConnector
$connector = new DbConnector();
// IMPORTANT!! ADD FORM VALIDATION CODE HERE - SEE THE NEXT ARTICLE
// Create an SQL query (MySQL version)
$insertQuery = "INSERT INTO cmsarticles (title,tagline,section,thearticle) VALUES (".
"'".$HTTP_POST_VARS['title']."', ".
"'".$HTTP_POST_VARS['tagline']."', ".
$HTTP_POST_VARS['section'].", ".
"'".$HTTP_POST_VARS['thearticle']."')";
// Save the form data into the database
if ($result = $connector->query($insertQuery)){
// It worked, give confirmation
echo '<center>Article added to the database</center>
';
}else{
// It hasn't worked so stop. Better error handling code would be good here!
exit('<center>Sorry, there was an error saving to the database</center>');
}
}
?>
We start off by requiring the 'dbConnector' class that we created in the previous article. If it can't be found, an error will be displayed. We then check whether a form has been submitted, by seeing if $HTTP_POST_VARS exists (this variable contains all the submitted form data). Next we assemble the database query, and store it in $insertQuery, before actually running it using the query command we created last time. Finally, a message is shown to the user confirming success, or showing failure.
Try adding an article. For the time being you'll have to type an integer into the 'section' box, as we haven't yet created a drop-down menu to display the section names. We now have a way of adding articles to the database, but for this to be of any use we must allow people to retrieve them again. Let's make a page to do that.
To demonstrate extracting information from the database, we'll provide users with a way to view articles by selecting from a list of titles. This may be useful on the front page of your Intranet site, to show a list of the top 5 newest articles. Here's the code:
 WHAT'S NEW:

<?php
// Require the database class
require_once('includes/DbConnector.php');
// Create an object (instance) of the DbConnector
$connector = new DbConnector();
// Execute the query to retrieve articles
$result = $connector->query('SELECT ID,title FROM cmsarticles ORDER BY ID DESC LIMIT 0,5');
// Get an array containing the results.
// Loop for each item in that array
while ($row = $connector->fetchArray($result)){
echo '<p> ';
echo $row['title'];
echo ' </p>';
}
?>
The above snippet of code will get the ID number and title of the five newest articles from the database, and loop through each of them displaying them on separate lines. If you wish to save this, save it as index.php in the root folder (i.e. the one above cmsadmin).
For each headline displayed by the code above, there's a different link to viewArticle.php, a page which we'll create shortly. The idea is that viewArticle.php?id=1 will display the article with the ID 1, viewArticle.php?id=2 will show article 2, etc etc. Here's the code for viewArticle:
<?php
// Require the database class
require_once('includes/DbConnector.php');
// IMPORTANT!!! Validate the ID number. See below
// Create an object (instance) of the DbConnector
$connector = new DbConnector();
// Execute the query to retrieve the selected article
$result = $connector->query('SELECT title,thearticle FROM cmsarticles WHERE ID = '.$HTTP_GET_VARS['id']);
// Get an array containing the resulting record
$row = $connector->fetchArray($result);

?>
Your selected article: <?php echo $row['title'];?>

<?php echo $row['thearticle'];?>

And you're done. The database is queried, using $HTTP_GET_VARS to extract the ID number from the link (eg viewArticle.php?id=253). Each piece of data can then be 'echoed' where required on the page.
We've done well - our system allows editors to add information to the site, and display it to the user in a variety of ways. It still can't be called a fully fledged Content Management System, but we're getting there.
Something very important to note, sufficiently important for me to reach for the bold button in my editor. At the moment there's an enormous security flaw in this script, because we're not doing something called validation. We expect the user to provide viewArticle.php with an ID number, so an article can be extracted and all shall work well. But what if they're here to make trouble, and rather than an ID number they provide some malicious code designed to do damage? I'll cover in detail how to protect ourselves from this next time, so don't use this system for real until you've read the next article!! If you wish to get started before then, look up how to do form validation using PHP.
The Solution: a Validator Class
The idea is to create a Validator class that we can call everytime we need to deal with user input. It'll check whether the given input is safe and correct, and if not it will display an error.
To begin with, we'll create the framework for a 'Validator' class:
<?php
require_once 'SystemComponent.php';
class Validator extends SystemComponent {
 var $errors; // A variable to store a list of error messages
 ...
}
?>
There are a few basic types of data we may need to validate:
· General: Just check something was typed in
· Text Only (i.e., no punctuation or other symbols allowed)
· Text Only and no white spaces allowed
· E-Mail addresses
· Numbers
· Dates
We'll need to write a method for each of these. (A method is a chunk of code that performs a task, which we put inside the class.) I'll give an example of one here, the rest can be found in the source file at the end of the article.
function validateNumber($theinput,$description = ''){
if (is_numeric($theinput)) {
return true; // The value is numeric, return true
}else{
$this->errors[] = $description; // Value not numeric! Add error description to list of errors
return false; // Return false
}
}
This method is very simple. It takes the data from the user as input (storing it in $theinput), as well as a message to display if validation fails. It then tests $theinput, and if it's a number returns "true." This will tell our system to move along and not get concerned. If the value turns out not to be numeric, the error message is stored in the variable $errors, which we created in the previous code snippet, above.
Once we've created methods for each of the data types required, only two more methods are needed. The first will allow us to check whether any errors have occurred, and the second returns a list of errors (if there were any). These are both quite straight-forward, and can be found in the source file at the end of the article.
So how do we use our new class with a form? It's simple. Let's say we've created a form to add an e-mail address to a mailing list. There are two text boxes in the form — one for the user's e-mail address, the other for the maximum number of messages they wish to receive per week. Here's how it works:
<?php
// Gather the data from the form, store it in variables
$userEmail = $HTTP_POST_VARS['email'];
$maxMessages = $HTTP_POST_VARS['maximum'];
// Create a validator object
require_once('includes/Validator.php');
$theValidator = new Validator();
// Validate the forms
$theValidator->validateEmail($userEmail, 'Email Address');
$theValidator->validateNumber($maxMessages, 'Maximum number of messages');
// Check whether the validator found any problems
if ($theValidator->foundErrors()){
// The were errors, so report them to the user
echo 'There was a problem with: '.$theValidator->listErrors('
'); // Show the errors, with a line between each
}else{
// All ok, so now add the user to the mailing list
}
?>
By checking that the user's input was valid, we've reduced a number of security risks, prevented incorrect entries in our database, and helped the user if they've forgotten to fill out any part of the form. We can now integrate this into all of our Intranet's forms, and move on to some more creative stuff...
Getting Organized
We've covered how to create forms, manipulate the database, and set up a page for creating articles. But having an intranet with hundreds of articles will quickly become disorganized and unwieldy. The solution is to create a system of categories (sections), into which each article or news item can be stored. You'll notice that when we set up the database in Part 3 we created a "section" field. Well, now we'll use it.
We want to be able to dynamically add and remove sections from our system, so we'll need a new table in the database. Here's the schema:
	 Field
	 Purpose
	Type

	
	
	

	ID
	A unique ID for each section
	Integer

	name
	The name of the section
	Varchar(20)

	parentid
	If this is a sub-section, the id of the parent
	Integer

The SQL code to create this table is listed below:
CREATE TABLE `database`.`cmssections` (
`ID` int(4) unsigned NOT NULL auto_increment COMMENT 'The unique ID of the section',
`name` varchar(20) NULL COMMENT 'The section name',
`parentid` int(4) NULL DEFAULT 0 COMMENT 'The ID of the parent section',
PRIMARY KEY (`ID`)
);
In the same way that we created an admin page for adding articles, it's simple to create a page to add, edit or delete sections. We want the page to look something like the one below:

When this page loads, a list of sections is displayed as well as a link to remove any of them. There's also a form to create a new section. Notice the drop-down list for choosing the "parent" section; a similar menu will be used on the Add Article page to choose which section an article belongs in.
How's all this coded? We begin by connecting to the database, and creating a Validator object (using the class we just designed):
<?php
// Require the classes
require_once('../includes/DbConnector.php');
require_once('../includes/Validator.php');
// Create an object (instance) of the DbConnector and Validator
$connector = new DbConnector();
$validator = new Validator();

Next, we'll add code to deal with the "delete" link. Notice that we use the Validator to make sure the ID number is numeric. To tell the page whether it should be adding, deleting or just listing the sections, we set the 'action' variable in the query string (i.e., http://yourintranet/cmsadmin/sectionEdit.php?action=XXX). This variable is read by the first line below:
if ($HTTP_GET_VARS['action'] == 'delete'){
// Store the ID of the section to be deleted in a variable
$sectionID = $HTTP_GET_VARS['id'];
// Validate the section ID, and if it's ok then delete the section
if ($validator->validateNumber($sectionID,'Section ID')){
// The validator returned true, so go ahead and delete the section
$connector->query('DELETE FROM cmssections WHERE ID = '.$sectionID);
echo 'Section Deleted

';
}else{
// The validator returned false, meaning there was a problem
echo "Couldn't delete. There was a problem with: ".$validator->listErrors();
}
}
The code to insert a section is quite simple so I won't detail it here, you'll find it easy to understand by reading the source file at the end. The last part of the PHP code for this page is to list the sections as shown above, with the delete link along side:
// Execute the query to retrieve articles
$result = $connector->query('SELECT ID,name,parentid FROM cmssections');
// Get an array containing the results.
// Loop for each item in that array
while ($row = $connector->fetchArray($result)){
echo $row['name'].' - '; // Show the name of section
echo ' Delete '; // Show the delete link
echo '
'; // Show a carriage return
}
?>
And now we have a category system set up. You can use it to define the sections that will make up your site, and then assign articles to them. On the front end that your users will see, you could have a page called showarticles.php and use it to show only the articles in a particular category (e.g., showarticles.php?id=1 for news, showarticles.php?id=2 for press releases, etc.).
Login system
Let us now consider what we want our system to do:
· Store users' details in the database
· Group users into categories, for instance administrators, editors, and staff, in order of security access
· Only allow groups of users access to specific areas of the site
The first bit we'll need to secure is the admin area, used for adding and removing content on the site. To get started, we'll set up database tables to store our user information.
	 Table: Groups

	Column
	Purpose

	
	

	ID
	ID of the group

	groupname
	Name of the group

	 Table: Users

	Column
	Purpose

	
	

	ID
	ID of the user

	user
	A unique username for the user

	pass
	The user's password, encrypted

	thegroup
	Group to which the user belongs

	firstname
	The user's first name

	surname
	The user's surname

	enabled
	A 1 or a 0 specifies whether the
user is enabled, allowing you to
block troublesome ones

SQL queries for creating the above two tables are below, which can be run in any SQL client:
Create groups table
CREATE TABLE `cmsgroups` (
`ID` int(4) unsigned NOT NULL auto_increment,
`groupname` varchar(15) default NULL,
PRIMARY KEY (`ID`)
) TYPE=MyISAM;
Create 10 groups, where 1 has the highest security
INSERT INTO `cmsgroups` VALUES (1,'Admin');
INSERT INTO `cmsgroups` VALUES (2,'Editors');
INSERT INTO `cmsgroups` VALUES (3,NULL);
INSERT INTO `cmsgroups` VALUES (4,NULL);
INSERT INTO `cmsgroups` VALUES (5,NULL);
INSERT INTO `cmsgroups` VALUES (6,NULL);
INSERT INTO `cmsgroups` VALUES (7,NULL);
INSERT INTO `cmsgroups` VALUES (8,NULL);
INSERT INTO `cmsgroups` VALUES (9,NULL);
INSERT INTO `cmsgroups` VALUES (10,'Anonymous');
Create user table
CREATE TABLE `cmsusers` (
`ID` int(4) unsigned NOT NULL auto_increment,
`user` varchar(20) default NULL,
`pass` varchar(20) default NULL,
`thegroup` int(4) default '10',
`firstname` varchar(20) default NULL,
`surname` varchar(20) default NULL,
`enabled` int(1) default '1',
PRIMARY KEY (`ID`)
) TYPE=MyISAM;
Create sample user
INSERT INTO `cmsusers` VALUES (1,'admin',PASSWORD('admin'),1,'Mr','Admin',1);
So how should we go about securing our site? We're going to write a class called Sentry to check whether a user is logged in. The system we're going to rely on is called sessions, a method of storing a user's details for the duration of their visit to the website or Intranet.
The constructor function (the function executed when the class is created) is as follows:
function sentry(){
session_start();
header("Cache-control: private");
}
This simply tells PHP to start the session, and adds a header that stops the password being stored in the user's cache. The function to logout is equally simple:
function logout(){
unset($this->userdata);
session_destroy();
exit();
}
This destroys the variable containing the user's details, the session data, and prevents further code from being executed. We next create a function to check whether the user is already logged in, and optionally to actually perform a login. The function has a number of parameters:
function checkLogin($user = '',$pass = '',$group = 10,$goodRedirect = '',$badRedirect = ''){
...
}
We pass the username and password checkLogin, and if either of these are incorrect then the page should redirect to the address stored in $badRedirect. If $user and $pass are correct, we redirect to $goodRedirect. $group is used to specify the minimum group level that's allowed to access this resource, we'll specify that group level 10 has the least security privileges, group 1 has the most. If checkLogin finds that the user is already logged in, it should confirm that the original username and password provided are still valid.
Our first clause in checkLogin takes a look at whether a user seems to be logged in, by checking whether the session variables already exist:
// User is already logged in, check credentials
if ($_SESSION['user'] && $_SESSION['pass']){
// Validate session data
...
// Look up the user in the database by performing and SQL query
$getUser = $loginConnector->query("SELECT * FROM cmsusers WHERE user = '".$_SESSION['user']."' AND pass = '".$_SESSION['pass']."' AND thegroup <= ".$group.' AND enabled = 1');
// Redirect to goodRedirect or badRedirect appropriately
...
Notice in the above code, we use the PASSWORD function in the SQL query. For those of you not familiar with this, here's how it works. When we originally create the user's record in the database, we don't store the plain password; instead we use the PASSWORD function to encrypt it. What is now stored in the database is an apparently random string of letters and numbers, and the original password can never be recovered (hopefully). When we then come to check a login, we perform the same jumbling function on the provided password, and compare the result with the string of letters stored previously. If they're the same, then the original passwords match, and the user is authenticated.
The next piece of code is used when a user hasn't previously logged in:
}else{
// Validate the input
...
// Lookup the user in the DB
$getUser = $loginConnector->query("SELECT * FROM cmsusers WHERE user = '$user' AND pass = PASSWORD('$pass') AND thegroup <= $group AND enabled = 1");
$this->userdata = $loginConnector->fetchArray($getUser);
if ($loginConnector->getNumRows($getUser) > 0){
// Login OK, store session details

$_SESSION["user"] = $user;
$_SESSION["pass"] = $rowUser["pass"];
$_SESSION["group"] = $rowUser["thegroup"];

// Redirect if goodRedirect was provided
...
} else {
// Login BAD, Destroy session data
unset($this->userdata);
// Redirect to badRedirect if appropriate
return false;
}
}
If more than one result is found in the database, i.e. the user's details were correct, the username, password and group are stored in the session. OK, We're pretty much done. Let's now test our class by creating a login form and a test page we want to restrict.
This month we'll be finishing up our look at creating a Content Management System by considering good interface design, the creation of a template system, and how we can go about turning what I've described in this series into a fully blown system.
When evaluating an interface, I find it helpful to use Jacob Nielsen's "Ten Usability Heuristics" as a starting point. See here for his site. Here's how they apply to Intranet design.
1. Visibility of system status: The system must tell us what's going on at all times, and not let us get lost in a jungle of information and jargon. Many sites employ a 'breadcrumb' system, so your position within the site is displayed as:
Home -> Subcat1 -> Subcat2
2. Match between system and the real world: Metaphors are very important in computing, from the idea of a 'window', to employing push-buttons that appear to depress when clicked. If your company currently divides its data into 'divisions' and 'departments', for instance, this should be reflected in the design of the Intranet.
3. User control and freedom: The user should not only know their location within the site, but be able to rapidly navigating to the most important information wherever they are. A consistent set of vital links on each page will provide for this.
4. Consistency and standards: The site should be generally uniform throughout, in order to make navigation intuitive. Furthermore, most control panels and forms have a number of functions in common - cancel, save, etc. These should appear in the same location and with uniform design whatever the form is intended to achieve.
5. Error prevention: Prevention is better than cure, so it's obvious to say that the system shouldn't be riddled with bugs. However, a bad design can easily lead a user to make a mistake - for instance swapping around the order of 'Save' and 'Cancel' links, causing the user to loose work by choosing the wrong option.
6. Recognition rather than recall: The user shouldn't be left pondering on what a particular icon does, or which sequence of links he / she has to follow to find a useful snippet of information. This can be as basic as having 'alt' tags on images, that explain their meaning when the user hovers their mouse over them, or better full captions below icons. It may look less sleek, but it can help new users greatly.
7. Flexibility and efficiency of use: You want your Intranet to be quickly accessible to both your experienced staff, and to those just getting started. Provide links to broad sections, but also consider having "task oriented" links, such as "view today's news" or "update my profile". Ordering of links and grouping similar ones together will help.
8. Aesthetic and minimalist design: Many content management systems don't promote this, but aesthetics and minimalism are extremely important. Don't clutter the interface with polls and notices on irrelevant issues, stick to what you need people to read. Take Google as a perfect example of combining a minimalist design with an attractive interface.
9. Help users recognize, diagnose, and recover from errors: This includes concealing ugly system errors, which can flood newbie users with so much guilt and worry that they think they've cast the company into the pits of computational oblivion. A polite "sorry" message would be better all round.
10. Help and documentation: Again it's useful if documentation is task oriented, addressing the most common tasks a user will need to perform. Context-sensitive help is also a very good idea, so that clicking a small question mark on a page will tell the user about what they're looking at.
Clearly there are other design issues specifically with web-based design that Nielsen doesn't consider here — but it's a reasonable introduction that drives home a few messages — make navigation clear and consistent, don't bog the user down with jargon, prevent them from making mistakes, and if they do run into trouble then help them to recover it. With that in mind, let's consider the interface.
Below are a couple of possible layouts for your Intranet site. The first is the more common:
Design 1
[image: image4.jpg]Graphic Llogo & Main Links

Content

This is a pretty standard grid layout, and has proved itself to be efficient in a range of applications. At the very top of the screen (in the red section, above) appear a number of main links. It's important for them to be near a large 'landmark' such as the top line of the page, as it provides a good sized target for the user to aim their mouse at. Navigation is in two sections — the 'breadcrumbs' above the main content displaying the user's current position within the site, and a main menu to the left. This would be headed by a search box.
Disadvantages? It's not as minimalist as it could be, and on lower screen resolutions the main content could easily get cramped.
Design 2
[image: image5.jpg]Creadanmi MEv

Content

This design is far more content-centric, looking more like a traditional newspaper than the previous grid layout. The navigation box on the right allows the user to select a section to view, while the top row shows very clearly where the user in within the site. A disadvantage would be the blank space on each side of the content — it will focus the user's attention more on the central information, but could be seen as wasting precious screen space.
Clearly the design you decide upon will depend heavily on your content. Next I'm going to consider templates, and how we can go about creating an easily updateable Intranet site with a uniform look and feel.
Templating Systems
It would be useful to build some kind of templating system into our CMS. Note that the PHP needed for this is a bit more advanced than previous articles, but the complete code will be available for download.
The templater should perform a number of tasks:
· Allow users with limited technical knowledge to create or edit content
· Allow the design of multiple pages to be changed by altering the template
· Maintain a uniform look & feel across the site
· Separate content from programming
There are a number of approaches to this. The most basic is to simply use includes — put all the content into separate files, and insert the correct ones where needed by using the include($filename) PHP command. This isn't a great solution. The files will build up in an disorderly fashion, and you'll defy the point of having a Content Management System in the first place.
Pattern Matching
A simple but elegant solution is to build a pattern matching engine. For example, you'd create a template file including some code such as:
<i> My name is {name}, and my favourite food is {food}</i>
And you'd save that in template.tpl ('.tpl' to denote it's a template). You could then create pages with content, for example one called susan.php would contain the code:
$values = array('name' => 'Susan','food' => 'chocolate');
compilePage('template.tpl',$values);
And the compilePage function would combine the template with the content, to give:
My name is Susan, and my favourite food is chocolate
Which would be displayed to the user. By having one template file with multiple content pages, you fulfill the goals of keeping a uniform look and feel, separating out content from code, and allowing the site's design to be changed by altering one template.
This is a perfectly adequate solution, although one of our goals is to "allow users with limited technical knowledge to create pages". To save users from having to edit PHP files directly, it would be good to store the page content in the database. This has the advantage of allowing for the content to be easily searched, and to be stored in an orderly fashion. The complete code for this system is beyond the scope of this article and will be available for download, however here are the most important lines:
foreach ($replaceTags as $key=>$val) {
$template = ereg_replace('{'.$key.'}',$val,$template);
}
This has the function of converting tags, such as {food}, and replacing them the words specified in $replaceTags. In the above example, {name} would be replaced by 'Susan', and {food} by 'chocolate'. The newly formed page is now stored in $template, and we can do with it what we please.
A disadvantage of this solution is the need for the above to code to run every time the user views a page. On a large website or Intranet, this could get pretty slow. The answer is only to do this once, and save the combined template and page content into a plain .htm or .php file for the user to view. This is called "static page generation", and greatly reduces server load.
Alternatives
The templating system I'm providing in the downloadable code is only a simple one, and there are very popular and feature-laden systems freely available online. Perhaps the best known one is called Smarty (see http://smarty.php.net). It has various advanced features, although I'll be sticking with my original goal — to create a system fully from scratch, so that I can understand every nook and cranny of its insides.
What additional features could be included in a full Content Management System? Read on...
Going Further
Here are some ideas for features to add to your PHP Intranet CMS:
· WYSIWYG editor: You probably don't expect your staff to learn HTML, so how can they create articles or other site content with formatting? There are a number of free editors that you can plug into your system, to provide a regular text box with edit buttons such as bold, underline and italic.
· Profiles: create a profiles table, that links to the cmsusers table created earlier. This will allow you to keep a staff directory, maintained by the staff themselves.
· Sections: In a previous article we assigned articles 'sections', to split up the site into categories. If the system were set up to allow certain users to be managers of those sections, then an infrastructure is put in place for keeping all areas of the site up-to-date.
· Communications: It's a good idea to use the Intranet as a communication tool; apart from anything else it encourages your users to read the site on a regular basis. Either use a public forum (which I don't suggest writing yourself, there are plenty of good ones freely available), or employ a private messaging system. This just needs to be a table containing a 'to', 'from' and 'message' column, with an Inbox page to pick up messages where the 'to' column matches the currently logged in user.
From calendars to surveys, your CMS can be extended in any direction you need. Implementing all the required features can take a long time, however. You won't have the many hours of testing that have gone into established CMS projects. But you do benefit from knowing what goes where, how each module operates, and how the parts of the system interact. This is especially useful when considering future expansion of your Intranet.
