

USB in a NutShell

Making sense of the USB standard

Page 2 of 37

Page 3 of 37

USB Protocols

Unlike RS-232 and similar serial interfaces where the format of data being sent is not defined, USB is made up
of several layers of protocols. While this sounds complicated, don’t give up now. Once you understand what is going
on, you really only have to worry about the higher level layers. In fact most USB controller I.C.s will take care of the
lower layer, thus making it almost invisible to the end designer.

Each USB transaction consists of a

■ Token Packet (Header defining what it expects to follow), an
■ Optional Data Packet, (Containing the payload) and a
■ Status Packet (Used to acknowledge transactions and to provide a means of error correction)

As we have already discussed, USB is a host centric bus. The host initiates all transactions. The first packet,
also called a token is generated by the host to describe what is to follow and whether the data transaction will be a
read or write and what the device’s address and designated endpoint is. The next packet is generally a data packet
carrying the payload and is followed by an handshaking packet, reporting if the data or token was received successfully,
or if the endpoint is stalled or not available to accept data.

Common USB Packet Fields

Data on the USBus is transmitted LSBit first. USB packets consist of the following fields,

■ Sync

All packets must start with a sync field. The sync field is 8 bits long at low and full speed or 32 bits
long for high speed and is used to synchronise the clock of the receiver with that of the
transmitter. The last two bits indicate where the PID fields starts.

■ PID

PID stands for Packet ID. This field is used to identify the type of packet that is being sent. The
following table shows the possible values.

Table 1

Group PID Value Packet Identifier

Token 0001 OUT Token
1001 IN Token
0101 SOF Token
1101 SETUP Token

Data 0011 DATA0
1011 DATA1
0111 DATA2
1111 MDATA

Handshake 0010 ACK Handshake
1010 NAK Handshake
1110 STALL Handshake
0110 NYET (No Response Yet)

Special 1100 PREamble
1100 ERR
1000 Split
0100 Ping

There are 4 bits to the PID, however to insure it is received correctly, the 4 bits are complemented
and repeated, making an 8 bit PID in total. The resulting format is shown below.

Page 4 of 37

Table 2

PID0 PID1 PID2 PID3 nPID0 nPID1 nPID2 nPID3

■ ADDR

The address field specifies which device the packet is designated for. Being 7 bits in length allows for
127 devices to be supported. Address 0 is not valid, as any device which is not yet assigned an
address must respond to packets sent to address zero.

■ ENDP

The endpoint field is made up of 4 bits, allowing 16 possible endpoints. Low speed devices,
however can only have 2 additional endpoints on top of the default pipe. (4 endpoints max)

■ CRC

Cyclic Redundancy Checks are performed on the data within the packet payload. All token packets
have a 5 bit CRC while data packets have a 16 bit CRC.

■ EOP

End of packet. Signalled by a Single Ended Zero (SE0) for approximately 2 bit times followed by a J
for 1 bit time.

USB Packet Types

USB has four different packet types. Token packets indicate the type of transaction to follow, data packets
contain the payload, handshake packets are used for acknowledging data or reporting errors and start of frame
packets indicate the start of a new frame.

■ Token Packets

There are three types of token packets,

■ In - Informs the USB device that the host wishes to read information.
■ Out - Informs the USB device that the host wishes to send information.
■ Setup - Used to begin control transfers.

Token Packets must conform to the following format,

Table 3

Sync PID ADDR ENDP CRC5 EOP

■ Data Packets

There are two types of data packets each capable of transmitting up to 1024 bytes of data.

■ Data0
■ Data1

High Speed mode defines another two data PIDs, DATA2 and MDATA.

Data packets have the following format,

Page 5 of 37

Table 4

Sync PID Data CRC16 EOP

■ Maximum data payload size for low-speed devices is 8 bytes.
■ Maximum data payload size for full-speed devices is 1023 bytes.
■ Maximum data payload size for high-speed devices is 1024 bytes.
■ Data must be sent in multiples of bytes.

■ Handshake Packets

There are three type of handshake packets which consist simply of the PID

■ ACK - Acknowledgment that the packet has been successfully received.
■ NAK - Reports that the device temporary cannot send or received data. Also used during

interrupt transactions to inform the host there is no data to send.
■ STALL - The device finds its in a state that it requires intervention from the host.

Handshake Packets have the following format,

Table 5

Sync PID EOP

■ Start of Frame Packets

The SOF packet consisting of an 11-bit frame number is sent by the host every 1ms ± 500ns on a full
speed bus or every 125 µs ± 0.0625 µs on a high speed bus.

Table 6

Sync PID Frame Number CRC5 EOP

USB Functions

When we think of a USB device, we think of a USB peripheral, but a USB device could mean a USB transceiver
device used at the host or peripheral, a USB Hub or Host Controller IC device, or a USB peripheral device. The standard
therefore makes references to USB functions which can be seen as USB devices which provide a capability or function
such as a Printer, Zip Drive, Scanner, Modem or other peripheral.

Picture 1

Page 6 of 37

So by now we should know the sort of things which make up a USB packet. No? You're forgotten how many
bits make up a PID field already? Well don't be too alarmed. Fortunately most USB functions handle the low level USB
protocols up to the transaction layer (which we will cover next chapter) in silicon. The reason why we cover this
information is most USB function controllers will report errors such as PID Encoding Error. Without briefly covering this,
one could ask what is a PID Encoding Error? If you suggested that the last four bits of the PID didn't match the inverse
of the first four bits then you would be right.

Most functions will have a series of buffers, typically 8 bytes long. Each buffer will belong to an endpoint -
EP0 IN, EP0 OUT etc. Say for example, the host sends a device descriptor request. The function hardware will read the
setup packet and determine from the address field whether the packet is for itself, and if so will copy the payload of
the following data packet to the appropriate endpoint buffer dictated by the value in the endpoint field of the setup
token. It will then send a handshake packet to acknowledge the reception of the byte and generate an internal
interrupt within the semiconductor/micro-controller for the appropriate endpoint signifying it has received a packet.
This is typically all done in hardware.

The software now gets an interrupt, and should read the contents of the endpoint buffer and parse the
device descriptor request.

Endpoints

Endpoints can be described as sources or sinks of data. As the bus is host centric, endpoints occur at the end
of the communications channel at the USB function. At the software layer, your device driver may send a packet to
your devices EP1 for example. As the data is flowing out from the host, it will end up in the EP1 OUT buffer. Your
firmware will then at its leisure read this data. If it wants to return data, the function cannot simply write to the bus as
the bus is controlled by the host. Therefore it writes data to EP1 IN which sits in the buffer until such time when the
host sends a IN packet to that endpoint requesting the data. Endpoints can also be seen as the interface between the
hardware of the function device and the firmware running on the function device.

All devices must support endpoint zero. This is the endpoint which receives all of the devices control and
status requests during enumeration and throughout the duration while the device is operational on the bus.

Pipes

While the device sends and receives data on a series of endpoints, the client software transfers data through
pipes. A pipe is a logical connection between the host and endpoint(s). Pipes will also have a set of parameters
associated with them such as how much bandwidth is allocated to it, what transfer type (Control, Bulk, Iso or Interrupt)
it uses, a direction of data flow and maximum packet/buffer sizes. For example the default pipe is a bi-directional pipe
made up of endpoint zero in and endpoint zero out with a control transfer type.

USB defines two types of pipes

■ Stream Pipes have no defined USB format, that is you can send any type of data down a stream
pipe and can retrieve the data out the other end. Data flows sequentially and has a pre-defined
direction, either in or out. Stream pipes will support bulk, isochronous and interrupt transfer types.
Stream pipes can either be controlled by the host or device.

■ Message Pipes have a defined USB format. They are host controlled, which are initiated by a
request sent from the host. Data is then transferred in the desired direction, dictated by the
request. Therefore message pipes allow data to flow in both directions but will only support
control transfers.

Endpoint Types

The Universal Serial Bus specification defines four transfer/endpoint types,

■ Control Transfers
■ Interrupt Transfers
■ Isochronous Transfers
■ Bulk Transfers

Page 7 of 37

Control Transfers

Control transfers are typically used for command and status operations. They are essential to set up a USB
device with all enumeration functions being performed using control transfers. They are typically bursty, random
packets which are initiated by the host and use best effort delivery. The packet length of control transfers in low
speed devices must be 8 bytes, high speed devices allow a packet size of 8, 16, 32 or 64 bytes and full speed devices must
have a packet size of 64 bytes.

A control transfer can have up to three stages.

■ The Setup Stage is where the request is sent. This consists of three packets. The setup token is sent
first which contains the address and endpoint number. The data packet is sent next and always has
a PID type of data0 and includes a setup packet which details the type of request. We detail the setup
packet later. The last packet is a handshake used for acknowledging successful receipt or to indicate
an error. If the function successfully receives the setup data (CRC and PID etc OK) it responds with
ACK, otherwise it ignores the data and doesn’t send a handshake packet. Functions cannot issue a
STALL or NAK packet in response to a setup packet.

Picture 2

■ The optional Data Stage consists of one or multiple IN or OUT transfers. The setup request
indicates the amount of data to be transmitted in this stage. If it exceeds the maximum packet size,
data will be sent in multiple transfers each being the maximum packet length except for the last
packet.

The data stage has two different scenarios depending upon the direction of data transfer.

■ IN: When the host is ready to receive control data it issues an IN Token. If the function receives the
IN token with an error e.g. the PID doesn't match the inverted PID bits, then it ignores the packet. If
the token was received correctly, the device can either reply with a DATA packet containing the control
data to be sent, a stall packet indicating the endpoint has had a error or a NAK packet indicating to
the host that the endpoint is working, but temporary has no data to send.

Picture 3

http://www.beyondlogic.org/usbnutshell/usb6.htm%23SetupPacket�

Page 8 of 37

■ OUT: When the host needs to send the device a control data packet, it issues an OUT token
followed by a data packet containing the control data as the payload. If any part of the OUT token
or data packet is corrupt then the function ignores the packet. If the function's endpoint buffer was
empty and it has clocked the data into the endpoint buffer it issues an ACK informing the host it
has successfully received the data. If the endpoint buffer is not empty due to processing of the
previous packet, then the function returns a NAK. However if the endpoint has had a error and its
halt bit has been set, it returns a STALL.

■ Status Stage reports the status of the overall request and this once again varies due to direction of
transfer. Status reporting is always performed by the function.

■ IN: If the host sent IN token(s) during the data stage to receive data, then the host must
acknowledge the successful recept of this data. This is done by the host sending an OUT token
followed by a zero length data packet. The function can now report its status in the handshaking
stage. An ACK indicates the function has completed the command is now ready to accept another
command. If an error occurred during the processing of this command, then the function will issue a
STALL. However if the function is still processing, it returns a NAK indicating to the host to repeat the
status stage later.

Picture 4

■ OUT: If the host sent OUT token(s) during the data stage to transmit data, the function will
acknowledge the successful recept of data by sending a zero length packet in response to an IN
token. However if an error occurred, it should issue a STALL or if it is still busy processing data, it should
issue a NAK asking the host to retry the status phase later.

Picture 5

Control Transfers : The bigger picture

Now how does all this fit together? Let's say for example, the Host wants to request a device descriptor during
enumeration. The packets which are sent are as follows.

The host will send the Setup token telling the function that the following packet is a Setup packet. The
Address field will hold the address of the device the host is requesting the descriptor from. The endpoint number should
be zero, specifying the default pipe. The host will then send a DATA0 packet. This will have an 8 byte payload which is
the Device Descriptor Request as outlined in Chapter 9 of the USB Specification. The USB function then acknowledges
the setup packet has been read correctly with no errors. If the packet was received corrupt, the device just ignores
this packet. The host will then resend the packet after a short delay.

http://www.beyondlogic.org/usbnutshell/usb6.htm%23GetDescriptor�
http://www.beyondlogic.org/usbnutshell/usb6.htm%23GetDescriptor�

Page 9 of 37

Table 7

1. Setup Token Sync PID ADDR ENDP CRC5 EOP Address & Endpoint Number

2. Data0 Packet Sync PID DataO CRC16 EOP Device Descriptor Request

3. Ack Handshake Sync PID EOP Device Ack. Setup Packet

The above three packets represent the first USB transaction. The USB device will now decode the 8 bytes

received, and determine it was a device descriptor request. The device will then attempt to send the Device Descriptor,
which will be the next USB transaction.

Table 8

1. In Token Sync PID ADDR ENDP CRC5 EOP Address & Endpoint Number

2. Data1 Packet Sync PID Data1 CRC16 EOP First 8 Bytes of Device Descriptor

3. Ack Handshake Sync PID EOP Host Acknowledges Packet

1. In Token Sync PID ADDR ENDP CRC5 EOP Address & Endpoint Number

2. Data0 Packet Sync PID DataO CRC16 EOP Last 4 bytes + Padding

3. Ack Handshake Sync PID EOP Host Acknowledges Packet

In this case, we assume that the maximum payload size is 8 bytes. The host sends the IN token, telling the

device it can now send data for this endpoint. As the maximum packet size is 8 bytes, we must split up the 12 byte device
descriptor into chunks to send. Each chunk must be 8 bytes except for the last transaction. The host acknowledges
every data packet we send it.

Once the device descriptor is sent, a status transaction follows. If the transactions were successful, the host
will send a zero length packet indicating the overall transaction was successful. The function then replies to this zero
length packet indicating its status.

Table 9

1. Out Token Sync PID ADDR ENDP CRC5 EOP Address & Endpoint Number

2. Data1 Packet Sync PID Datal CRC16 EOP Zero Length Packet

3. Ack Handshake Sync PID EOP Device Ack. Entire Transaction

Interrupt Transfers

Any one who has had experience of interrupt requests on microcontrollers will know that interrupts are device
generated. However under USB if a device requires the attention of the host, it must wait until the host polls it before it
can report that it needs urgent attention!

Interrupt Transfers:

■ Guaranteed Latency
■ Stream Pipe - Unidirectional
■ Error detection and next period retry.

Interrupt transfers are typically non-periodic, small device "initiated" communication requiring bounded
latency. An Interrupt request is queued by the device until the host polls the USB device asking for data.

■ The maximum data payload size for low-speed devices is 8 bytes.
■ Maximum data payload size for full-speed devices is 64 bytes.
■ Maximum data payload size for high-speed devices is 1024 bytes.

http://www.beyondlogic.org/usbnutshell/usb5.htm%23DeviceDescriptors�

Page 10 of 37

Picture 6

The above diagram shows the format of an Interrupt IN and Interrupt OUT transaction.

■ IN: The host will periodically poll the interrupt endpoint. This rate of polling is specified in
the endpoint descriptor which is covered later. Each poll will involve the host sending an IN Token. If the
IN token is corrupt, the function ignores the packet and continues monitoring the bus for new tokens.

If an interrupt has been queued by the device, the function will send a data packet containing data
relevant to the interrupt when it receives the IN Token. Upon successful recept at the host, the
host will return an ACK. However if the data is corrupted, the host will return no status. If on the other
hand a interrupt condition was not present when the host polled the interrupt endpoint with an IN
token, then the function signals this state by sending a NAK. If an error has occurred on this endpoint, a
STALL is sent in reply to the IN token instead.

■ OUT: When the host wants to send the device interrupt data, it issues an OUT token followed by a
data packet containing the interrupt data. If any part of the OUT token or data packet is corrupt then
the function ignores the packet. If the function's endpoint buffer was empty and it has clocked the
data into the endpoint buffer it issues an ACK informing the host it has successfully received the data.
If the endpoint buffer is not empty due to processing of a previous packet, then the function
returns an NAK. However if an error occurred with the endpoint consequently and its halt bit has been
set, it returns a STALL.

Isochronous Transfers

Isochronous transfers occur continuously and periodically. They typically contain time sensitive information,
such as an audio or video stream. If there were a delay or retry of data in an audio stream, then you would expect some
erratic audio containing glitches. The beat may no longer be in sync. However if a packet or frame was dropped every now
and again, it is less likely to be noticed by the listener.

Isochronous Transfers provide:

■ Guaranteed access to USB bandwidth.
■ Bounded latency.
■ Stream Pipe - Unidirectional
■ Error detection via CRC, but no retry or guarantee of delivery.
■ Full & high speed modes only.
■ No data toggling.

http://www.beyondlogic.org/usbnutshell/usb5.htm%23EndpointDescriptors�

Page 11 of 37

The maximum size data payload is specified in the endpoint descriptor of an Isochronous Endpoint. This can be
up to a maximum of 1023 bytes for a full speed device and 1024 bytes for a high speed device. As the maximum data
payload size is going to effect the bandwidth requirements of the bus, it is wise to specify a conservative payload size.
If you are using a large payload, it may also be to your advantage to specify a series of alternative interfaces with
varying isochronous payload sizes. If during enumeration, the host cannot enable your preferred isochronous
endpoint due to bandwidth restrictions, it has something to fall back on rather than just failing completely. Data being
sent on an isochronous endpoint can be less than the pre-negotiated size and may vary in length from transaction to
transaction.

Picture 7

The above diagram shows the format of an Isochronous IN and OUT transaction. Isochronous transactions do
not have a handshaking stage and cannot report errors or STALL/HALT conditions.

Bulk Transfers

Bulk transfers can be used for large bursty data. Such examples could include a print-job sent to a printer or an
image generated from a scanner. Bulk transfers provide error correction in the form of a CRC16 field on the data
payload and error detection/retransmission mechanisms ensuring data is transmitted and received without error.

Bulk transfers will use spare un-allocated bandwidth on the bus after all other transactions have been allocated. If
the bus is busy with isochronous and/or interrupt then bulk data may slowly trickle over the bus. As a result Bulk
transfers should only be used for time insensitive communication as there is no guarantee of latency.

Bulk Transfers:

■ Used to transfer large bursty data.
■ Error detection via CRC, with guarantee of delivery.
■ No guarantee of bandwidth or minimum latency.
■ Stream Pipe - Unidirectional
■ Full & high speed modes only.

Bulk transfers are only supported by full and high speed devices. For full speed endpoints, the maximum bulk
packet size is either 8, 16, 32 or 64 bytes long. For high speed endpoints, the maximum packet size can be up to 512 bytes
long. If the data payload falls short of the maximum packet size, it doesn't need to be padded with zeros. A bulk transfer is
considered complete when it has transferred the exact amount of data requested, transferred a packet less than the
maximum endpoint size of transferred a zero-length packet.

The next diagram shows the format of a bulk IN and OUT transaction.

■ IN: When the host is ready to receive bulk data it issues an IN Token. If the function receives the IN
token with an error, it ignores the packet. If the token was received correctly, the function can either
reply with a DATA packet containing the bulk data to be sent, or a stall packet indicating the endpoint
has had a error or a NAK packet indicating to the host that the endpoint is working, but temporary has
no data to send.

■ OUT: When the host wants to send the function a bulk data packet, it issues an OUT token
followed by a data packet containing the bulk data. If any part of the OUT token or data packet is
corrupt then the function ignores the packet. If the function's endpoint buffer was empty and it
has clocked the data into the endpoint buffer it issues an ACK informing the host it has successfully
received the data. If the endpoint buffer is not empty due to processing a previous packet, then the
function returns an NAK. However if the endpoint has had an error and it's halt bit has been set, it

http://www.beyondlogic.org/usbnutshell/usb5.htm%23EndpointDescriptors�
http://www.beyondlogic.org/usbnutshell/usb5.htm%23AlternateSetting�

Page 12 of 37

returns a STALL.

Picture 8

Bandwidth Management

The host is responsible in managing the bandwidth of the bus. This is done at enumeration when configuring
Isochronous and Interrupt Endpoints and throughout the operation of the bus. The specification places limits on the
bus, allowing no more than 90% of any frame to be allocated for periodic transfers (Interrupt and Isochronous) on a
full speed bus. On high speed buses this limitation gets reduced to no more than 80% of a microframe can be allocated for
periodic transfers.

So you can quite quickly see that if you have a highly saturated bus with periodic transfers, the remaining 10%
is left for control transfers and once those have been allocated, bulk transfers will get its slice of what is left.

Page 13 of 37

USB Descriptors

All USB devices have a hierarchy of descriptors which describe to the host information such as what the
device is, who makes it, what version of USB it supports, how many ways it can be configured, the number of
endpoints and their types etc

The more common USB descriptors are

■ Device Descriptors
■ Configuration Descriptors
■ Interface Descriptors
■ Endpoint Descriptors
■ String Descriptors

USB devices can only have one device descriptor. The device descriptor includes information such as what USB
revision the device complies to, the Product and Vendor IDs used to load the appropriate drivers and the number of
possible configurations the device can have. The number of configurations indicate how many configuration
descriptors branches are to follow.

The configuration descriptor specifies values such as the amount of power this particular configuration uses, if
the device is self or bus powered and the number of interfaces it has. When a device is enumerated, the host reads
the device descriptors and can make a decision of which configuration to enable. It can only enable one configuration
at a time.

For example, It is possible to have a high power bus powered configuration and a self powered configuration.
If the device is plugged into a host with a mains power supply, the device driver may choose to enable the high power
bus powered configuration enabling the device to be powered without a connection to the mains, yet if it is connected
to a laptop or personal organiser it could enable the 2nd configuration (self powered) requiring the user to plug your
device into the power point.

The configuration settings are not limited to power differences. Each configuration could be powered in the
same way and draw the same current, yet have different interface or endpoint combinations. However it should be
noted that changing the configuration requires all activity on each endpoint to stop. While USB offers this flexibility,
very few devices have more than 1 configuration.

Picture 9

The interface descriptor could be seen as a header or grouping of the endpoints into a functional group
performing a single feature of the device. For example you could have a multi-function fax/scanner/printer device.
Interface descriptor one could describe the endpoints of the fax function, Interface descriptor two the scanner
function and Interface descriptor three the printer function. Unlike the configuration descriptor, there is no limitation
as to having only one interface enabled at a time. A device could have 1 or many interface descriptors enabled at
once.

Interface descriptors have a bInterfaceNumber field specifying the Interface number and a bAlternateSetting
which allows an interface to change settings on the fly. For example we could have a device with two interfaces,

Page 14 of 37

interface one and interface two. Interface one has bInterfaceNumber set to zero indicating it is the first interface
descriptor and a bAlternativeSetting of zero.

Interface two would have a bInterfaceNumber set to one indicating it is the second interface and a
bAlternativeSetting of zero (default). We could then throw in another descriptor, also with a bInterfaceNumber set to
one indicating it is the second interface, but this time setting the bAlternativeSetting to one, indicating this interface
descriptor can be an alternative setting to that of the other interface descriptor two.

When this configuration is enabled, the first two interface descriptors with bAlternativeSettings equal to zero
is used. However during operation the host can send a SetInterface request directed to that of Interface one with a
alternative setting of one to enable the other interface descriptor.

Picture 10

This gives an advantage over having two configurations, in that we can be transmitting data over interface
zero while we change the endpoint settings associated with interface one without effecting interface zero.

Each endpoint descriptor is used to specify the type of transfer, direction, polling interval and maximum
packet size for each endpoint. Endpoint zero, the default control endpoint is always assumed to be a control endpoint
and as such never has a descriptor.

Composition of USB Descriptors

All descriptors are made up of a common format. The first byte specifies the length of the descriptor, while
the second byte indicates the descriptor type. If the length of a descriptor is smaller than what the specification
defines, then the host shall ignore it. However if the size is greater than expected the host will ignore the extra bytes
and start looking for the next descriptor at the end of actual length returned.

Table 10

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptionType 1 Constant DescriptorType

2 n Start of parameters for descriptor

Page 15 of 37

Device Descriptors

The device descriptor of a USB device represents the entire device. As a result a USB device can only have one
device descriptor. It specifies some basic, yet important information about the device such as the supported USB
version, maximum packet size, vendor and product IDs and the number of possible configurations the device can have.
The format of the device descriptor is shown below.

Table 11

Offset Field Size Value Description

0 bLength 1 Number Size of the Descriptor in Bytes (18 bytes)

1 bDescriptorType 1 Constant Device Descriptor (0x01)

2 bcdUSB 2 BCD USB Specification Number which device complies too.

4 bDeviceClass 1 Class Class Code (Assigned by USB Org)
If equal to Zero, each interface specifies it’s own class code
If equal to 0xFF, the class code is vendor specified.
Otherwise field is valid Class Code.

5 bDeviceSubClass 1 SubClass Subclass Code (Assigned by USB Org)

6 bDeviceProtocol 1 Protocol Protocol Code (Assigned by USB Org)

7 bMaxPacketSize 1 Number Maximum Packet Size for Zero Endpoint.
Valid Sizes are 8, 16, 32, 64

8 idVendor 2 ID Vendor ID (Assigned by USB Org)

10 idProduct 2 ID Product ID (Assigned by Manufacturer)

12 bcdDevice 2 BCD Device Release Number

14 iManufacturer 1 Index Index of Manufacturer String Descriptor

15 iProduct 1 Index Index of Product String Descriptor

16 iSerialNumber 1 Index Index of Serial Number String Descriptor

17 bNumConfigurations 1 Integer Number of Possible Configurations

■ The bcdUSB field reports the highest version of USB the device supports. The value is in binary coded
decimal with a format of 0xJJMN where JJ is the major version number, M is the minor version number and
N is the sub minor version number. e.g. USB 2.0 is reported as 0x0200, USB 1.1 as 0x0110 and USB 1.0 as
0x0100.

■ The bDeviceClass, bDeviceSubClass and bDeviceProtocol are used by the operating system to find a class
driver for your device. Typically only the bDeviceClass is set at the device level. Most class specifications
choose to identify itself at the interface level and as a result set the bDeviceClass as 0x00. This allows for
the one device to support multiple classes.

■ The bMaxPacketSize field reports the maximum packet size for endpoint zero. All devices must support
endpoint zero.

■ The idVendor and idProduct are used by the operating system to find a driver for your device. The Vendor
ID is assigned by the USB-IF.

■ The bcdDevice has the same format than the bcdUSB and is used to provide a device version number. This
value is assigned by the developer.

■ Three string descriptors exist to provide details of the manufacturer, product and serial number. There is
no requirement to have string descriptors. If no string descriptor is present, a index of zero should be used.

■ ■ bNumConfigurations defines the number of configurations the device supports at its current speed.

http://www.usb.org/�

Page 16 of 37

Configuration Descriptors

A USB device can have several different configurations although the majority of devices are simple and only
have one. The configuration descriptor specifies how the device is powered, what the maximum power consumption is,
the number of interfaces it has. Therefore it is possible to have two configurations, one for when the device is bus
powered and another when it is mains powered. As this is a "header" to the Interface descriptors, its also feasible to
have one configuration using a different transfer mode to that of another configuration.

Once all the configurations have been examined by the host, the host will send a SetConfiguration command
with a non zero value which matches the bConfigurationValue of one of the configurations. This is used to select the
desired configuration.

Table 12

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptorType 1 Constant Configuration Descriptor (0x02)

2 wTotalLength 2 Number Total length in bytes of data returned

4 bNumInterfaces 1 Number Number of Interfaces

5 bConfigurationValue 1 Number Value to use as an argument to select this configuration

6 iConfiguration 1 Index Index of String Descriptor describing this configuration

7 bmAttributes 1 Bitmap D7 Reserved, set to 1. (USB 1.0 Bus Powered)
D6 Self Powered
D5 Remote Wakeup
D4..0 Reserved, set to 0.

8 bMaxPower 1 mA Maximum Power Consumption in 2mA units

■ When the configuration descriptor is read, it returns the entire configuration hierarchy which includes all
related interface and endpoint descriptors. The wTotalLength field reflects the number of bytes in the
hierarchy.

Picture 11

Page 17 of 37

■ bNumInterfaces specifies the number of interfaces present for this configuration.

■ bConfigurationValue is used by the SetConfiguration request to select this configuration.

■ iConfiguration is a index to a string descriptor describing the configuration in human readable form.

■ bmAttributes specify power parameters for the configuration. If a device is self powered, it sets D6. Bit D7
was used in USB 1.0 to indicate a bus powered device, but this is now done by bMaxPower. If a device uses
any power from the bus, whether it be as a bus powered device or as a self powered device, it must report
its power consumption in bMaxPower. Devices can also support remote wakeup which allows the device to
wake up the host when the host is in suspend.

■ bMaxPower defines the maximum power the device will drain from the bus. This is in 2mA units, thus a
maximum of approximately 500mA can be specified. The specification allows a high powered bus powered
device to drain no more than 500mA from Vbus. If a device loses external power, then it must not drain
more than indicated in bMaxPower. It should fail any operation it cannot perform without external power.

Interface Descriptors

The interface descriptor could be seen as a header or grouping of the endpoints into a functional group
performing a single feature of the device. The interface descriptor conforms to the following format,

Table 13

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes (9 Bytes)

1 bDescriptorType 1 Constant Interface Descriptor (0x04)

2 bInterfaceNumber 1 Number Number of Interface

3 bAlternateSetting 1 Number Value used to select alternative setting

4 bNumEndpoints 1 Number Number of Endpoints used for this interface

5 bInterfaceClass 1 Class Class Code (Assigned by USB Org)

6 bInterfaceSubClass 1 SubClass Subclass Code (Assigned by USB Org)

7 bInterfaceProtocol 1 Protocol Protocol Code (Assigned by USB Org)

8 iInterface 1 Index Index of String Descriptor Describing this interface

■ bInterfaceNumber indicates the index of the Index of String Descriptor Describing this interface

■ interface descriptor. This should be zero based, and incremented once for each new interface descriptor.

■ bAlternativeSetting can be used to specify alternative interfaces. These alternative interfaces can be
selected with the Set Interface request.

■ bNumEndpoints indicates the number of endpoints used by the interface. This value should exclude
endpoint zero and is used to indicate the number of endpoint descriptors to follow.

■ bInterfaceClass, bInterfaceSubClass and bInterfaceProtocol can be used to specify supported classes (e.g.
HID, communications, mass storage etc.) This allows many devices to use class drivers preventing the need
to write specific drivers for your device.

■ ■ iInterface allows for a string description of the interface.

http://www.beyondlogic.org/usbnutshell/usb6.htm%23SetInterface�

Page 18 of 37

Endpoint Descriptors

Endpoint descriptors are used to describe endpoints other than endpoint zero. Endpoint zero is always
assumed to be a control endpoint and is configured before any descriptors are even requested. The host will use the
information returned from these descriptors to determine the bandwidth requirements of the bus.

Table 14

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes (7 bytes)

1 bDescriptorType 1 Constant Endpoint Descriptor (0x05)

2 bEndpointAddress 1 Endpoint Endpoint Address
Bits 0..3b Endpoint Number.
Bits 4..6b Reserved. Set to Zero
Bits 7 Direction 0 = Out, 1 = In (Ignored for Control Endpoints)

3 bmAttributes 1 Bitmap Bits 0..1 Transfer Type
 00= Control
 01= Isochronous
 10= Bulk
 11= Interrupt
Bits 2..7 are reserved. If Isochronous endpoint,
Bits 3..2 = Synchronisation Type (Iso Mode)
 00= No Synchonisation
 01= Asynchronous
 10= Adaptive
 11= Synchronous
Bits 5..4 = Usage Type (Iso Mode)
 00= Data Endpoint
 01= Feedback Endpoint
 10 = Explicit Feedback Data Endpoint
 11 = Reserved

4 wMaxPacketSize 2 Number Maximum Packet Size this endpoint is capable of sending or receiving

6 bInterval 1 Number Interval for polling endpoint data transfers. Value in frame counts. Ignored for
Bulk & Control Endpoints.
Isochronous must equal 1 and field may range from
1 to 255 for interrupt endpoints.

■ bEndpointAddress indicates what endpoint this descriptor is describing.

■ bmAttributes specifies the transfer type. This can either be Control, Interrupt, Isochronous or Bulk Transfers.
If an Isochronous endpoint is specified, additional attributes can be selected such as the Synchronisation
and usage types.

■ wMaxPacketSize indicates the maximum payload size for this endpoint.

■ bInterval is used to specify the polling interval of certain transfers. The units are expressed in frames, thus
this equates to either 1ms for low/full speed devices and 125us for high speed devices.

http://www.beyondlogic.org/usbnutshell/usb4.htm%23Control�
http://www.beyondlogic.org/usbnutshell/usb4.htm%23Interrupt�
http://www.beyondlogic.org/usbnutshell/usb4.htm%23Isochronous�
http://www.beyondlogic.org/usbnutshell/usb4.htm%23Bulk�

Page 19 of 37

String Descriptors

String descriptors provide human readable information and are optional. If they are not used, any string
index fields of descriptors must be set to zero indicating there is no string descriptor available.

The strings are encoded in the Unicode format and products can be made to support multiple languages.
String Index 0 should return a list of supported languages. A list of USB Language IDs can be found in Universal Serial
Bus Language Identifiers (LANGIDs) version 1.0

Table 15

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptorType 1 Constant String Descriptor (0x03)

2 wLANGID[0] 2 number
Supported Language Code Zero
(e.g. 0x0409 English - United States)

4 wLANGID[1] 2 number
Supported Language Code One
(e.g. 0x0c09 English - Australian)

n wLANGID[x] 2 number
Supported Language Code x
(e.g. 0x0407 German - Standard)

The above String Descriptor shows the format of String Descriptor Zero. The host should read this descriptor

to determine what languages are available. If a language is supported, it can then be referenced by sending the
language ID in the wIndex field of a Get Descriptor(String) request.

All subsequent strings take on the format below,

Table 16

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in

1 bDescriptorType 1 Constant Bytes String Descriptor (0x03) Unicode Encoded String

2 bString n Unicode Unicode Encoded String

The Setup Packet

Every USB device must respond to setup packets on the default pipe. The setup packets are used for
detection and configuration of the device and carry out common functions such as setting the USB device’s address,
requesting a device descriptor or checking the status of a endpoint.

A USB compliant Host expects all requests to be processed within a maximum period of 5 seconds. It also
specifies stricter timing for specific requests :

■ Standard Device requests without a data stage must be completed in 50ms.
■ Standard Device requests with a data stage must start to return data 500ms after the request.

■ Each data packet must be sent within 500ms of the successful transmission of the previous
packet.

■ The status stage must complete within 50ms after the transmission of the last data packet.

■ The SetAddress command (which contains a data phase) must process the command and return
status within 50ms. The device then has 2ms to change address before the next request is sent.

These timeout periods are quite acceptable for even the slowest of devices, but can be a restriction during
debugging. 50mS doesn't provide for many debugging characters to be sent at 9600bps on an asynchronous serial port
or for a In Circuit Debugger/Emulator to single step or to break execution to examine the internal Registers. As a result,
USB requires some different debugging methods to that of other microcontroller projects.

http://www.unicode.org/�
http://www.usb.org/developers/data/USB_LANGIDs.pdf�
http://www.usb.org/developers/data/USB_LANGIDs.pdf�
http://www.usb.org/developers/data/USB_LANGIDs.pdf�
http://www.beyondlogic.org/usbnutshell/usb6.htm%23GetDescriptor�

Page 20 of 37

Casually reading through the XP DDK, one may note the Host Controller Driver now has a
USBUSER_OP_SEND_ONE_PACKET command which is commented to read "This API is used to implement the 'single
step' USB transaction development tool." While such a tool has not been released yet, we can only hope to see one
soon.

Each request starts with a 8 byte long Setup Packet which has the following format,

Table 17

Offset Field Size Value Description

0 bmRequestType 1 Bit-Map D7 Data Phase Transfer Direction
 0= Host to Device
 1= Device to Host
D6..5 Type
 0= Standard
 1= Class
 2= Vendor
 3= Reserved
D4..0 Recipient
 0= Device
 1= Interface
 2= Endpoint
 3= Other
4..31 = Reserved

1 bRequest 1 Value Request

2 wValue 2 Value Value

4 wIndex 2 Index or Offset Index

6 wLength 2 Count Number of bytes to transfer if there is a data phase

The bmRequestType field will determine the direction of the request, type of request and designated recipient.

The bRequest field determines the request being made. The bmRequestType is normally parsed and execution is
branched to a number of handlers such as a Standard Device request handler, a Standard Interface request handler, a
Standard Endpoint request handler, a Class Device request handler etc. How you parse the setup packet is entirely up
to your preference. Others may choose to parse the bRequest first and then determine the type and recipient based
on each request.

Standard requests are common to all USB devices and are detailed in the next coming pages. Class requests are
common to classes of drivers. For example, all device conforming to the HID class will have a common set of class
specific requests. These will differ to a device conforming to the communications class and differ again to that of a
device conforming to the mass storage class.

And last of all is the vendor defined requests. These are requests which you as the USB device designer can
assign. These are normally different from device to device, but this is all up to your implementation and imagination.

A common request can be directed to different recipients and based on the recipient perform different
functions. A GetStatus Standard request for example, can be directed at the device, interface or endpoint. When directed to
a device it returns flags indicating the status of remote wakeup and if the device is self powered. However if the same
request is directed at the interface it always returns zero, or should it be directed at an endpoint will return the halt
flag for the endpoint.

The wValue and wIndex fields allow parameters to be passed with the request. wLength is used the specify
the number of bytes to be transferred should there be a data phase.

Standard Requests

Section 9.4 of the USB specification details the "Standard Device" requests required to be implemented for
every USB device. The standard provides a single table grouping items by request. Considering most firmware will parse the
setup packet by recipient we will opt to break up the requests based by recipient for easier examination and
implementation.

Page 21 of 37

Standard Device Requests

There are currently eight Standard Device requests, all of which are detailed in the table below.

Table 18

bmRequestType bRequest wValue wlndex wLength Data

1000 0000b GET_STATUS (0x00) Zero Zero Two Device Status

0000 0000b CLEAR_FEATURE (0x01) Feature Selector Zero Zero None

0000 0000b SET_FEATURE (0x03) Feature Selector Zero Zero None

0000 0000b SET_ADDRESS (0x05) Device Address Zero Zero None

1000 0000b GET_DESCRIPTOR (0x06) Descriptor Type & Index Zero or Language ID Descriptor Length Descriptor

0000 0000b SET_DESCRIPTOR (0x07) Descriptor Type & Index Zero or Language ID Descriptor Length Descriptor

1000 0000b GET_CONFIGURATION (0x08) Zero Zero 1 Configuration Value

0000 0000b SET_CONFIGURATION (0x09) Configuration Value Zero Zero None

■ The Get Status request directed at the device will return two bytes during the data stage with the following
format

Table 19

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO

Reserved Remote
Wakeup

Self
Powered

■ If D0 is set, then this indicates the device is self powered. If clear, the device is bus powered. If D1 is set, the
device has remote wakeup enabled and can wake the host up during suspend. The remote wakeup bit can
be by the SetFeature and ClearFeature requests with a feature selector of DEVICE_REMOTE_WAKEUP
(0x01)

■ Clear Feature and Set Feature requests can be used to set boolean features. When the designated
recipient is the device, the only two feature selectors available are DEVICE_REMOTE_WAKEUP and
TEST_MODE. Test mode allows the device to exhibit various conditions. These are further documented in the
USB Specification Revision 2.0.

■ Set Address is used during enumeration to assign a unique address to the USB device. The address is specified
in wValue and can only be a maximum of 127. This request is unique in that the device does not set its
address until after the completion of the status stage. (See Control Transfers.) All other requests must
complete before the status stage.

■ Set Descriptor/Get Descriptor is used to return the specified descriptor in wValue. A request for the
configuration descriptor will return the device descriptor and all interface and endpoint descriptors in the one
request.

■ Endpoint Descriptors cannot be accessed directly by a GetDescriptor/SetDescriptor Request.
■ Interface Descriptors cannot be accessed directly by a GetDescriptor/SetDescriptor Request.
■ String Descriptors include a Language ID in wIndex to allow for multiple language support.

■ ■ Get Configuration/Set Configuration is used to request or set the current device configuration. In the
case of a Get Configuration request, a byte will be returned during the data stage indicating the devices
status. A zero value means the device is not configured and a non-zero value indicates the device is configured.
Set Configuration is used to enable a device. It should contain the value of bConfigurationValue of the
desired configuration descriptor in the lower byte of wValue to select which configuration to enable.

http://www.beyondlogic.org/usbnutshell/usb4.htm%23Control�
http://www.beyondlogic.org/usbnutshell/usb5.htm%23EndpointDescriptors�
http://www.beyondlogic.org/usbnutshell/usb5.htm%23InterfaceDescriptors�
http://www.beyondlogic.org/usbnutshell/usb5.htm%23StringDescriptors�
http://www.beyondlogic.org/usbnutshell/usb5.htm%23ConfigurationDescriptors�

Page 22 of 37

Standard Interface Requests

The specification current defines five Standard Interface requests which are detailed in the table below.
Interestingly enough, only two requests do anything intelligible.

Table 20

bmRequestType bRequest wValue wlndex wLength Data

1000 0001b GET_STATUS (0x00) Zero Interface Two Interface Status

0000 0001b CLEAR_FEATURE (0x01) Feature Selector Interface Zero None

0000 0001b SET_FEATURE (0x03) Feature Selector Interface Zero None

1000 0001b GET_INTERFACE (0x0A) Zero Interface One Alternate Interface

0000 0001b SET_INTERFACE (0x11) Alternative Setting Interface Zero None

■ wIndex is normally used to specify the referring interface for requests directed at the interface. Its
format is shown below.

Table 21

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Reserved Interface Number

■ Get Status is used to return the status of the interface. Such a request to the interface should return two
bytes of 0x00, 0x00. (Both bytes are reserved for future use)

■ Clear Feature and Set Feature requests can be used to set boolean features. When the designated
recipient is the interface, the current USB Specification Revision 2 specifies no interface features.

■ Get Interface and Set Interface set the Alternative Interface setting which is described in more detail
under the Interface Descriptor.

Standard Endpoint Requests

Standard Endpoint requests come in the four varieties listed below.

Table 22

bmRequestType bRequest wValue Windex wLength Data

1000 0010b GET_STATUS (0x00) Zero Endpoint Two Endpoint Status

0000 0010b CLEAR_FEATURE (0x01) Feature Selector Endpoint Zero None

0000 0010b SET_FEATURE (0x03) Feature Selector Endpoint Zero None

1000 0010b SYNCH_FRAME (0x12) Zero Endpoint Two FrameNumber

■ The wIndex field is normally used to specify the referring endpoint and direction for requests directed to
an endpoint. Its format is shown below.

Table 23

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO

Reserved Dir Reserved Endpoint Number

■ Get Status returns two bytes indicating the status (Halted/Stalled) of a endpoint. The format of the two
bytes returned is illustrated below.

http://www.beyondlogic.org/usbnutshell/usb5.htm%23AlternateSetting�
http://www.beyondlogic.org/usbnutshell/usb5.htm%23InterfaceDescriptors�

Page 23 of 37

Table 24

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO

Reserved Halt

■ Clear Feature and Set Feature are used to set Endpoint Features. The standard currently defines one
endpoint feature selector, ENDPOINT_HALT (0x00) which allows the host to stall and clear an endpoint. Only
endpoints other than the default endpoint is recommended to have this functionality.

■ A Synch Frame request is used to report an endpoint synchronisation frame.

Enumeration

Enumeration is the process of determining what device has just been connected to the bus and what parameters it
requires such as power consumption, number and type of endpoint(s), class of product etc. The host will then assign
the device an address and enable a configuration allowing the device to transfer data on the bus. A fairly generic
enumeration process is detailed in section 9.1.2 of the USB specification. However when writing USB firmware for the
first time, it is handy to know exactly how the host responds during enumeration, rather than the general
enumeration process detailed in the specification.

A common Windows enumeration involves the following steps,

1. The host or hub detects the connection of a new device via the device's pull up resistors on the data pair. The
host waits for at least 100ms allowing for the plug to be inserted fully and for power to stabilise on the device.

2. Host issues a reset placing the device is the default state. The device may now respond to the default address
zero.

3. The MS Windows host asks for the first 64 bytes of the Device Descriptor.

4. After receiving the first 8 bytes of the Device Descriptor, it immediately issues another bus reset.

5. The host now issues a Set Address command, placing the device in the addressed state.

6. The host asks for the entire 18 bytes of the Device Descriptor.

7. It then asks for 9 bytes of the Configuration Descriptor to determine the overall size.

8. The host asks for 255 bytes of the Configuration Descriptor.

9. Host asks for any String Descriptors if they were specified.

At the end of Step 9, Windows will ask for a driver for your device. It is then common to see it request all the
descriptors again before it issues a Set Configuration request.

The above enumeration process is common to Windows 2000, Windows XP and Windows 98 SE.
Step 4 often confuses people writing firmware for the first time. The Host asks for the first 64 bytes of the device

descriptor, so when the host resets your device after it receives the first 8 bytes, it is only natural to think there is
something wrong with your device descriptor or how your firmware handles the request. However as many will tell you, if you
keep persisting by implementing the Set Address Command it will pay off by asking for a full 18 bytes of device descriptor
next.

Normally when something is wrong with a descriptor or how it is being sent, the host will attempt to read it three
times with long pauses in between requests. After the third attempt, the host gives up reporting an error with your
device.

Firmware - PIC16F876 controlling the PDIUSBD11

We start our examples with a Philip's PDIUSBD11 I2C Serial USB Device connected to a MicroChip PIC16F876
(shown) or a Microchip PIC16F877 (Larger 40 Pin Device). While Microchip has got two low speed USB PIC16C745 and
PIC16C765 devices out now, they are only OTP without In-Circuit Debugging (ICD) support which doesn't help with the
development flow too well. They do have four new full speed flash devices with (ICD) support coming. In the mean time the
Philips PDIUSBD11 connected to the PIC16F876 which gives the advantage of Flash and In-Circuit Debugging.

http://www.beyondlogic.org/usb/usbhard.htm%23Microchip�

Page 24 of 37

A schematic of the required hardware is shown above. The example enumerates and allows analog voltages to be
read from the five multiplexed ADC inputs on the PIC16F876 MCU. The code is compatible with the PIC16F877
allowing a maximum of 8 Analog Channels. A LED connected on port pin RB3 lights when the device is configured. A
3.3V regulator is not pictured, but is required for the PDIUSBD11. If you are running the example circuit from an
external power supply, then you can use a garden variety 78L033 3.3V voltage regulator, however you wish to run the
device as a Bus Powered USB device then a low dropout regulator needs to be sought.

Debugging can be done by connecting TXD (Pin 17) to a RS-232 Line Driver and fed into a PC at 115,200bps.
Printf statements have been included which display the progress of enumeration.

The code has been written in C and compiled with the Hi-Tech PICC Compiler. They have a demo version

(7.86 PL4) of the PICC for download which works for 30 days. A pre-compiled .HEX file has be included in the archive
which has been compiled for use with (or without) the ICD.

Picture 12

#include <pic.h>
#include <stdio.h>
#include <string.h>
#include "usbfull.h"

const USB_DEVICE_DESCRIPTOR DeviceDescriptor =
{
 sizeof(USB_DEVICE_DESCRIPTOR), /* bLength */
 TYPE_DEVICE_DESCRIPTOR, /* bDescriptorType */
 0x0110, /* bcdUSB USB Version 1.1 */
 0, /* bDeviceClass */
 0, /* bDeviceSubclass */
 0, /* bDeviceProtocol */
 8, /* bMaxPacketSize 8 Bytes */
 0x04B4, /* idVendor (Cypress Semi) */
 0x0002, /* idProduct (USB Thermometer Example) */
 0x0000, /* bcdDevice */
 1, /* iManufacturer String Index */
 0, /* iProduct String Index */
 0, /* iSerialNumber String Index */
 1 /* bNumberConfigurations */
};

The structures are all defined in the header file. We have based this example on the Cypress USB
Thermometer example so you can use our USB Driver for the Cypress USB Starter Kit. A new generic driver is being
written to support this and other examples which will be available soon. Only one string is provided to display the
manufacturer. This gives enough information about how to implement string descriptors without filling up the entire device
with code. A description of the Device Descriptor and its fields can be found here.

http://www.htsoft.com/�
http://www.htsoft.com/software/index.html�
http://www.htsoft.com/software/index.html�
http://www.htsoft.com/software/index.html�
http://www.beyondlogic.org/usb/cypress.htm�
http://www.beyondlogic.org/usbnutshell/usb5.htm%23DeviceDescriptors�

Page 25 of 37

const USB_CONFIG_DATA ConfigurationDescriptor = /* configuration descriptor */
{
 {
 sizeof(USB_CONFIGURATION_DESCRIPTOR), /* bLength */
 TYPE_CONFIGURATION_DESCRIPTOR, /* bDescriptorType */
 sizeof(USB_CONFIG_DATA), /* wTotalLength */
 1, /* bNumInterfaces */
 1, /* bConfigurationValue */
 0, /* iConfiguration String Index */
 0x80, /* bmAttributes Bus Powered, No Remote Wakeup */
 0x32 /* bMaxPower, 100mA */
 },
 { /* interface descriptor */
 sizeof(USB_INTERFACE_DESCRIPTOR), /* bLength */
 TYPE_INTERFACE_DESCRIPTOR, /* bDescriptorType */
 0, /* bInterface Number */
 0, /* bAlternateSetting */
 2, /* bNumEndpoints */
 0xFF, /* bInterfaceClass (Vendor specific) */
 0xFF, /* bInterfaceSubClass */
 0xFF, /* bInterfaceProtocol */
 0 /* iInterface String Index */ },
 { /* endpoint descriptor */
 sizeof(USB_ENDPOINT_DESCRIPTOR), /* bLength */
 TYPE_ENDPOINT_DESCRIPTOR, /* bDescriptorType */
 0x01, /* bEndpoint Address EP1 OUT */
 0x02, /* bmAttributes - Interrupt */
 0x0008, /* wMaxPacketSize */
 0x00 /* bInterval */
 },
 { /* endpoint descriptor */
 sizeof(USB_ENDPOINT_DESCRIPTOR), /* bLength */
 TYPE_ENDPOINT_DESCRIPTOR, /* bDescriptorType */
 0x81, /* bEndpoint Address EP1 IN */
 0x02, /* bmAttributes - Interrupt */
 0x0008, /* wMaxPacketSize */
 0x00 /* bInterval */
 }
};

A description of the Configuration Descriptor and its fields can be found here. We provide two endpoint
descriptors on top of the default pipe. EP1 OUT is an 8 byte maximum Bulk OUT Endpoint and EP1 IN is an 8 byte max Bulk IN
Endpoint. Our example reads data from the Bulk OUT endpoint and places it in an 80 byte circular buffer. Sending an IN
packet to EP1 reads 8 byte chunks from this circular buffer.

LANGID_DESCRIPTOR LANGID_Descriptor = /* LANGID String Descriptor Zero */
 {
 sizeof(LANGID_DESCRIPTOR), /* bLenght */
 TYPE_STRING_DESCRIPTOR, /* bDescriptorType */
 0x0409 /* LANGID US English */
 };

const MANUFACTURER_DESCRIPTOR Manufacturer_Descriptor = /* ManufacturerString 1 */
 {
 sizeof(MANUFACTURER_DESCRIPTOR), /* bLenght */
 TYPE_STRING_DESCRIPTOR, /* bDescriptorType */

http://www.beyondlogic.org/usbnutshell/usb5.htm%23ConfigurationDescriptors�

Page 26 of 37

 "B\0e\0y\0o\0n\0d\0 \0L\0o\0g\0i\0c\0" /* ManufacturerString in
 UNICODE */
 };

A Zero Index String Descriptor is provided to support the LANGID requirements of USB String Descriptors. This
indicates all descriptors are in US English. The Manufacturer Descriptor can be a little deceiving as the size of the char array is
fixed in the header and is not dynamic.

#define MAX_BUFFER_SIZE 80

bank1 unsigned char circularbuffer[MAX_BUFFER_SIZE];
unsigned char inpointer;
unsigned char outpointer;
unsigned char *pSendBuffer;
unsigned char BytesToSend;
unsigned char CtlTransferInProgress;
unsigned char DeviceAddress;
unsigned char DeviceConfigured;

#define PROGRESS_IDLE 0
#define PROGRESS_ADDRESS 3

void main (void)
{
TRISB = 0x03; /* Int & Suspend Inputs */
RB3 = 1; /* Device Not Configured (LED) */
RB2 = 0; /* Reset PDIUSBD11 */
 InitUART();
 printf("Initialising\n\r");
 I2C_Init();
RB2 = 1; /* Bring PDIUSBD11 out of reset */
ADCON1 = 0x80; /* ADC Control - All 8 Channels Enabled, */ /* supporting

upgrade to 16F877 */
USB_Init();
printf("PDIUSBD11 Ready for connection\n\r");
while(1)
 if (!RB0) D11GetIRQ(); /* If IRQ is Low, PDIUSBD11 has an Interrupt Condition */
}

The main function is example dependent. It's responsible for initialising the direction of the I/O Ports,
initialising the I2C interface, Analog to Digital Converters and PDIUSBD11. Once everything is configured it keeps calling
D11GetIRQ which processes PDIUSBD11 Interrupt Requests.

void USB_Init(void)
{
unsigned char Buffer[2];

/* Disable Hub Function in PDIUSBD11 */
Buffer[0] = 0x00; D11CmdDataWrite(D11_SET_HUB_ADDRESS, Buffer, 1);
 /* Set Address to zero (default) and enable function */
 Buffer[0] = 0x80; D11CmdDataWrite(D11_SET_ADDRESS_ENABLE, Buffer, 1);
/* Enable function generic endpoints */
Buffer[0] = 0x02; D11CmdDataWrite(D11_SET_ENDPOINT_ENABLE, Buffer, 1);
 /* Set Mode - Enable SoftConnect */
 Buffer[0] = 0x97;
/* Embedded Function, SoftConnect, Clk Run, No LazyClk, Remote Wakeup */
Buffer[1] = 0x0B;

http://www.beyondlogic.org/usbnutshell/usb5.htm%23StringDescriptors�

Page 27 of 37

 /* CLKOut = 4MHz */
 D11CmdDataWrite(D11_SET_MODE, Buffer, 2);
}

The USB Init function initialises the PDIUSBD11. This initialisation procedure has been omitted from the
Philips PDIUSBD11 datasheet but is available from their FAQ. The last command enables the soft-connect pull up resistor on
D+ indicating it is a full speed device but also advertises its presence on the universal serial bus.

void D11GetIRQ(void)
{
unsigned short Irq;
unsigned char Buffer[1];

/* Read Interrupt Register to determine source of interrupt */
D11CmdDataRead(D11_READ_INTERRUPT_REGISTER, (unsigned char *)&Irq, 2);
 if (Irq)
 printf("Irq = 0x%X: ",Irq);

Main() keeps calling the D11GetIRQ in a loop. This function reads the PDIUSBD11's Interrupt Register to
establish if any interrupts are pending. If this is the case it will act upon them, otherwise it will continue to loop. Other
USB devices may have a series of interrupt vectors assigned to each endpoint. In this case each ISR will service the
appropriate interrupt removing the if statements.

if (Irq & D11_INT_BUS_RESET)
{
 printf("Bus Reset\n\r");
 USB_Init();
}

if (Irq & D11_INT_EP0_OUT)
{
 printf("EP0_Out: ");
 Process_EP0_OUT_Interrupt();
}

if (Irq & D11_INT_EP0_IN)
{
 printf("EP0_In: \n\r");
 if (CtlTransferInProgress == PROGRESS_ADDRESS)
 {
 D11CmdDataWrite(D11_SET_ADDRESS_ENABLE,&DeviceAddress,1);
 D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP0_IN, Buffer, 1);
 CtlTransferInProgress = PROGRESS_IDLE;
}

else
{
 D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP0_IN, Buffer, 1);
 WriteBufferToEndPoint();
}
}

The If statements work down in order of priority. The highest priority interrupt is the bus reset. This simply
calls USB_Init which re-initialises the USB function. The next highest priority is the default pipe consisting of EP0 OUT and EP1
IN. This is where all the enumeration and control requests are sent. We branch to another function to handle the
EP0_OUT requests.

When a request is made by the host and it wants to receive data, the PIC16F876 will send the PDIUSBD11 a 8

http://www.semiconductors.philips.com/buses/usb/products/device/pdiusbd11/faq/index.html�
http://www.beyondlogic.org/usbnutshell/usb2.htm%23SpeedIdentification�

Page 28 of 37

byte packet. As the USbus is host controlled it cannot write the data when ever it desires, so the PDIUSBD11 buffers
the data and waits for an IN Token to be sent from the host. When the PDIUSBD11 receives the IN Token it generates an
interrupt. This makes a good time to reload the next packet of data to send. This is done by an additional function
WriteBufferToEndpoint();

The section under CtlTransferInProgress == PROGRESS_ADDRESS handles the setting of the device's address.
We detail this later.

if (Irq & D11_INT_EP1_OUT)
{
 printf("EP1_OUT\n\r");
 D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP1_OUT, Buffer, 1);
 bytes = D11ReadEndpoint(D11_ENDPOINT_EP1_OUT, Buffer);
 for (count = 0; count < bytes; count++)
 {
 circularbuffer[inpointer++] = Buffer[count];
 if (inpointer >= MAX_BUFFER_SIZE)
 inpointer = 0;
 }
 loadfromcircularbuffer(); //Kick Start }
 if (Irq & D11_INT_EP1_IN)
 {
 printf("EP1_IN\n\r");
 D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP1_IN, Buffer, 1);
 loadfromcircularbuffer();
 }

EP1 OUT and EP1 IN are implemented to read and write bulk data to or from a circular buffer. This setup
allows the code to be used in conjunction with the BulkUSB example in the Windows DDK's. The circular buffer is defined
earlier in the code as being 80 bytes long taking up all of bank1 of the PIC16F876's RAM.

if (Irq & D11_INT_EP2_OUT)
{
 printf("EP2_OUT\n\r");
 D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP2_OUT, Buffer, 1);
Buffer[0] = 0x01; /* Stall Endpoint */
D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP2_OUT, Buffer, 1);
}
if (Irq & D11_INT_EP2_IN)
{
 printf("EP2_IN\n\r");
 D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP2_IN, Buffer, 1);
 Buffer[0] = 0x01; /* Stall Endpoint */
 D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP2_IN, Buffer, 1);
}
if (Irq & D11_INT_EP3_OUT)
{
 printf("EP3_OUT\n\r");
 D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP3_OUT, Buffer, 1);
 Buffer[0] = 0x01; /* Stall Endpoint */
 D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP3_OUT, Buffer, 1);
}
if (Irq & D11_INT_EP3_IN)
{
 printf("EP3_IN\n\r");
 D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP3_IN, Buffer, 1);
 Buffer[0] = 0x01; /* Stall Endpoint */
 D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP3_IN, Buffer, 1);

Page 29 of 37

}
}

Endpoints two and three are not used at the moment, so we stall them if any data is received. The
PDIUSBD11 has a Set Endpoint Enable Command which can be used to enable or disable function generic endpoints (any
endpoints other than the default control pipe). We could use this command to diable the generic endpoints, if we
were planning on not using these later. However at the moment this code provides a foundation to build upon.

void Process_EP0_OUT_Interrupt(void)
{
unsigned long a;
unsigned char Buffer[2];
USB_SETUP_REQUEST SetupPacket;
/* Check if packet received is Setup or Data - Also clears IRQ */
D11CmdDataRead(D11_READ_LAST_TRANSACTION + D11_ENDPOINT_EP0_OUT, &SetupPacket, 1);
if (SetupPacket.bmRequestType & D11_LAST_TRAN_SETUP)
{

The first thing we must do is determine is the packet we have received on EP0 Out is a data packet or a Setup
Packet. A Setup Packet contains a request such as Get Descriptor where as a data packet contains data for a previous
request. We are lucky that most requests do not send data packets from the host to the device. A request that does is
SET_DESCRIPTOR but is rarely implemented.

/* This is a setup Packet - Read Packet */
D11ReadEndpoint(D11_ENDPOINT_EP0_OUT, &SetupPacket);
/* Acknowlegde Setup Packet to EP0_OUT & Clear Buffer*/
D11CmdDataWrite(D11_ACK_SETUP, NULL, 0); D11CmdDataWrite(D11_CLEAR_BUFFER, NULL, 0);
/* Acknowlegde Setup Packet to EP0_IN */
D11CmdDataWrite(D11_ENDPOINT_EP0_IN, NULL, 0); D11CmdDataWrite(D11_ACK_SETUP, NULL, 0);
/* Parse bmRequestType */
switch (SetupPacket.bmRequestType & 0x7F)
{

As we have seen in our description of Control Transfers, a setup packet cannot be NAKed or STALLed. When
the PDIUSBD11 receives a Setup Packet it flushes the EP0 IN buffer and disables the Validate Buffer and Clear Buffer
commands. This ensures the setup packet is acknowledged by the microcontroller by sending an Acknowledge Setup
command to both EP0 IN and EP0 OUT before a Validate or Clear Buffer command is effective. The recept of a setup packet
will also un-stall a STALLed control endpoint.

Once the packet has been read into memory and the setup packet acknowledged, we being the parse the request
starting with the request type. At the moment we are not interesting in the direction, so we AND off this bit. The three
requests all devices must process is the Standard Device Request, Standard Interface Request and Standard Endpoint
Requests. We provide our functionality (Read Analog Inputs) by the Vendor Request, so we add a case statement for
Standard Vendor Requests. If your device supports a USB Class Specification, then you may also need to add cases for Class
Device Request, Class Interface Request and/or Class Endpoint Request.

case STANDARD_DEVICE_REQUEST:
 printf("Standard Device Request "); switch (SetupPacket.bRequest) { case GET_STATUS:
 /* Get Status Request to Device should return Remote Wakeup and Self Powered Status */
 Buffer[0] = 0x01;
 Buffer[1] = 0x00;
 D11WriteEndpoint(D11_ENDPOINT_EP0_IN, Buffer, 2);
break;
case CLEAR_FEATURE: case SET_FEATURE:
 /* We don't support DEVICE_REMOTE_WAKEUP or TEST_MODE */
 ErrorStallControlEndPoint();
break;

http://www.beyondlogic.org/usbnutshell/usb6.htm%23SetupPacket�
http://www.beyondlogic.org/usbnutshell/usb6.htm%23SetupPacket�
http://www.beyondlogic.org/usbnutshell/usb6.htm%23SetupPacket�
http://www.beyondlogic.org/usbnutshell/usb4.htm%23Control�

Page 30 of 37

The Get Status request is used to report the status of the device in terms of if the device is bus or self
powered and if it supports remote wakeup. In our device we report it as self powered and as not supporting remote wakeup.

Of the Device Feature requests, this device doesn't support DEVICE_REMOTE_WAKEUP nor TEST_MODE and
return a USB Request Error as a result.

case SET_ADDRESS:
 printf("Set Address\n\r");
 DeviceAddress = SetupPacket.wValue | 0x80;
 D11WriteEndpoint(D11_ENDPOINT_EP0_IN, NULL, 0);
 CtlTransferInProgress = PROGRESS_ADDRESS;
break;

The Set Address command is the only command that continues to be processed after the status stage. All
other commands must finish processing before the status stage. The device address is read and OR'ed with 0x80 and
stored in a variable DeviceAddress. The OR'ing with 0x80 is specific to the PDIUSBD11 with the most significant bit
indicating if the device is enabled or not. A zero length packet is returned as status to the host indicating the command is
complete. However the host must send an IN Token, retrieve the zero length packet and issue an ACK before we can change
the address. Otherwise the device may never see the IN token being sent on the default address.

The completion of the status stage is signalled by an interrupt on EP0 IN. In order to differentiate between a
set address response and a normal EP0_IN interrupt we set a variable, CtlTransferInProgress to PROGRESS_ADDRESS.
In the EP0 IN handler a check is made of CtlTransferInProgress. If it equals PROGRESS_ADDRESS then the Set Address
Enable command is issued to the PDIUSBD11 and CtlTransferInProgress is set to PROGRESS_IDLE. The host gives 2ms for the
device to change its address before the next command is sent.

case GET_DESCRIPTOR:
 GetDescriptor(&SetupPacket); break;
 case GET_CONFIGURATION:
 D11WriteEndpoint(D11_ENDPOINT_EP0_IN, &DeviceConfigured, 1);
break;
case SET_CONFIGURATION:
 printf("Set Configuration\n\r");
DeviceConfigured = SetupPacket.wValue & 0xFF;
D11WriteEndpoint(D11_ENDPOINT_EP0_IN, NULL, 0);
if (DeviceConfigured)
{
RB3 = 0;
printf("\n\r *** Device Configured *** \n\r");
}
else {
RB3 = 1; /* Device Not Configured */
printf("\n\r ** Device Not Configured *** \n\r");
}
break;
// case SET_DESCRIPTOR:
default:
/* Unsupported - Request Error - Stall */
ErrorStallControlEndPoint();
break;
}
break;

The Get Configuration and Set Configuration is used to "enable" the USB device allowing data to be transferred on
endpoints other than endpoint zero. Set Configuration should be issued with wValue equal to that of a
bConfigurationValue of the configuration you want to enable. In our case we only have one configuration,
configuration 1. A zero configuration value means the device is not configured while a non-zero configuration value indicates
the device is configured. The code does not fully type check the configuration value, it only copies it into a local
storage variable, DeviceConfigured. If the value in wValue does not match the bConfigurationValue of a Configuration,

Page 31 of 37

it should return with a USB Request Error.

case STANDARD_INTERFACE_REQUEST:
printf("Standard Interface Request\n\r");
switch (SetupPacket.bRequest)
{
case GET_STATUS:
/* Get Status Request to Interface should return Zero, Zero (Reserved for future use) */
Buffer[0] = 0x00; Buffer[1] = 0x00;
D11WriteEndpoint(D11_ENDPOINT_EP0_IN, Buffer, 2);
break;
case SET_INTERFACE:
/* Device Only supports default setting, Stall may be returned in the status stage of the request */
if (SetupPacket.wIndex == 0 && SetupPacket.wValue == 0) /* Interface Zero, Alternative Setting = 0 */
 D11WriteEndpoint(D11_ENDPOINT_EP0_IN, NULL, 0);
else
 ErrorStallControlEndPoint(); break;
case GET_INTERFACE:
if (SetupPacket.wIndex == 0)
{
/* Interface Zero */
Buffer[0] = 0; /* Alternative Setting */
D11WriteEndpoint(D11_ENDPOINT_EP0_IN, Buffer, 1); break; } /* else fall through as RequestError */
//case CLEAR_FEATURE:
//case SET_FEATURE:
/* Interface has no defined features. Return RequestError */
default:
ErrorStallControlEndPoint();
break;
} break;

Of the Standard Interface Requests, none perform any real function. The Get Status request must return a
word of zero and is reserved for future use. The Set Interface and Get Interface requests are used with alternative Interface
Descriptors. We have not defined any alternative Interface Descriptors so Get Interface returns zero and any request to
Set an interface other than to set interface zero with an alternative setting of zero is processed with a Request Error.

case STANDARD_ENDPOINT_REQUEST:
 printf("Standard Endpoint Request\n\r");
switch (SetupPacket.bRequest)
{
 case CLEAR_FEATURE:
 case SET_FEATURE:

/* Halt(Stall) feature required to be implemented on all Interrupt and Bulk Endpoints. It is not required nor
recommended on the Default Pipe */

if (SetupPacket.wValue == ENDPOINT_HALT)
{
 if (SetupPacket.bRequest == CLEAR_FEATURE) Buffer[0] = 0x00;
 else
 Buffer[0] =0x01;
 switch (SetupPacket.wIndex & 0xFF)
 {
 case 0x01 : D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP1_OUT, Buffer, 1);
 break;
 case 0x81 : D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP1_IN, Buffer, 1);
 break;
 case 0x02 : D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP2_OUT, Buffer, 1);

Page 32 of 37

 break;
 case 0x82 : D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP2_IN, Buffer, 1);
 break;
 case 0x03 : D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP3_OUT, Buffer, 1);
 break;
 case 0x83 : D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP3_IN, Buffer, 1);
 break;
 default: /* Invalid Endpoint - RequestError */
 ErrorStallControlEndPoint();
 break;
 }
 D11WriteEndpoint(D11_ENDPOINT_EP0_IN, NULL, 0);
 }
else
{
/* No other Features for Endpoint - Request Error */
ErrorStallControlEndPoint();
}
break;

The Set Feature and Clear Feature requests are used to set endpoint specific features. The standard defines
one endpoint feature selector, ENDPOINT_HALT. We check what endpoint the request is directed to and set/clear the
STALL bit accordingly. This HALT feature is not required on the default endpoints.

case GET_STATUS:
/* Get Status Request to Endpoint should return Halt Status in D0 for Interrupt and Bulk */
switch (SetupPacket.wIndex & 0xFF)
{
 case 0x01 : D11CmdDataRead(D11_READ_ENDPOINT_STATUS + D11_ENDPOINT_EP1_OUT, Buffer, 1);
 break;
 case 0x81 : D11CmdDataRead(D11_READ_ENDPOINT_STATUS + D11_ENDPOINT_EP1_IN, Buffer, 1);
 break;
 case 0x02 : D11CmdDataRead(D11_READ_ENDPOINT_STATUS + D11_ENDPOINT_EP2_OUT, Buffer, 1);
 break;
 case 0x82 : D11CmdDataRead(D11_READ_ENDPOINT_STATUS + D11_ENDPOINT_EP2_IN, Buffer, 1);
 break;
 case 0x03 : D11CmdDataRead(D11_READ_ENDPOINT_STATUS + D11_ENDPOINT_EP3_OUT, Buffer, 1);
 break;
 case 0x83 : D11CmdDataRead(D11_READ_ENDPOINT_STATUS + \ D11_ENDPOINT_EP3_IN, Buffer, 1);
 break;
default:
/* Invalid Endpoint - RequestError */
ErrorStallControlEndPoint();
break;
}
if (Buffer[0] & 0x08)
 Buffer[0] = 0x01;
 else
 Buffer[0] = 0x00;
Buffer[1] = 0x00;
D11WriteEndpoint(D11_ENDPOINT_EP0_IN, Buffer, 2);
break;
default:
/* Unsupported - Request Error - Stall */
ErrorStallControlEndPoint();
break;

Page 33 of 37

}
break;

The Get Status request when directed to the endpoint returns the status of the endpoint, ie. if it is halted or
not. Like the Set/Clear feature request ENDPOINT_HALT, we only need to report the status of the generic endpoints.

Any undefined Standard Endpoint Requests are handled by USB Request Error.

case VENDOR_DEVICE_REQUEST:
case VENDOR_ENDPOINT_REQUEST:
 printf("Vendor Device bRequest = 0x%X, wValue = 0x%X, wIndex = 0x%X\n \r", SetupPacket.bRequest,
 SetupPacket.wValue, SetupPacket.wIndex);
switch (SetupPacket.bRequest)
{
case VENDOR_GET_ANALOG_VALUE:
 printf("Get Analog Value, Channel %x :",SetupPacket.wIndex & 0x07);
 ADCON0 = 0xC1 | (SetupPacket.wIndex & 0x07) << 3;
 /* Wait Acquistion time of Sample and Hold */
 for (a = 0; a <= 255; a++);
 ADGO = 1;
while(ADGO);
Buffer[0] = ADRESL;
Buffer[1] = ADRESH;
a = (Buffer[1] << 8) + Buffer[0];
a = (a * 500) / 1024;
printf(" Value = %d.%02d\n\r",(unsigned int)a/100,(unsigned int)a%100);
D11WriteEndpoint(D11_ENDPOINT_EP0_IN, Buffer, 2);
break;

Now comes the functional parts of the USB device.
The Vendor Requests can be dreamed up by the designer. We have dreamed up two requests,

VENDOR_GET_ANALOG_VALUE and VENDOR_SET_RB_HIGH_NIBBLE. VENDOR_GET_ANALOG_VALUE reads the 10-bit
Analog Value on Channel x dictated by wIndex. This is ANDed with 0x07 to allow 8 possible channels, supporting the larger
PIC16F877 if required. The analog value is returned in a two byte data packet.

case VENDOR_SET_RB_HIGH_NIBBLE:
 printf("Write High Nibble of PORTB\n\r");
 PORTB = (PORTB & 0x0F) | (SetupPacket.wIndex & 0xF0);
 D11WriteEndpoint(D11_ENDPOINT_EP0_IN, NULL, 0);
break;
default:
ErrorStallControlEndPoint();
break;
}
break;

The VENDOR_SET_RB_HIGH_NIBBLE can be used to set the high nibble bits of PORTB[3:7].

default:
 printf("UnSupported Request Type 0x%X\n\r",SetupPacket. bmRequestType);
 ErrorStallControlEndPoint();
break;
}
}
else {
printf("Data Packet?\n\r"); /* This is a Data Packet */
}
}

Page 34 of 37

Any unsupported request types such as class device request, class interface request etc is dealt with by a USB
Request Error.

void GetDescriptor(PUSB_SETUP_REQUEST SetupPacket)
{
switch((SetupPacket->wValue & 0xFF00) >> 8)
{
 case TYPE_DEVICE_DESCRIPTOR:
 printf("\n\rDevice Descriptor: Bytes Asked For %d, Size of Descriptor %d \n\r",

SetupPacket->wLength,DeviceDescriptor.bLength);
 pSendBuffer = (const unsigned char *)&DeviceDescriptor;
 BytesToSend = DeviceDescriptor.bLength;
 if (BytesToSend > SetupPacket->wLength)
 BytesToSend = SetupPacket->wLength;
 WriteBufferToEndPoint(); break;
case TYPE_CONFIGURATION_DESCRIPTOR:
 printf("\n\rConfiguration Descriptor: Bytes Asked For %d, Size of Descriptor %d\n\r",

SetupPacket->wLength, sizeof(ConfigurationDescriptor));
 pSendBuffer = (const unsigned char *)&ConfigurationDescriptor;
 BytesToSend = sizeof(ConfigurationDescriptor);
 if (BytesToSend > SetupPacket->wLength)
 BytesToSend = SetupPacket->wLength;
 WriteBufferToEndPoint();
break;

The Get Descriptor requests involve responses greater than the 8 byte maximum packet size limit of the
endpoint. Therefore they must be broken up into 8 byte chunks. Both the Device and Configuration requests load the
address of the relevant descriptors into pSendBuffer and sets the BytesToSend to the length of the descriptor. The
request will also specify a descriptor length in wLength specifying the maximum data to send. In each case we check the
actual length against that of what the host has asked for and trim the size if required. Then we call WriteBuffertoEndpoint
which loads the first 8 bytes into the endpoint buffer and increment the pointer ready for the next 8 byte packet.

case TYPE_STRING_DESCRIPTOR:
 printf("\n\rString Descriptor: LANGID = 0x%04x, Index %d\n\r", SetupPacket->wIndex,

SetupPacket->wValue & 0xFF);
switch (SetupPacket->wValue & 0xFF)
{
case 0 :
 pSendBuffer = (const unsigned char *)&LANGID_Descriptor;
 BytesToSend = sizeof(LANGID_Descriptor);
break;
case 1 :
 pSendBuffer = (const unsigned char *) &Manufacturer_Descriptor;
 BytesToSend = sizeof(Manufacturer_Descriptor);
break;
default :
 pSendBuffer = NULL;
BytesToSend = 0;
}
if (BytesToSend > SetupPacket->wLength)
 BytesToSend = SetupPacket->wLength;
WriteBufferToEndPoint();
break;

If any string descriptors are included, there must be a string descriptor zero present which details what languages are
supported by the device. Any non zero string requests have a LanguageID specified in wIndex telling what language to
support. In our case we cheat somewhat and ignore the value of wIndex (LANGID) returning the string, no matter

Page 35 of 37

what language is asked for.

default:
ErrorStallControlEndPoint();
break;
}
}

void ErrorStallControlEndPoint(void)
{
unsigned char Buffer[] = { 0x01 };

/* 9.2.7 RequestError - return STALL PID in response to next DATA Stage Transaction */
D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP0_IN, Buffer, 1);
/* or in the status stage of the message. */
D11CmdDataWrite(D11_SET_ENDPOINT_STATUS + D11_ENDPOINT_EP0_OUT, Buffer, 1);
}

When we are faced with an invalid request, invalid parameter or a request the device doesn't support, we
must report a request error. This is defined in 9.2.7 of the specification. A request error will return a STALL PID in
response to the next data stage transaction or in the status stage of the message. However it notes that to prevent
unnecessary bus traffic the error should be reported at the next data stage rather than waiting until the status stage.

unsigned char D11ReadEndpoint(unsigned char Endpoint, unsigned char *Buffer)
{
unsigned char D11Header[2];
unsigned char BufferStatus = 0;

/* Select Endpoint */
D11CmdDataRead(Endpoint, &BufferStatus, 1);
/* Check if Buffer is Full */
if(BufferStatus & 0x01)
{
/* Read dummy header - D11 buffer pointer is incremented on each read and is only reset by a Select Endpoint

Command */
D11CmdDataRead(D11_READ_BUFFER, D11Header, 2);
if(D11Header[1])
 D11CmdDataRead(D11_READ_BUFFER, Buffer, D11Header[1]);
/* Allow new packets to be accepted */
D11CmdDataWrite(D11_CLEAR_BUFFER, NULL, 0);
}
return D11Header[1];
}

void D11WriteEndpoint(unsigned char Endpoint, const unsigned char *Buffer, unsigned char Bytes)
{
unsigned char D11Header[2];
unsigned char BufferStatus = 0;

D11Header[0] = 0x00;
D11Header[1] = Bytes;
/* Select Endpoint */
D11CmdDataRead(Endpoint, &BufferStatus, 1); /* Write Header */
D11CmdDataWrite(D11_WRITE_BUFFER, D11Header, 2); /* Write Packet */
if (Bytes)
D11CmdDataWrite(D11_WRITE_BUFFER, Buffer, Bytes); /* Validate Buffer */

Page 36 of 37

D11CmdDataWrite(D11_VALIDATE_BUFFER, NULL, 0);
}

D11ReadEndpoint and D11WriteEndpoint are PDIUSBD11 specific functions. The PDIUSBD11 has two dummy bytes
prefixing any data read or write operation. The first byte is reserved, while the second byte indicates the number of
bytes received or to be transmitted. These two functions take care of this header.

void WriteBufferToEndPoint(void)
{
if (BytesToSend == 0)
{
/* If BytesToSend is Zero and we get called again, assume buffer is smaller than Setup Request Size and indicate end by
sending Zero Lenght packet */
D11WriteEndpoint(D11_ENDPOINT_EP0_IN, NULL, 0);
}
else if (BytesToSend >= 8)
{
/* Write another 8 Bytes to buffer and send */
D11WriteEndpoint(D11_ENDPOINT_EP0_IN, pSendBuffer, 8);
pSendBuffer += 8; BytesToSend -= 8;
}
else
{
/* Buffer must have less than 8 bytes left */
D11WriteEndpoint(D11_ENDPOINT_EP0_IN,
pSendBuffer, BytesToSend);
BytesToSend = 0;
}
}

As we have mentioned previously, WriteBufferToEndPoint is responsible for loading data into the PDIUSBD11 in 8
byte chunks and adjusting the pointers ready for the next packet. It is called once by the handler of a request to load
the first 8 bytes into the endpoint buffer. The host will then send an IN token, read this data and the PDIUSBD11 will
generate an interrupt. The EP0 IN handler will then call WriteBufferToEndpoint to load in the next packet in readiness for the
next IN token from the host.

A transfer is considered complete if all requested bytes have been read, if a packet is received with a payload less
than bMaxPacketSize or if a zero length packet is returned. Therefore if the BytesToSend counter hits zero, we assume
the data to be sent was a multiple of 8 bytes and we send a zero length packet to indicate this is the last of the data.
However if we have less than 8 bytes left to send, we send only the remaining bytes. There is no need to pad the data
with zeros.

void loadfromcircularbuffer(void)
{
unsigned char Buffer[10];
unsigned char count;

// Read Buffer Full Status
D11CmdDataRead(D11_ENDPOINT_EP1_IN, Buffer, 1);
if (Buffer[0] == 0)
{
// Buffer Empty
 if (inpointer != outpointer)
 {
 // We have bytes to send count = 0;
 do
 {
 Buffer[count++] = circularbuffer[outpointer++];

Page 37 of 37

 if (outpointer >= MAX_BUFFER_SIZE) outpointer = 0;
 if (outpointer == inpointer)
 break;
 // No more data
 }
 while (count < 8);
 // Maximum Buffer Size
 // Now load it into EP1_In
 D11WriteEndpoint(D11_ENDPOINT_EP1_IN, Buffer, count);
 }
 }
}

The loadfromcircularbuffer() routine handles the loading of data into the EP1 IN endpoint buffer. It is
normally called after an EP1 IN interrupt to reload the buffer ready for the next IN token on EP1. However in order to
send out first packet, we need to load the data prior to receiving the EP1 IN interrupt. Therefore the routine is also called after
data is received on EP1 OUT.

By also calling the routine from the handler for EP1 OUT, we are likely to overwrite data in the IN Buffer
regardless of whether it has been sent or not. To prevent this, we determine if the EP1 IN buffer is empty, before we attempt
to reload it with new data.

void D11CmdDataWrite(unsigned char Command, const unsigned char *Buffer, unsigned char Count)
{
I2C_Write(D11_CMD_ADDR, &Command, 1);
 if(Count)
 I2C_Write(D11_DATA_ADDR_WRITE, Buffer, Count);
}

void D11CmdDataRead(unsigned char Command, unsigned char Buffer[], unsigned char Count)
{
I2C_Write(D11_CMD_ADDR, &Command, 1);
 if(Count)
 I2C_Read(D11_DATA_ADDR_READ, Buffer, Count);
}

D11CmdDataWrite and D11CmdDataRead are two PDIUSBD11 specific functions which are responsible for sending
the I2C Address/Command first and then send or received data on the I2C Bus. Additional lower level functions are
included in the source code but have not been reproduced here as it is the intend to focus on the USB specific details.

This example can be used with the bulkUSB.sys example as part of the Windows DDK's. To load the bulkUSB.sys driver
either change the code to identify itself with a VID of 0x045E and a PID of 0x930A or change the bulkUSB. inf file
accompanying bulkUSB.sys to match the VID/PID combination you use in this example.

It is then possible to use the user mode console program, rwbulk.exe to send and receive packets from the
circular buffer. Use

rwbulk -r 80 -w 80 -c 1 -i 1 -o 0

to send 80 byte chunks of data to the PIC16F876. Using payloads greater than 80 bytes is going to overflow
the PIC's circular buffer in BANK1.

This example has been coded for readability at the expense of code size. It compiles in 3250 words of FLASH
(39% capacity of the PIC16F876).

	USB Protocols
	Common USB Packet Fields
	USB Packet Types
	USB Functions
	Endpoints
	Pipes
	Endpoint Types
	Control Transfers
	Control Transfers : The bigger picture
	Interrupt Transfers
	Isochronous Transfers
	Bulk Transfers
	Bandwidth Management

	USB Descriptors
	Composition of USB Descriptors
	Device Descriptors
	Configuration Descriptors
	Interface Descriptors
	Endpoint Descriptors
	String Descriptors
	The Setup Packet
	Standard Requests

	Standard Device Requests
	Standard Interface Requests
	Standard Endpoint Requests

	Enumeration
	Firmware - PIC16F876 controlling the PDIUSBD11

