4 The Irrationality of ((3)

For s > 1, we define ((s) = > >~ ,1/n®. We give here a proof by Frits Beukers that ((3) is
irrational (the result itself being originally due to R. Apery).

Theorem 10. The number ((3) = Y2, 1/n? is irrational.

In addition to Lemma 1 of the previous section (and the notation given there), we make use of
the following results.

Lemma 2. Let r and s be nonnegative integers. If r > s, then
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is a rational number whose denominator when reduced divides df. Also,
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Proof. Integrating by parts, we obtain that for £ > 0
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We deduce that
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Integrating now with respect to y in a similar fashion, we obtain
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If r > s, the right-hand side above can be written as
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If r = s, we obtain instead

o0 T 1
2 =21¢(3) — — .
> (- L)
Note that for r > s one has lem((r — s)(s + 1)2, (r — s)(s +2)?,..., (r — s)r?) is a divisor of d?.
The lemma follows. O

Lemma 3. Let D = {(u,v,w) : u,v,w € (0,1)}. Then the mapping f(u,v,w) = (z,y, ) defined

—w
byx=u,y=v, and z= —————  from D to D is one-to-one and onto. Furthermore,
1—(1—uv)w
a(l’, Y, Z) _ —uv

R

A(u,v,w) (1-(1—uv)w)
Proof. We begin by showing that f(D) C D. Consider (u,v,w) € D. Then 0 < (1 — uv)w <
w<1lsothatl >1—(1—wv)w>1—w > 0. It follows that
1—w
1> ——— > 0.
1 —(1—wuv)w

Hence, f(u,v,w) € D.
Next, we show that f?(u,v,w) = (u,v,w). This follows from

1—w
fQ(U,an) = f(%% m)

1—(1—w)w—(1—w) 1—(1—wuv)w
= u,v, X
1—(1—uv)w 1—(1—w)w— (1 —uv)(1l—w)
l—w4uww—-14+w
= | u,w, = (u,v,w).
l—w+vww—-14+uv+w—uwvw

We deduce now that if (u,v,w) € D and f(u,v,w) = (¢/,v",w’), then (v',v',w’) € D and
f v w'") = (u,v,w). It follows that f is one-to-one and onto.
Observe that

0z —(1—= (1 —w)w) + (1 —w)(1 — uv)

ow (1-(1- uv)w)2
—1+w—-uww+1—-w—uv+uvw —uv
- (1-(1- uv)w)2 - (1-(1- uv)w)T
Hence, for some A and B we have
1 0 0
d(z,y, z) 0 1 0 —uv
Movw) |4 5 — =" | A (= ww)”
(1—(1—uw)w)

which concludes the proof. O
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Lemma 4. The function

u(l —uw)v(l —v)w(l —w)
1—(1—uv)w

flu,v,w) =

is bounded above by 1/27 in the region D.

Proof. We use the inequality
1—(1—-w)w=(1—-w)+uvw > 2v1—wyuvw.
We deduce that for (u, v, w) € D one has
1
flu,0,w) < 5Vl = u)Vo(l = v)y/w(l —w).

For ¢ € [0, 1], the maximum of #(1 — ¢?) occurs at ¢ = 1/+/3 and the maximum of ¢(1 — ) occurs
att = 1/2. Hence, we deduce that
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This establishes the lemma. O]

Proof of Theorem 10. Consider the integral

/ / lfg_ 2 (z)Pu(y) dx dy,

where P, is as defined in the proof of Theorem 8. Recall P, (z) is in Z[x] and of degree n so that
P,(z)P,(y) is a sum of terms of the form a;;2'y’ where 0 < i < n,0 < j < n,and a;; € Z
for all such ¢ and j. Also, a; > 0 for each ¢ and a,,, > 0 (in fact, a;; > 0 for each ¢, but this is
not needed). Lemma 2 implies that the double integral above is a sum of rational numbers whose
denominators divide d2 plus a positive integral multiple of {(3). In particular, there exist integers
A, and B, with B,, > 0 such that the double integral equals (A, + B,((3))/d3.

We now find a second expression for the double integral. Since

1 1
og(zy) / ! n
1—ay o 1— (1 —2zy)z

[ [ [ BOLD) 440,

Note that for 0 < & < n — 1 the multiple derivative

the double integral becomes

dlc
s (x”(l — x)”)
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can be expressed as a sum of terms each having both x and 1 — « as a factor. Switching order of
integration and integrating by parts repeatedly, we obtain

log(x
y) dz dy = dr dy d
// 1—:sy") “’///1—— raes

/// d:i”_ 1(i;;)) )dxdydz
_ / / / D= 1_%) d(dci:_ll (:p”(l—x)")) dy d=

e
- /// dgc1—(1—:cy)z)2 drdydz
_ / / / nl(y2) (1_95:1(1_;;);n+1 dz dy dz

:///xyz ?) ng)d:cdydz.
1—(1—ay)z)

We apply now the transformation of Lemma 3 so that

. (-
(1-(1—w)w)"

z

and

el _ (1-w) " (uv)"*!
The above integral becomes

/01 /01 /01%"(1 - w>:<1 — )" Po(v) (1~ (1~ wo)w)" dudvdw

— (1 — w)w)" (uv)+ (1—(1—wuv)w)

N U R

By similarity of this integral with a previous integral, exchanging the order of integration and
integrating by parts with respect to v and finally changing the order of integration back gives

log( a:'y
[ [ -2 b wyparay

= /01 /01 /01 u(1 —uw)""(1 — v)"w"(1 — w)" = (dluih;il)uw)nﬂ
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We apply Lemma 4 and then Lemma 2 to obtain

log(x du dv dw
P,(x)P,(y) dx dy < (1/27)
0<// 1—a:y ()Pl ety = /7/// T (1 ww

= (1/27)" / / 108(u0) 41y = 2(1/27)¢(3).

1 —uv

‘We now deduce that
|Ay + BnC(3)]

d3

for an arbitrary positive integer n and some integers A,, and B,,. Assume now that ((3) = a/b for
some integers a and b with b > 0. By Lemma 1,

0< < 20(3)(1/27)"

0 < [bA, + aB,| <2¢(3)(1/27)"d>b
< 2¢(3)(1/27)"2.8*"b = 2¢(3)(2.8°/27)"b < 2¢(3)(0.9)"b.

Since bA,, + aB,, is an integer, we obtain a contradiction for n sufficiently large (so that (0.9)" <
1/(2¢(3)b)). Hence, ((3) is irrational. O

Homework:

1. Show that the argument above can be modified (actually simplified) to establish the irra-
tionality of ¢(2) = >_>° | 1/n?. Use the identity

/ / l—xy dxdy— / / 1—my”+1 dx dy.

Besides giving some indication as to how the above identity can be established, you should
provide lemmas similar to Lemma 2 and Lemma 4 (but may need to give a little thought as
to what these should be).

2. Let f(u,v,w) be as in Lemma 4. Prove that the maximum value of f(u,v,w) in the region

Dis (v2 — 1)~
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