
1 Introduction

Definition 1. A rational number is a number which can be expressed in the forma/b wherea and
b are integers withb > 0.

Theorem 1. A real numberα is a rational number if and only if it can be expressed as a repeating
decimal, that is if and only ifα = m.d1d2 . . . dkdk+1dk+2 . . . dk+r, wherem = [α] if α ≥ 0 and
m = −[|α|] if α < 0, wherek andr are non-negative integers withr ≥ 1, and where thedj are
digits.

Proof. If
α = m.d1d2 . . . dkdk+1dk+2 . . . dk+r,

then(10k+r − 10k)α ∈ Z and it easily follows thatα is rational.
If α = a/b with a andb integers andb > 0, thenα = m.d1d2 . . . for some digitsdj. If {x}

denotes the fractional part ofx, then

{10j|α|} = 0.dj+1dj+2 . . . . (1)

On the other hand,

{10j|α|} = {10ja/b} = u/b for someu ∈ {0, 1, . . . , b− 1}.

Hence, by the pigeon-hole principle, there exist non-negative integersk andr with r ≥ 1 and

{10k|α|} = {10k+r|α|}.

From (1), we deduce that
0.dk+1dk+2 · · · = 0.dk+r+1dk+r+2 . . .

so that
α = m.d1d2 . . . dkdk+1dk+2 . . . dk+r,

and the result follows.

Definition 2. A number is irrational if it is not rational.

Theorem 2. A real numberα which can be expressed as a non-repeating decimal is irrational.

Proof 1. From the argument above, ifα = m.d1d2 . . . andα = a/b is rational, then the digitsdj

repeat. This implies the desired result.

Proof 2. This proof is based on showing that the decimal representation of a number is essentially
unique. Assumeα can be expressed as a non-repeating decimal and is rational. By Theorem 1,
there are digitsdj andd′j such that

α = m.d1d2 . . . dkdk+1dk+2 . . . dk+r and α = m.d′1d
′
2d
′
3 . . . ,
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where the latter represents a non-repeating decimal. Then there is a minimum positive integeru
such thatdu 6= d′u. Observe that there must be av > u such that|dv − d′v| 6= 9; otherwise, we
would have thatd′v = 9− dv for everyv > u, contradicting that thed′v do not repeat. Hence,

0 = |α− α|
= |m.d1d2 . . . dkdk+1dk+2 . . . dk+r −m.d′1d

′
2d
′
3 . . . |

≥ |du − d′u|
10u

−
∞∑

j=u+1

|dj − d′j|
10j

>
1

10u
−

∞∑
j=u+1

9

10j
.

The last expression is easily evaluated to be 0 (the series is a geometric series). Hence, we obtain
a contradiction, which shows thatα must be irrational.

We will begin the course by briefly discussing the irrationality of certain numbers, namely
√

2,
log10 2, e, π, log 2 (natural logarithm of 2), andζ(3) (to be defined). It is nevertheless convenient
to define now the main topic of this course.

Definition 3. An algebraic number is a number which is a root off(x) ∈ Z[x] for somef(x) 6≡ 0.
A transcendental number is a number which is not algebraic.

It should be noted that rational numbers correspond to roots of linear polynomials inZ[x].
Examples of transcendental numbers includee, π, andeπ. The number

√
2 is an easy example

of a number which is irrational but not transcendental.
There are many open problems concerning the subject. We do not know if the numberse + π,

eπ, or πe are transcendental. We know thatlog 2 andlog 3 are transcendental, but we do not know
if (log 2)(log 3) is. Euler’s constant is

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
;

we do not even know if it is irrational. The Riemann zeta function is defined asζ(s) =
∑∞

n=1 1/ns

(for R(s) > 1). It is known thatζ(2n) is transcendental whenevern is a positive integer, but
the status ofζ(2n + 1) is not very well understood. In 1978, Apery gave the first proof thatζ(3)
is irrational, and very recently it was established thatζ(2n + 1) is irrational for infinitely many
positive integersn.

We now turn to some irrationality examples.

Theorem 3. If the real numberα is a root of

f(x) = xn + an−1x
n−1 + · · ·+ a1x + a0 ∈ Z[x],

thenα is either an integer or an irrational number.

Proof. Prove directly or by using the rational root test. Supposeα = a/b with b > 0 and(a, b) = 1,
and show thatb = 1 (that is thatb has no prime divisors).
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Corollary 1. If n andk are positive integers andn is not ankth power, thenk
√

n is irrational.

Proof. Clear.

Theorem 4. There are real irrational numbersα andβ for whichαβ is rational.

Proof. Either
√

2
√

2
or
(√

2
√

2
)√2

is an example. (Also, after the next theorem, the example
√

10
2 log10 2

leads to a simple argument here.)

Theorem 5. The numberlog10 2 is irrational.

Proof. Trivial (use the Fundamental Theorem of Arithmetic).

Theorem 6. The numbere is irrational.

Proof. Almost trivial.

Homework:

1. Justify the last sentence in the proof of Theorem 1. (Note that0.1 = 0.09.)

2. Leta andb be positive integers, and writea/b = m.d1d2 . . . dkdk+1dk+2 . . . dk+r, wherem is
a positive integer, thedj are digits, andr is chosen as small as possible. Prove thatr divides
φ(b) whereφ is Euler’sφ−function.

3. From (1), it follows thatr ≤ b− 1 and that ifr = b− 1, thenb is a prime (note: the converse
of this isn’t true). Supposer = b− 1.

(i) Prove that each of the digits0, 1, . . . , 9 occurs among the digitsdk+1, dk+2, . . . , dk+r

either[(b− 1)/10] or [(b− 1)/10] + 1 times. (For example,r = 46 for 1/47 and each
of the digits0, 3, 6, 9 occurs 4 times in the “periodic part” of1/47 and each of the other
digits occurs 5 times in the periodic part of1/47; andr = 60 for 1/61, and it follows
from this problem that each digit occurs exactly 6 times in the periodic part of1/61.)

(ii) Prove that 0 occurs[(b− 1)/10] times among the digitsdk+1, dk+2, . . . , dk+r.

4. Using an argument similar to the proof of Theorem 6 (e is irrational), prove thate2 is irra-
tional.
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