9 Weyl's Theorem

We will give some preliminary material before introducing Weyl's Theorem and its proof. In
particular, the following result is fairly straightforward, but nevertheless it leads to some nice
examples.

Theorem 23. Letk be an integer. Then

L[ 0 ifk#0
- ezkx dr = I 7&

Equivalently,
/1€i27rkxdl,: 0 |fk’7£0
0 1 ifk=0.

nzl ei27rk‘j/n _ 0 if & 7& 0
if k=0.

§=0 "

Also, ifn > |k|, then

We give a few examples of the usefulness of Theorem 23. We do this by posing problems and
demonstrating a solution to each based on the above theorem. It should be kept in mind that we do
not mean to imply the the following solutions are the most elegant.

Example 1 (Putnam A-5, 1985).Let
2
I, = / cos(x) cos(2x) cos(3z) - - - cos(ma) dz.
0

For which integersn, 1 <m < 10, is I, # 0?

Solution: Recall that , ,
ezm _|_ e—Z{E
2

COST =

Hence,

2 m ikx —ikx 2m
e +e 1 ,
— | | _ E i(e142€e2+-+mem)x

k=1 1,eem€fl,—1

From Theorem 23, we deduce that each of the integrals in the dummiess:; +2¢;+- - - +me,, =
0. Also, ifanintegral in the sum is not zero, then itis positive. Thereffye# 0 if and only if there
existey, ..., €, € {1,—1} suchthat, +2¢,+- - - +me,, = 0. Note that ife; +2e5+- - - +me,,, = 0,
then

~ m(m+1)

0561+262—|—-~-+mem51—|—2+---+sz (mod 2)

so that
m=0o0r3 (mod 4).
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Thus, I, = 0 form € {1,2,5,6,9,10}. To see that the answer is the remaining that is
m € {3,4,7,8}, observe that

142—-3=0 andl—-2-3+4=0

and if
€1+ 23+ -+ me,, =0,
then
eL+2e+--F+me, —(m+1)+(m+2)+(m+3)—(m+4)=0.
Note that in general,, # 0 if and only if m = 0 or 3 (mod 4).

Example 2 (Putnam A-6, 1985):If p(z) = a9 + a1z + - - + a,,2™ is a polynomial with real
coefficientsq;, then set
L(p(x)) =aj + -+ a2,
Let f(x) = 3x* + Tz + 2. Find, with proof, a polynomiaj(x) with real coefficients such that
(i) g(0)=1,and

(i) T(f(x)") =T'(g(x)™) for all positive integers..

Solution: Observe that Theorem 23 implies

L(p(x)) =aj+ -+ a,

/ ap + a16127rac T ameiQW(mm)) (Go + ale—i27rz T ame—iQﬂ(mac)) dr
/ 127”6 6127rx) dzx.
Thus,

P(f(2)") =T(Bz +1)"(x +2)")

1
:/ (3€i27rz+1)n(6i27rx+2)n(36—i27rx+l)n(e—i27rx+2)n dr
0

whereg(z) = (3z + 1)(2z + 1) = 62% + 5z + 1. Sinceg(0) = 1, this completes the solution.
Example 3: Let R be a rectangle which is partitioned as a disjoint union (excluding common

edges) of rectangle®, , . .., i, each having sides parallel to the sidegfProve that if eaclR,;
has at least one side of integer lengthfet 1,2, ..., n, then so doe%.
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Solution: We do not use Theorem 23 directly here but rather the following which is of a similar
flavor:

Supposer andu are real numbers. Then is an integer if and only if

u+to
/ 61271'1 dl’
u

Position the rectangles so that their sides are parallel to #redy-axes and so that the lower
left corner of R is (0,0). Supposey; and 3; are the horizontal and vertical dimensionsif,
respectively, forj = 1,2, ..., n. Let(u;,v,) be the lower left corner of;. Then since eithet; is
an integer or3; is an integer, we get from the above that

vi+B;
/ ey dy

vi+Bj  pujta; ujta;
/ / 62277($+y) dx dy / 6127r33 dr
vj Uj Uj J

On the other hand, ik and3 are the horizontal and vertical dimensionsiyfrespectively, then

a s .
/ 6127rx dr / 61271'1/ dy‘ _ ‘// 61271'(:U+y) dr
0 0 R
n , " vitB;  pujta;
Z // 27 (@+Y) 1o Z/ / e2m(@+y) o dy
j=1 " /B j=17vi uj

Hence, eithef [, ¢">™* dz| = 0 or ‘foﬁ P2y dy) = 0, which implies that eithew or 3 is an integer,
completing the proof.

=0.

=0.

=0.

We turn now to the main topic of this section. Fereal, let{a} denote the fractional part
of «. Note that{a} € [0, 1) for all a. Thus, for example{2.341} = 0.341, {22/7} = 1/7, and
{—22/7} = 6/7. Let{ay,as,...} be a sequence of real numbers. We say that the sequence is
uniformly distributed modulo one if for everyandb with 0 < a < b < 1,

i < fa) €t} _

n—0o00 n

b—a.

The following result is due to Weyl.

Theorem 24.If « is a real irrational number, then the sequenpey}>° , is uniformly distributed
modulo one.

Before proving Weyl's Theorem, we discuss some preliminaries. First, we observe that de-
termining whether a sequence is uniformly distributed “may” not even be intuitively clear. For
example, suppose € R is irrational. Does it follow thafa” }2° ; is uniformly distributed modulo
one? One can see that this is not the case by considering/2 since

n—1

{r <n:{v2'}el0,1/3]} > ;-
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s this an unfair example sinee = v/2 has the property that some powercofs an integer’? To
partially answer this question, we show that for= (1 + /5)/2, the sequencéa’}>, is not
uniformly distributed modulo one. Define

U, = <1+\/_> ( \/5> forr € Z* U {0}.

Note thatug = 2, u; = 1, and forr > 2,

. (”“) ()

) (%) (%) (%)
=) () (50) ()
() () () (o)

= Up—2 + Up_1.

Thereforew, € Z* for all » > 0. Note that(1 — v/5)/2 € (—1,0) so that((1 — v/5)/2)" tends to
zero ag tends to infinity. Therefore,

2r+1
lim (1 + ﬁ) =0

T—00 2

1 2r
lim ( + ) =1.
r—00 2

<n:{a" 1/4,3/4
i A S nc{a’} € [1/4,3/4]}]
n—o0 n
so that{a" }°2, is not uniformly distributed modulo one.
We note that it can be shown that, for almost all real numberthe sequencéa’}°° ; is
uniformly distributed modulo 1. On the other hand, no explicit example of suehianown.
Our proof of Weyl's Theorem will depend on the use of @®ssumability. We say that a series

> =, a; has Cearo sums if
lim o Zgzo a;

n—00 n+1
We first make an important connection betweenaesums and our usual notion of sums. The
next result implies that if a series convergestdhen its Cedro sum is als®’; on the other hand,
its Cesiro sum may exist even if the series diverges.

and

S

This easily implies that

=0

=5.
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Theorem 25. Let {a,}%2,, be a sequence of complex numbers, andsset > " a; for r €
Z+ U {0}. Then

(i) if lim, . 5, — S, thenlim, .. 2"=0*" _ 5 and
n+1

Z?:OST =0
n+1 '

Proof. (i) Supposéim, .., s, = S. Lete > 0. Then there is arR such that ifr > R, then
s, — S| < €/2. LetA =" |5, — S|. Let N > max{R,2A/e}. Then forn > N,

(i) if a; = (—1)7U+Y/2 thenlim, ., s, does not exist antm, .,

DoroSr _ 1 -
n+1 S_n—l—lg(sr 5)
1 |& 1 "
= > (5= 8) > (5—9)
n+l r=0 n+ r=R+1
1 € €
< - < — -
—n+1(A+(”+1)2>—n+1<"2+(”+1)2>
S
2 2—6.
Thus, .
limM:S

r—oo N+ 1
(i) Here, {a;}52y = {1,-1,-1,1,1,-1,-1,1,... } sothatsg = 1, s, = 0, s = —1, s3 = 0,
sq = 1,.... Hence, for every > 0,
|ZST| <1
r=0

lim =00 _
r—oo 1+ 1
Clearly,lim,_. ., s, does not exist. O

Thus,

Before continuing, we consider some examples. First, we show that tlaedCasn ofl + % +
3+ isinfinite. Lets, = >_"_(1/(j + 1)). Note that

r+2
Sy 2/ zdtzlog(r—i—Z).
1

Thus,

3
3
3

aj=>» s> » log(r+2)
r=0 j5=0 r=0 r=0

n+2
> / logtdt:tlogt‘?ﬁz (n+2)log(n+2).
1
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Hence,
D=0 2 j=0 % (n+2)log(n +2)
n+1 - n+1 '
Since this last expression tends to infinity witiwe deduce that the Ca® sum ofl + 5 + % +---
is infinite.
As another example, we show that it is possible to have a s@?@g a; with all of its partial

sumss, = " a; bounded and with no Caso sum. We take

1 if j = 2% wherek € Z* U {0}
aj =< —1 if j =2%"1wherek € Z*
0  otherwise

Then we get thati, a;,as,... i1s0,1,—1,0,1,0,0,0,—1,..., andsg, s1,82,... i 0,1,0,0,1,
1,1,1,0,.... Ingeneral,

)1 it g e [22%, 2% ) N Z wherek € ZT U {0}
10 otherwise

Note that for any positive integen, 1 4 2 + 22 + - .- + 2™ < 2m+! g0 that

22k 1 y 2k—4 -
J J
; ZQ < (Z 2 > +2
< 22k—3 + 22k—2 — 2(2%).
Also,
22k+1 1

k
S] Z 22] > 22k‘ (22k+1)
J= J=0
Thus, infinitely often(Z?:0 aj> /(n+ 1) < 3/8 and infinitely often(Z?zo aj> /(n+1)>1/2.
This easily implies that the Cas sum cannot exist.
To prove Weyl's Theorem (Theorem 24), we will use a little material from Fourier Analysis

which we introduce here. The basic idea is to write a funcfion), which maps the real numbers
to the complex numbers, in the form

= Z f(r)er. (11)

Here, we wish to find number§(r) for which the above holds. Sine&” = cos(rz) + isin(rz),

the series on the right in (11) is often referred to as a trignometric series. It is not always possible
to obtain a trignometric series representationfor), but let's suppose for the moment thygtr)

can be expressed in the form (11). We temporarily ignore rigor. Using Theorem 23, observe that
forn > |r|,

27T Z / f i(j— 7‘)35 (_2: f zgz) e—irac dr.
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Letting » tend to infinity, we deduce that

£ 1 o —irx
r)= %/0 f(z)e " dx. (12)

Thus, using (12), it is seemingly easy to write a function in the form (11). However, we still need
to discuss when the series in (11) converges. We will require certian conditiof{s:prirhey are:

(i) f(x) is continuous over the reals.
(i) f(x + 27) = f(x) for all realz.

The latter condition shouldn’t be surprising since the valueﬁ(@j determinef(x) by (11) and
they only depend on the values 6fx) for = € [0,2n] by (12). Before continuing, it is worth
noting that (i) and (ii) are not sufficient to imply the convergence of the series in (11). On the other
hand, we will want to considef(z) in this generality. To deal with this difficulty, we prove a
result of Fegr that with f (x) satisfying (i) and (ii), the series in (11) has @essumf(x) (so that
convergence of the series will not be necessary).

Define f(r) by (12), and set

w3 (£ 1)

r=—j

- - i (D7) + nf (e +nf-De )

n+1 '

We will now prove

Theorem 26. If f(z) satisfies (i) and (ii), thewn,,(f, x) converges tg" uniformly onR.
We begin with a relationship betweef( f, x) and

n

n+1-— |T| irx

Observe that

n

1—|r+ . .
() = 30 P e

r=—n

n+l—|rl1 2m it
— t (28 dt T
Z nt1 27r( | e ‘

I 41—,
_ ¢ s ir(e—t) dt
2w f )TZ n+1 °

=—Nn

/ PO K (e — ) dt
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Note that in addition to (ii), we have thaf, (z + 27) = K, (z) for all realz. Lettingy = = —t
gives

nulfr) =5 | T = g)Kau(y) dy

2T
o [ e a =0 [ ey
~ on o T —Y)BAnlY y_27r ; T —=Yy)ia\y)ay.
We now proceed with two lemmas.

Lemma 1. Letz € [0,27). Thenk,,(0) =n + 1, and ifx # 0, then
1 <sin((n+ 1)55/2))2

Kalw) = n+1 sin(z/2)

Proof. Clearly,

n+1—|r| 1 =
K,,(0) = — 142 —n41.
(0) Z ] n+1<n+ + ZT’) n—+

r=—n r=1

Now, suppose € (0,27). Then

1— .
Ko(r) = 3 nA1-0r] i

= n +1

_ - —1i_ - ((n + 1)67imc Z ei(r+n)x o Z (reirm + reim:)) )
r=—mn r=1
Note that ,
n ) no i(2n+1)z _ 1
i(r+n)x _ irr _ €
2L e
Also,

ei(n+1)az -1

n
67/7'$ e —— 1
Z e —1
r=1

so that by taking derivatives, we obtain

n

] i _ 1) 1 i(n+l)x _ (Li(n+1l)z _ 1)ie'®
i Z reir® (6 )Z(TL + )6 (6 )26 .

r=1 (em’ - 1)2
Thus,
i _— nei(n+2)x _ (n + 1)ei(n+1)a: + e
re- = (em _ 1)2
r=1
and

3

B nefi(n+2):p _ (TL + l)efi(nJrl)z + e~z
(e—ix _ 1)2
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1 —inx ( iT i(2n x
mmw:(n+n@w_1y«n+ne (e — 1)(e'Prtbe _ 1)
. (nei(n-i-Q)J: . (TL + 1)ei(n+1)x + 6@'90) _ (ne—inz . (TL + l)e—i(n—l)a} + 6”))
1 , . .
— i(n+2)x —inz _ 9 i
(n+ 1)(ei — 1)2 (e +e )
eiz i(n+1)x —i(n+1)x
~ e T T R
e’ i(n+1)z/2 —i(n+1)z/2)2
:(n+1)(eix—1)2(€(+)/_e (+)/)
_ i 1(61'35/2 . efix/Z)fZ (ei(n+1)x/2 . efi(n+1)x/2)2
n
1 cit/2 _ p—ix/2 —2 pin+)z/2 _ p—i(nt1)z/2 2
_n+1( 2i > ( 2i )
1 (sin((n+Dx/2)\°
Con+1 sin(z/2) '
This completes the proof. O

Lemma 2. K,,(x) has the following properties:
(@) K, (x) > 0 for all real numberse.

(b) Foreverys > 0ande > 0, there isanN = N(J,¢) such thatifn > N andz € (6,27 — §),
then| K, (z)| < e.
1 2 -

Comment: (b) is simply asserting that for &lt> 0, K,,(x) approaches 0 uniformly of@, 27 — §).

Proof. SinceK, (x+27) = K,(x), (a) follows from Lemma 1. For (b), note that ferc (4, 2r—0)
and forn sufficiently large (independent af), Lemma 1 implies

1 1
K,(x) < (n + 1) sin(z/2) = (n +1)sin?(6/2) =

Finally, we deduce (c) from
1 2“ n+1-—
_— ’L’I’LI} d
2 Jy / Zn n+ 1 v

1— 1 2r 1 27
= Z nt |T| / e dr = — der =1,
—~  n+l o7 2m Jo

completing the proof. O
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We now give the basic idea behind the proof of Theorem 26. Note that Lemma 2 implies that
for 9 > 0 fixed and small and for large,

1 2r—06 1 27
— K, (y)dy ~ and — K,(y)dy =1
o (y)dy =0 o, (y) dy
so that
1 /9 p
— K ~1
Also,
1 2m—46
_ — K ~
o fle —y)K,(y)dy =0
so that
1 1
— dy ~ — — 1)K dy.
it =5 [ fe R o [ 1 pKa) iy

Sincef(x) is continuousf(x — y) =~ f(z) fory € [0, d]. Thus,

s~ g [ 1@Kwar=16 (5 [ Kwar)~ o)

We now make the above ideas rigorous.

Proof of Theorem 26We use thaff (x) is bounded and uniformly continuous on the compact in-
terval |0, 47|. Thus, there is aM/ such that f(x)| < M for all x € [0, 4x]; and for alle > 0, there
isad > 0 such that ifz andy are in[0, 4] with |z — y| < §, then|f(z) — f(y)| < €. By property
(i), |f(x)] < M forall z € R and for alle > 0, there is @ > 0 such thatf(z) — f(y)| < e for all
x andy in R with |z — y| < 9.

Lete > 0. Leté € (0,7) such that f(z) — f(y)| < ¢/2 for all z andy in R with |z — y| < 4.
By Lemma 2 (b), there is alvV = N (6, ¢) such thatifn > N andx € (9,27 — 9), then|K,,(z)| <
¢/(4M). By Lemma 2 (a),

/_Z )y = /_Z Knly)dy < /027r [ Kn(y)| dy.
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Thus, we get from Lemma 2 (c) that for all> NV,

%/O%f(x—y)}(n(y) dy — (% /0% Ku(y) dy> f(z)

/Ozw (flz—y) = f(z)) Ku(y) dy‘

lon(f, @) — f2)] =

1
21

1
- 27

/ (o) — £(2) Kaly) dy\ = T ) - F@) Kulw) dy'

-5 2m

<5 [0 = SISy o [ 1 =l @D ) dy

el [? R
—— K. d 2M)— —d
<53 [ 1Kl v+ ) y

2w 4M
e e/ 1 [
<SSy (2 @)=
2+2<27r/0 y) ‘

The above inequality is independent:gfestablishing the Theorem. O

Corollary 1. Let f(x) satisfy (i) and (ii), and let > 0. Then there exists a trignometric polynomial

n

P(z) = Z a;e’”

j=-n

(with a; € C for eachj) such that

sup |P(z) — f(z)] <e.

z€eR

Proof. Sinceo,(f,z) is a trignometric polynomial, the Corollary follows from Theorem 26 by
taking P(z) = o, (f, z) with n sufficiently large. O

We now prove Weyl's Theorem (Theorem 24). It suffices to show thatd4f R is irrational
and0 < a <b <1,then

<n:
lim {r < n:2n{ra} € [2ma, 270]}|

n—oo n

=b—a. (13)

Lemma 3. Leta € R with « irrational. Supposef : R — C satisfies (i) and (ii) of the previous
section. Then

1 n 1 2
lim — 2rra) = — da.
nggon;f( mra) = 3 f(z)dx

™ Jo

Proof. Let

n

Go(f) = %Z frra)— 4 [ fla) da.

2m Jo
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We want to show thdim,, .., G,.(f) = 0. First, we considef (z) = ¢"** wheres is an integer. If
s =0, thenf(z) =1and

1 & 1 [
Galf) = Gul)) = 1—%/0 do =0,
r=1

Thus,lim,, .., G,.(f) = 0in the casef(z) = e*** with s = 0. Now, suppose # 0. Then

I~ o 1 [
Gn S 2mirsa isT ]
Gl = | e = o | e

n
— 12 :627rirsa
n
r=1

e27rmsa —1

1

- |€27risa‘
n

1

e27risa -1

2
— n’627risa _ 1‘

Thus, in this caséjm,, .., G,,(f) = 0.

Now, we consider the case wheiiz) = >.7"  ase™” (i.e., f(z) is a trignometric polyno-

mial). Then
lim G,(f) = lim = z": i a,e*mr — i/27r zm: ae™* | dx
n—00 " n— o0 nr:1 = $ s 0 L~ s

. : 1 - TITSQ 1 o 1%
— Z a; lim (57262 —%/0 e d:c)

= Z as lim G, (€") = 0.

Thus, the lemma holds for trignometric polynomials.
We now consider the general case wifgn) satisfies (i) and (ii). Let > 0. We show that if

n is sufficiently large, thefG,,(f)| < e. By the Corollary to Theorem 26, there is a trignometric
polynomial P(x) such that

|f(z) — P(x)| < % for all realz.

Also, since the lemma has already been established for trignometric polynomials, ther® is an
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such that ifn > N, then|G,,(P)| < ¢/3. Hence, for allh > N,

1 n 1 2m
- ; (f2mra) — P(2rra)) — %/0 (f(z) = P(z)) dx

<4
3

<5t ) - PRwra) + 5 1) - Pl da

<€+€+1 Q’Ted
-4+ -+ — —dx =€,
3 3 2n), 3

completing the proof. O

Proof of Theorem 24Let ¢ > 0. We will apply Lemma 3 to two functiong, (z) and f_(x)
satisfying (ii). Their precise definitions are not important; a rough graph suffices for the proof. But
since graphs are more difficult to print than precise definitiong¥y We leave it to the reader to
graph

(0 if x € [0,2m(a —€)) U [2m(b + €),2m)
L:L’ - 1(a —¢) ifze2n(a—c¢),2ma)
fula) =2 .
1 if x € [2ma, 27b)
1 1 ,
\—ﬁaz—i-z(b—i-e) if x € [27b,27(b + €))
and
(0 if x €[0,27a) U [27b, 27)

—x——-a ifx€[2ma,2m(a+¢))

[

fil@)=qme [
1) =1 it 2 € [2m(a+e), 2m(b— )
[

——ax+-b ifx € 2n(b—¢),2nD)

Note thatf, (x) and f_(z) are defined for all real numbetsby the above and (ii). Thus,

> fe@mra) = [{r <n:2r{ra} € [2ma,20b]}| > > f-(27ra).

r=1 r=1

By Lemma 3, there is afv such that ifr. > NV, then

%rf;mm)g%/:Wm:c)dme:%(mr(b—a)mmﬂ:(b_mze

and

n

LS ey s L [ f@yde o= -
nril B T _27T 0 B 6_271'

(2m(b—a) —2me) —e = (b—a) — 2e.
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Hence, for alln > N,

H{r <n:2r{ra} € [2ma,27b|}|

—(bh— 2
- (b—a)| < 2,

from which Theorem 24 follows. O

The following are two problems related to this subject. The details of their solutions are omitted
here.

(1) Letd € {0,1,2,...,9}. What is the proportion of times that begins with the digitZ asn
runs through the positive integers? More specifically, compute

lim [{n < x: 2" begins with the digit/}|

n—oo €T

(By the way, of the first 1000 values 2f beginning withn = 0, exactly 301 begin with the digit
1, andlog,, 2 = 0.3010....)

(2) (Monthly Problem1986) Suppose € R with z > 1. Leta, = [z"] wheren is a positive
integer. LetS = 0.ajasa3.... (For example, ifr = x, thenS = 0.393197... since[r| = 3,
[72] =9, [73] = 31, and[r?] = 97.) Prove thatS is irrational.

Homework:

1. Letk andn be positive integers with > 2k. Prove that
n—1 . 2k
2m] (%)
2k _ \k
Z COS (7) = Wﬂ
j=0

(Hint: Use the binomial theorem.)

2. Let{ay,as,...} be a sequence of real numbers. Prove that the sequence is uniformly dis-
tributed modulo one if and only if for everyandb with 0 < a < b < 1,

i Arsnday €@}

n—00 n

3. Let) " a; be a divergent series witly > 0 for eachj > 0. Prove that the C@so sum of
the series is infinite.

4. Calculate the C@so sum of each of the following series.

@1-1+1—1+1—1+4 -,
1 1 1

(b) 1—§+Z—§+"-.

5. Prove the following:

a7



Theorem 27. Let{«;} be a sequence of real numbers satisfying

n

lim S Z 2Tk = ()

n—oo N
k=1

for every non-zero integen. Then{«,} is uniformly distributed modulo 1.

(Hint: Look at the proof of Theorem 24 wiit, replacingka and decide what changes need
to be made. You do not need to rewrite the proofs if you point out clearly where the changes
need to be made and what the changes are.)

. Prove that the sequen€e/n}c ; is uniformly distributed modulo 1.
. Prove that the sequen€lg n}°° | is not uniformly distributed modulo 1.

. Show that there exists a sequerag} 2, such that the partial sums = »°_ a; satisfy

both .
lim inf @ = —00
and N
27‘:0 Sr

lim sup

= +00.
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