
7 Lindemann’s Theorem

Our next result is due to Lindemann.

Theorem 18. Let α1, . . . , αn be distinct algebraic numbers, and letβ1, . . . , βn be non-zero alge-
braic numbers. Then

β1e
α1 + β2e

α2 + · · ·+ βne
αn 6= 0.

The numberseαj above may be multi-valued. The theorem is true for any values ofeαj .
Before proving Theorem 18, it is worth noting the following consequences of it.

Corollary 1. The following numbers are transcendental:

(i) π.

(ii) eα if α is a non-zero algebraic number.

(iii) sin(α), cos(α), andtan(α) if α is a non-zero algebraic number.

(iv) log(α) if α is an algebraic number different from 0 and 1.

Proof of Theorem 18.Assume the theorem is false. Then

β1e
α1 + β2e

α2 + · · ·+ βne
αn = 0. (9)

By reordering if necessary, we may suppose that

|α1| = max
1≤j≤n

{|αj|},

and we do so. Let

F1(u1, . . . , un, v1, . . . , vn) = u1v1 + u2v2 + · · ·+ unvn,

and consider
F2(u2, . . . , un, v1, . . . , vn) =

∏
u1

F1(u1, . . . , un, v1, . . . , vn),

whereu1 runs through the conjugates ofβ1. In particular,F2 has rational coefficients, the coeffi-
cient of the highest power ofv1 is a non-zero rational number, and

F2(β2, . . . , βn, e
α1 , . . . , eαn) = 0.

Also, observe thatF1 andF2 are homogeneous polynomials in the variablesv1, . . . , vn. Now,
consider

F3(u3, . . . , un, v1, . . . , vn) =
∏
u2

F2(u2, . . . , un, v1, . . . , vn),

whereu2 runs through the conjugates ofβ2. In particular,F3 has rational coefficients, the coeffi-
cient of the highest power ofv1 is a non-zero rational number, and

F3(β3, . . . , βn, e
α1 , . . . , eαn) = 0.
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Also, F3 is a homogeneous polynomial inv1, . . . , vn. Continuing in this manner and clearing
denominators (and combining terms), we end up with an expression of the form (9) with a possibly
new value ofn and with eachβj being a rational integer. We show also that theβj are not all 0.
Observe that there is anN such thatFn+1 is a homogeneous polynomial inv1, . . . , vn of degreeN .
Each term inFn+1(e

α1 , . . . , eαn) is of the formc exp(
∑n

j=1 ajαj) where theaj are natural numbers
summing toN . The coefficient ofexp(Nα1) is, in particular, non-zero. Moreover, the condition
|α1| = max1≤j≤n{|αj|} implies that withaj as before,

∑n
j=1 ajαj = Nα1 only if a1 = N and

aj = 0 otherwise (as can be shown from the triangle inequality). Therefore, we may suppose from
the start that theβj are rational integers.

We next make a similar observation about theαj ’s. There is some non-zero polynomial with
integer coefficients which hasα1, . . . , αn all as roots. Letα1, . . . , αN (N possibly different than
above) be the complete set of roots of such a polynomial. Observe that all the conjugates of each
αj appear amongα1, . . . , αN . Let

βn+1 = βn+2 = · · · = βN = 0.

Consider the product ∏
(β1e

αk1 + β2e
αk2 + · · ·+ βNeαkN )

where, in the product,k1, k2, . . . , kN runs over allN ! permutations of the numbers1, 2, . . . , N .
Note that when expanded the product will be of the form given in (9) and will be 0. Ifβeα denotes
a term in this expanded product, thenα = a1α1 + · · · + aNαN for some non-negative integers
a1, . . . , an summing toN !. Here,β will be a rational integer (since theβj are). Also, there will be
in the expanded product all those terms of the formβeα′ with α′ = a1αk1 + · · · + aNαkN

where
k1, k2, . . . , kN is any of theN ! permutations of the numbers1, 2, . . . , N . Note that suchα′ will
run through a complete set of conjugates ofα (and maybe more). Finally, we observe that some
termβeα in the expanded product is non-zero; to see this, consider the non-zero termβeα in each
factor of the unexpanded product withα having the largest real part and of those the one withα
having the largest imaginary part - the product of these will give a termβeα which is non-zero.
Thus, in (9), we may suppose that there are integersn0 = 0 < n1 < · · · < nr = n such that for
eacht ∈ {0, 1, . . . , r − 1}, the numbersαnt+1, . . . , αnt+1 form a complete set of conjugates and

βnt+1 = · · · = βnt+1 .

Let b be a positive integer for whichbαj are algebraic integers for eachj. Let p be a large
prime. Fori ∈ {1, . . . , n}, let

fi(x) = bnp(x− α1)
p · · · (x− αn)p/(x− αi).

Finally, for i ∈ {1, . . . , n}, let

Ji = β1Ii(α1) + · · ·+ βnIi(αn)

whereIi(t) denotesI(t) in (8) of the previous notes withf = fi. We will obtain a contradiction
by making appropriate upper and lower bounds for|J1J2 . . . Jn|. From (8) and (9), we obtain that

Ji = −
m∑

j=0

n∑
k=1

βkf
(j)
i (αk)
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wherem = np− 1. Note thatf (j)
i (αk) is p! times an algebraic integer unlessj = p− 1 andk = i.

Also,
f

(p−1)
i (αi) = bnp(p− 1)!

∏
1≤k≤n

k 6=i (αi − αk)
p = (p− 1)!(F ′(αi))

p

where

F (x) =
n∏

k=1

(bx− bαk) ∈ Z[x].

We consider the productJ1 · · · Jn. Observe that one term in the product will be

n∏
i=1

((p− 1)!(F ′(αi))
p)

which is(p− 1)! (even((p− 1)!)n) times a non-zero rational integer. Ifp is sufficiently large, this
integer is furthermore not divisible byp. Every other term can be written asp! times an algebraic
integer. We show that the sum of these algebraic integers is rational so that by Lemma 3 of the
previous notes the remaining terms sum to a rational integer divisible byp!. Observe that this will
follow if we can show thatJ1 · · · Jn is a rational number for then the sum we seek is simply(

J1 · · · Jn − (p− 1)!n
n∏

i=1

(F ′(αi))
p

)
/p!

which is clearly rational. So consider

J1 · · · Jn = (−1)n

n∏
i=1

(
m∑

j=0

n∑
k=1

βkf
(j)
i (αk)

)
.

It will follow that J1 · · · Jn is a rational number if we can show that for eacht ∈ {0, 1, . . . , r − 1},
the right-hand side is symmetric inαnt+1, . . . , αnt+1 . Let σ represent any permutation ofnt +
1, . . . , nt+1 and extendσ so that it fixes the other elements of{1, 2, . . . , n}. Then we wish to show
that

n∏
i=1

(
m∑

j=0

n∑
k=1

βkf
(j)
σ(i)(ασ(k))

)
=

n∏
i=1

(
m∑

j=0

n∑
k=1

βkf
(j)
i (αk)

)
.

Sinceσ(i) runs through the numbers1, . . . , n asi does, we obtain

n∏
i=1

(
m∑

j=0

n∑
k=1

βkf
(j)
σ(i)(ασ(k))

)
=

n∏
i=1

(
m∑

j=0

n∑
k=1

βkf
(j)
i (ασ(k))

)
.

Letting ` = σ(k), we see that

n∏
i=1

(
m∑

j=0

n∑
k=1

βkf
(j)
i (ασ(k))

)
=

n∏
i=1

(
m∑

j=0

n∑
`=1

βσ−1(`)f
(j)
i (α`)

)
.

The equationβnt+1 = · · · = βnt+1 and the definition ofσ give

n∏
i=1

(
m∑

j=0

n∑
`=1

βσ−1(`)f
(j)
i (α`)

)
=

n∏
i=1

(
m∑

j=0

n∑
`=1

β`f
(j)
i (α`)

)
,
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and we deduce thatJ1 · · · Jn is a rational number as desired. Therefore,J1 · · · Jn is a rational
integer divisible by(p− 1)! and not divisible byp. Hence,

|J1 · · · Jn| ≥ (p− 1)!.

We get an upper bound for the product by using an upper bound for|I(t)|. Thus,

|J1 · · · Jn| ≤
n∏

i=1

(
n∑

k=1

|βk||αk|e|αk|f i(|αk|)

)
≤ (c1c

p
2)

n ≤ c3c
p
4

for some constantsc1, c2, c3, andc4 independent ofp. We obtain a contradiction whenp is suffi-
ciently large, completing the proof.
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