
8 The Gelfond-Schneider Theorem and Some Related Results

In this section, we begin by stating some results without proofs.
In 1900, David Hilbert posed a general problem which included determining whether2

√
2 is

transcendental and whethereπ is transcendental. The problem was resolved independently by
Gelfond and Schneider in 1934. Their result is the following

Theorem 19. If α and β are algebraic numbers withα 6= 0, α 6= 1, and β 6∈ Q, thenαβ is
transcendental.

Observe that the theorem asserts that any value ofαβ is transcendental under the conditions
above. It is clear that2

√
2 is transcendental follows from this result, and sinceeπ is a value ofi−2i,

the transcendence ofeπ also follows from this result. We note that the following are equivalent
forms of this result:

(i) If ` andβ are complex numbers with̀6= 0 andβ 6∈ Q, then at least one of the three numbers
e`, β, andeβ` is transcendental.

(ii) If α andβ are non-zero algebraic numbers withlog α and log β linearly independent over
the rationals, thenlog α andlog β are linearly independent over the algebraic numbers.

Observe that (ii) is clearly equivalent to the statement that ifα andβ are non-zero algebraic
numbers withβ 6= 1 andlog α/ log β 6∈ Q, thenlog α/ log β is transcendental.

Proofs of Equivalences.To see that Theorem 19 implies (i), takeα = e`. Thenα is not 0 or 1.
Theorem 19 implies that ifα andβ are algebraic, thenαβ = eβ` is transcendental, which implies
(i).

To see that (i) implies (ii), observe that the conditionlog α andlog β are linearly independent
over the rationals implies that bothα andβ are not1. Also, we get thatlog α/ log β is not inQ.
Let ` = log β andβ′ = log α/ log β. Then (i) implies thatβ′ is transcendental, which implies (ii).

To see that (ii) implies Theorem 19, considerβ′ = eβ log α. Thenlog α andlog β′ are linearly
dependent over the algebraic numbers. Hence, by (ii),log α andlog β′ are linearly dependent over
the rationals. This contradicts thatβ 6∈ Q.

There are results similar to (i). For example, Lang proved that

Theorem 20. Supposè1, `2, and`3 are linearly independent over the rationals and thatβ1 and
β2 are are linearly independent over the rationals. Then at least one of the numberse`iβj is tran-
scendental.

Let γ be a transcendental number. Ifα is an algebraic number different from0 and1, then we
can set̀ 1 = 1, `2 = γ, `3 = γ2, β1 = log α, andβ2 = γ log α to obtain that at least one ofαγ,
αγ2

, or αγ3
is transcendental. Another similar result was independently obtained by Brownawell

and Waldschmidt which implies that eitheree or ee2
is transcendental.

In 1966, Baker established the following generalization of the Gelfond-Schneider Theorem
(Theorem 19).

Theorem 21. If α1, . . . , αm are non-zero algebraic numbers withlog α1, . . . , log αm linearly in-
dependent over the rationals, thenlog α1, . . . , log αm are linearly independent over the algebraic
numbers.
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To further illustrate some directions that transcendental number theory has taken and how such
results can be applied to other areas of number theory, we give such an application to a result which
is of a similar flavor to Theorem 21. Basically, the result helps resolve the question as to how “far
from zero” is a linear combination of logarithms of algebraic numbers.

We say that an algebraic numberα has degreed and heightA if α satisfies an irreducible
polynomialf(x) =

∑d
j=0 ajx

j ∈ Z[x] with ad 6= 0, gcd(ad, . . . , a1, a0) = 1, andmax0≤j≤d |aj| =
A.

Theorem 22. Let α1, . . . , αr be non-zero algebraic numbers with degrees at mostd and heights
at mostA. Let β0, β1, . . . , βr be algebraic numbers with degrees at mostd and heights at most
B > 1. Suppose that

Λ = β0 + β1 log α1 + · · ·+ βr log αr 6= 0.

Then there are numbersC = C(r, d) > 0 andw = w(r) ≥ 1 such that

|Λ| > B−C(log A)w

.

Possibly do an application here (not included in the notes).
We turn now to proving Theorem 19. Supposeα is an algebraic number withα 6= 0 andα 6= 1.

Further supposeβ is an algebraic number and thatαβ is algebraic. Then Theorem 19 will follow
if we can show thatβ ∈ Q. We consider now the special case thatα > 0 andβ are real (it would
suffice to havelog α real).

Observe thatαs1+s2β is an algebraic number for all integerss1 ands2. To establish the theorem,
it suffices to show that there are two distinct pairs of integers(s1, s2) and(s′1, s

′
2) for which

s1 + s2β = s′1 + s′2β.

We will chooseS sufficiently large and show such pairs exist with0 ≤ s1, s2, s
′
1, s

′
2 < S.

Lemma 1. Leta1(t), . . . , an(t) be non-zero polynomials inR[t] of degreesd1, . . . , dn respectively.
Letw1, . . . , wn be pairwise distinct real numbers. Then

F (t) =
n∑

j=1

aj(t)e
wjt

has at mostd1 + · · ·+ dn + n− 1 real zeroes (counting multiplicities).

Proof. By multiplying through bye−wnt if necessary, we may suppose thatwn = 0 and that
otherwisewj 6= 0. Let k = d1 + · · · + dn + n. We do induction onk. If k = 1, thenn = 1 and
d1 = 0, and the lemma easily follows. Let` ≥ 2 be such that the lemma holds wheneverk < `,
and supposek = `. Let N be the number of real roots ofF (t). By Rolle’s Theorem, the number
of real roots ofF ′(t) is at leastN − 1. On the other hand,

F ′(t) =
n∑

j=1

bj(t)e
wjt

where
bj(t) = a′j(t) + wjaj(t).
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Note that for1 ≤ j ≤ n− 1, bj(t) has degree exactlydj. Also, sincewn = 0, either there are only
n−1 non-zero polynomialsbj(t) in the expression forF ′(t) above or there aren such polynomials
and the degree ofbn(t) is one less than the degree ofan(t). We get from the induction hypothesis
thatF ′(t) has at mostd1 + · · · + dn + n − 2 real roots. Hence,N − 1 ≤ d1 + · · · + dn + n − 2,
and the result follows.

We will make use of the following result concerning analytic functions. We omit the proof. It
is a version of the Maximum Modulus Principle (and follows fairly easily from the Open Mapping
Theorem). We use the notation|f |r to denote the maximum value of|f(z)| for |z| = r.

Lemma 2. Supposef(z) is an analytic function in the diskD = {z : |z| < R} and that it is
continuous onD = {z : |z| ≤ R}. Then

|f(z)| ≤ |f |R

for everyz ∈ D.

Lemma 3. Letr andR be 2 real numbers with1 ≤ r ≤ R. Letf1(z), f2(z), . . . , fL(z) be analytic
in D = {z : |z| < R} and continuous onD = {z : |z| ≤ R}. Letζ1, . . . , ζL be such that|ζj| ≤ r
for eachj ∈ {1, 2, . . . , L}. Then the determinant

∆ = det

f1(ζ1) · · · fL(ζ1)
...

... ...
f1(ζL) · · · fL(ζL)


satisfies

|∆| ≤
(

R

r

)−L(L−1)/2

L!
L∏

λ=1

|fλ|R.

Proof. Let h(z) be the determinant of theL × L matrix (fj(ζiz)). Thenh(z) is analytic inD′ =
{z : |z| < R/r} and continuous onD′ = {z : |z| ≤ R/r}. Let M = L(L− 1)/2, and write

fj(ζiz) =
M−1∑
k=0

bk(j)ζ
k
i zk + zMgi,j(z)

wherebk(j) ∈ C for eachk andgi,j(z) is analytic inD′ and continuous onD′. Then since the
determinant is linear in its columns (to see this evaluate along the columns), we can viewh(z) as
zM times an analytic function plus terms involving the factor

zn1+···+nL det
(
ζ

nj

i

)
,

where thenj denote non-negative integers. Observe that the determinant in this last expression is
zero if thenj are not distinct. Therefore, the non-zero terms of this form satisfy

n1 + n2 + · · ·+ nL ≥ 0 + 1 + · · ·+ (L− 1) =
L(L− 1)

2
.
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Hence, we deduce thath(z) is divisible byzM . More precisely,h(z)/zM is analytic inD′ and
continuous onD′. Therefore, by Lemma 2, for anyw ∈ D′,∣∣∣∣h(w)

wM

∣∣∣∣ ≤ ∣∣∣∣h(z)

zM

∣∣∣∣
R/r

=
( r

R

)M

|h(z)|R/r .

For |z| = R/r, we get that|ζiz| ≤ R. We bound|h(z)|R/r by multiplying the number of terms in
det (fj(ζiz)) by an obvious upper bound on the maximum such term. Thus,

|h(z)|R/r ≤ L!
L∏

λ=1

|fλ|R.

Observe that|∆| = |h(1)| and1 ≤ R/r ≤ R. We deduce that

|∆| ≤
( r

R

)M

|h(z)|R/r ≤
( r

R

)M

L!
L∏

λ=1

|fλ|R,

giving the desired conclusion.

To complete our proof, we will also want a lower bound on|∆| when∆ 6= 0. The specific∆
that we will use has not yet been specified. For now, we note that it will have the form given in our
previous lemma as well as the form given in our next lemma.

Lemma 4. Let
∆ = det(αi,j)L×L

where theαi,j are algebraic numbers. Suppose thatT is a positive rational integer for whichTαi,j

is an algebraic integer for everyi, j ∈ {1, 2, . . . , L}. Finally, suppose that∆ 6= 0. Then there is a
conjugate of∆ with absolute value≥ T−L.

Proof. Observe thatTL∆ is an algebraic integer so that one of its conjugates has absolute value
≥ 1. The result follows.

Let c be a sufficiently large real number (to be specified momentarily). Consider integersL0,
L1, andS each≥ 2. Let L = (L0 + 1)(L1 + 1). Observe that we can find suchL0, L1, andS (and
we do so) with

cL0 log S ≤ L, cL1S ≤ L, andL ≤ (2S − 1)2;

for example, takeS large and

L0 = [S log S] and L1 = [S/ log S] .

(Observe that we could takec = log log S.) We consider a matrixM described as follows. Con-
sider some arrangement(s1(i), s2(i)) of the (2S − 1)2 integral pairs(s1, s2) with |s1| < S and
|s2| < S. Also, consider some arrangement(u(j), v(j)), with 1 ≤ j ≤ L, of the integral pairs
(u, v) where0 ≤ u ≤ L0 and0 ≤ v ≤ L1. Then we define

M =
(
(s1(i) + s2(i)β)u(j)

(
αs1(i)+s2(i)β

)v(j)
)

so thatM is a(2S − 1)2 × L matrix. The idea is to:
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(i) Consider the determinant∆ of an arbitraryL× L submatrix ofM (anyonewould do).

(ii) Use Lemma 3 to obtain an upper boundB1 for the absolute value of∆ (or, more specifically,
an upper bound for thelog |∆|).

(iii) Use Lemma 4 to motivate that if∆ 6= 0, then∆ has absolute value≥ B2 for someB2 > B1

(and assume this to be the case).

(iv) Conclude that∆ must be0 and, hence, the rank ofM is < L.

(v) Take a linear combination of the columns ofM to obtain anF (t) as in Lemma 1 with< L
roots but withF (s1(i) + s2(i)β) = 0 for 1 ≤ i ≤ L.

(vi) Conclude thatβ is rational as described at the beginning of this section.

Since we have not specified the arrangements defining(u(j), v(j)) and(s1(i), s2(i)), it suffices to
consider∆ = det (fj(ζi)) where

fj(z) = zu(j)αv(j)z (1 ≤ j ≤ L) and ζi = s1(i) + s2(i)β (1 ≤ i ≤ L).

Observe thatu(j) is a non-negative integer for eachj. Also,αv(j)z = exp(v(j)z log α), and we fix
log α so that it is real. Hence,fj(z) is uniquely defined. Thenfj(z) represents an entire function
for eachj. Observe that

|ez1z2| = eRe(z1z2) ≤ e|z1z2| = e|z1||z2|

for all complex numbersz1 andz2. Hence, for anyR > 0,

|fj|R ≤ Ru(j)ev(j)R| log α|.

We use Lemma 3 withr = S(1 + |β|) andR = e2r. Then for some constantc1 > 0, we obtain
that

log |∆| ≤ −L(L− 1) + log L! + L max
1≤j≤L

{log |fj|R}

≤ −L(L− 1) + L log L + LL0 log R + LL1R| log α|

≤ −L2 + c1 (LL0 log S + LL1S) .

The constantc1 above is independent ofc. Therefore, ifc is sufficiently large (namely,c ≥ 4c1),
then

log |∆| ≤ −L2/2.

Suppose now thatT ′ is a positive rational integer for whichT ′α, T ′β, andT ′αβ are all algebraic
integers. ThenT = (T ′)L0+2SL1 has the property thatT times any element ofM (and, hence,T
times any element of the matrix describing∆) is an algebraic integer. Therefore, by Lemma 4, if
∆ 6= 0, then there is a conjugate of∆ with absolute value

≥ T−L = (T ′)−LL0−2SLL1 .
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It is reasonable (maybe not) to expect a similar inequality might hold for|∆| itself (rather than for
the absolute value of a conjugate of∆). In fact, it can be shown (and will be shown later) that if
∆ 6= 0, then there is a constantc2 (independent ofc) for which

log |∆| ≥ −c2 (LL0 log S + SLL1) . (10)

By using our upper bound forlog |∆| above, we see that forc sufficiently large (c ≥ 8c2 will do),
we obtain that∆ = 0. Since∆ = det (fj(ζi)) as defined above, we get that the columns of(fj(ζi))
must be linearly dependent (over the reals). In other words, there exist real numbersbj, not all0,
such that

L∑
j=1

bjfj(ζi) = 0 for 1 ≤ i ≤ L.

By considering a particular ordering of the(u(j), v(j)), we deduce that

L1∑
v=0

L0∑
u=0

b(L0+1)v+u+1ζ
u
i αvζi = 0 for 1 ≤ i ≤ L.

But
L1∑

v=0

L0∑
u=0

b(L0+1)v+u+1ζ
u
i αvζi =

L1∑
v=0

av(t)e
wvt

where

av(t) =

L0∑
u=0

b(L0+1)v+u+1t
u, wv = v log α, and t = ζi = s1(i) + s2(i)β.

Each of theL values ofζi is a root of
∑L1

v=0 av(t)e
wvt = 0. Since somebj 6= 0, we deduce from

Lemma 1 that there are at mostL0(L1 + 1) + (L1 + 1)− 1 < L distinct real roots. Therefore, two
rootsζi must be the same, and we can conclude that

s1(i) + s2(i)β = s1(i
′) + s2(i

′)β for somei, i′ with 1 ≤ i < i′ ≤ L.

On the other hand, the pairs(s1(i), s2(i)) and (s1(i
′), s2(i

′)) are necessarily distinct, so we can
conclude thatβ is rational, completing the proof of Lemma 1.

We should note what assumptions we have made to obtain our result. First, we have used that
α > 0 andβ are real (this was used in applying Lemma 1 at the end of the argument). Also, we
have assumed the inequality in (10) above. This is it. In other words, if we want to complete the
proof for α > 0 andβ real or for some specific choice ofα > 0 andβ real, then we merely need
to establish (10) (where in (10) we assume that∆ 6= 0).

Before continuing, we show how the material just presented leads to a proof that2
√

2 is irra-
tional (not transcendental). We takeα = 2 andβ =

√
2, and assumeαβ = a/b with a andb

positive rational integers. We can deduce our result from the arguments in the previous section
provided we can show that if∆ 6= 0, then (10) holds. Note that we are dealing with an irrationality
proof here rather than a transcendence proof because we will make use ofαβ = a/b to deduce
(10). Recall that

∆ = det (fj(ζi))
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where

fj(z) = zu(j)αv(j)z (1 ≤ j ≤ L) and ζi = s1(i) + s2(i)β (1 ≤ i ≤ L).

Also,
|s1(j)| < S, |s2(j)| < S, 0 ≤ u(j) ≤ L0, and 0 ≤ v(j) ≤ L1

for all relevant values ofj. Suppose∆ 6= 0. Observe that

bSL1fj(ζi) = bSL1ζ
u(j)
i αv(j)s1(i)

(
αβ

)v(j)s2(i)

=
(
s1(i) + s2(i)

√
2
)u(j)

2v(j)s1(i)av(j)s2(i)bSL1−v(j)s2(i).

Hence,
bSL1L∆ = A + B

√
2

whereA andB are rational integers satisfying

max{|A|, |B|} ≤ L!(2ab)SL1L(3S)L0L.

On the other hand, the lemma to Liouville’s Theorem (i.e., see the lemma to Theorem 11) implies
that if B 6= 0, then

|A + B
√

2| ≥ c1/|B|

for some constantc1 > 0. We deduce that

bSL1L|∆| = |A + B
√

2| ≥ c1

|B|
≥ c1(L!)−1(2ab)−SL1L(3S)−L0L.

Hence,
log |∆| ≥ log c1 − L log L− SL1L (log(2ab) + log b)− L0L log(3S).

This easily implies (10) in the case thatB 6= 0. On the other hand, ifB = 0, the argument is even
easier (and in fact follows from Lemma 4 as outlined before (10)). More specifically, ifB = 0
(and∆ 6= 0), then

|∆| = |A|b−SL1L ≥ b−SL1L

so that
log |∆| ≥ −SL1L log b

from which (10) follows. Therefore,2
√

2 is irrational.
To complete the proof of Theorem 19 whenα > 0 andβ are real, it suffices to show that if

∆ 6= 0, then (10) holds. We are working under the assumptions thatα 6= 1 andα, β, andαβ are
algebraic. The proof that2

√
2 is irrational made use of an inequality of Liouville. The idea is to

modify the inequality now to obtain the more general result. We will make use of the basic idea
given in Lemma 4. We letT ′ be a positive rational integer for whichT ′α, T ′β, andT ′αβ are all
algebraic integers. ThenT = (T ′)L0+2SL1 has the property thatT times any element ofM (and,
hence,T times any element of the matrix describing∆) is an algebraic integer. It follows thatTL∆
is an algebraic integer.
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We suppose that∆ 6= 0. For an algebraic numberw, we denote by||w|| the maximum of the
absolute value of a conjugate ofw. Then we obtain that

||TL∆|| = TL||∆|| ≤ TLL!SL0L(1 + ||β||)L0L||α||SL1L
∣∣∣∣αβ

∣∣∣∣SL1L

(where the last inequality should be done with care noting that possibly||α|| and||αβ|| are< 1;
alternatively, one can replace these with||α|| + 1 and ||αβ|| + 1, respectively, and continue as
below). SinceTL∆ is an algebraic integer inQ(α, β, αβ), we deduce thatTL∆ is a root of a monic
polynomialg(x) of degreeN whereN is the product of the degrees of the minimal polynomials for
α, β, andαβ. Note that each root ofg(x) can be made to be a conjugate ofTL∆. Since the product
of all the roots ofg(x) has absolute value|g(0)| ≥ 1 and since each root ofg(x) has absolute value
≤ ||TL∆||, we obtain that

|TL∆| ≥ |g(0)|
/
||TL∆||N−1

≥ T−(N−1)L(L!)−NS−NL0L(1 + ||β||)−NL0L
(
||α||

∣∣∣∣αβ
∣∣∣∣ + 1

)−NSL1L
.

Hence,

log |∆| ≥ −NL log T −NL log L−NL0L log S

−NL0L log(1 + ||β||)−NSL1L log
(
||α||

∣∣∣∣αβ
∣∣∣∣ + 1

)
.

Recall thatT = (T ′)L0+2SL1 . Here,T ′ andN are constants only depending onα andβ. We now
get that (10) holds, and the proof of Theorem 19 (forα > 0 andβ real) follows.

Homework:

1. Using Theorem 19, explain whylog 2/ log 3 is transcendental.

2. Leta, b, andk be fixed positive integers. Using Theorem 21, explain why there is a constant
C(a, b, k) such that the number of pairs of positive integers(m, n) for which

0 < an − bm ≤ k

is≤ C(a, b, k).
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