2 The Irrationality of 7 and Various Trignometric Values

Lemma 1. Let f(x) € Z[z]. Then for any non-negative integerand any integefk, n! divides

F (k).

Proof. Write
f(z) = aw’ + a1 4+ -+ arx + ap.
Then .
= Zamm(m— )--(m—-n+1)Em" Zamn‘< >km",
m=0
from which the result follows. ]

Theorem 7. The numberr is irrational.

Proof. It suffices to prove that? is irrational. Letn be a positive integer which we will choose
shortly, and let

(1 —x)”
f@) ==
We make a couple observations. First,
1
0< f(x) < o for everyz € (0, 1). (2)

Secondly, by expanding(x) as a polynomial in: and then as a polynomial in— x (for the latter,
replacer with 1 — (1 — z)), we deduce with the help of Lemma 1 that

f90)ez and f9(1)ecZ foreveryj € Z* U {0}.
Assume now that? = a/b for some integers andb with b > 0. Let

F(a) =" (7" f(z) = 722 f@(2) + 72 f D 2) — - (-1)" O (@)

Then
F(0)eZ and F(1)€Z.
Also,
FO(z) +n2F(z) = "7 2 f () = a"n° f (z).
Thus,
ddx (F'(z) sin(rx) — 7F(x) cos(rz)) = (F@(x) + 7°F(x)) sin(rz) = a"n* f(z) sin(7x).
Hence,
ma" / f(x)sin(rz)d _ ! (F’( )sin(rz) — 7F(x) cos(mz))y = F(1) + F(0).

Hence, the expression on the left above is an integer. On the other hand, we get from (2) that

wa®

0<ma” [ flz)sin(ra)dr < —-.
0 n!

We obtain a contradiction by choosimgsufficiently large so thata”/n! < 1. Therefore,r is
irrational. O



The next result is more general than the last one but also a little more difficult to prove. The
basic idea behind the proof is, however, the same. Theorem 7 follows from Theorem 8 by taking
a = 7 in Theorem 8.

Theorem 8. For any rational numbery # 0, cos « is irrational.

Lemma 2. Letr be any number. Suppogéxr) is a polynomial in(r — x)?, that is f(x) can be
written in the form

f(x) = agm(r — x)zn + ag,_o(r — I)Q”‘2 et as(r — x)2 ¥ ap.
Then for any positive odd integér f*)(r) = 0.

Proof. Observe that the result is true for each term in the expressiofi(fgr hence, the lemma
follows. 0

Proof of Theorem 8Sincecos(«) = cos(—a), it suffices to consider > 0. Write « = a/b where
a andb are positive integers. Let be a positive integer to be specified later, and define

2" Ha —bx)2(2a — bz)"t (a —2)2" (a® — (a — x)2)" " b3

f(2) = -

(n—1)! (n—1)!

Then a2(@2) 1l g2l

0< f(z) < =1 = 1) for0 <z < a.
Define

F(x) = f(z) = fP(x) + fD(2) = fO2) + - = f D ().
Then

FO(z) + F(z) = f(x)
so that
% (F'(z)sinz — F(x)cosz) = FP(z)sinz 4+ F(z)sinz = f(x)sinz.

Hence,

/af(x)sinxdx:F’(a)sina—F(a)cosa—l—F(O). (3)
0

Since f(z) is a polynomial in(a — x)?, we get from Lemma 2 and the definition 6fx) that
F'(a) = 0. Sincef(z) is divisible byz"~!, we deduce from Lemma 1 th&t(0) is an integer.
Similarly, viewing f(z) as a polynomial inx — z, we can get thak’(«) is an integer; to clarify any
concerns about the denominator@somehow coming into play, we note that Lemma 1 applies
more directly with
27 (02 — 72 n—1 pin—1 227 (g2 — b212 n—1 prtl
flo—1) = ( ) _ )
(n—1)! (n—1)!

Assumecos a = ¢/d for some integers andd with d > 0. Then the above implies thdtimes

the left-hand side of (3) is an integer. On the other hand,

_ daa4n72 3n—1 _ da3b2 (a4b3)n71

(n— 1) =D @)

’d/o f(z)sinz dx
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The latter expression is 1 for n sufficiently large. Thus far the proof has been quite similar to
the proof of the Theorem 7; however, we're not done. The integral above can be negative (unlike
the integral dealt with in the proof of Theorem 7). We get from (4) that

d/oaf(a:)sinxdx =0

providedn is sufficiently large. We will obtain a contradiction by examining (3) somewhat closer.
Recall that we used (3) to obtain that the left-hand side above is an integer; we will show that it is
not divisible byn if we choosen appropriately. This then will contradict the fact that it is O.

Recall in (3) that” () = 0. Observe thaf®)(0) = 0if 0 < k < n — 1 and, from Lemma 1,
f#)(0) is divisible byn if & > n — 1. Also,

f(n—l) (0) _ a2n(2a>n—1'

We choose, = p wherep is a sufficiently large prime so that the integral in (3) is 0 as above and so
thatp > max{2a, d}. Then we obtain that (0) is divisible byp if and only if & # p — 1. Hence,
F(0) is not divisible byp. On the other handf® (a) = 0if 0 < k < 2p — 1, and it follows from
Lemma 1 thatf®)(«) is divisible byp for all non-negative integers. Thus,F(«) is an integer
divisible byp. After multiplying through byl in (3) and recalling that we choge> d, we see that

the left-hand side of (4) is an integer which is not divisiblezhyand the proof is complete. [

It is worth noting that some of the difficulties could have been avoided if we were working
with cosh(«) instead ofcos(ar). Replacing the roles of the trignometric functions above with the
hyperbolic functions, we would obtain the analog to (4) with the integrand bgim@sinh(x).

Since the integrand would then be positive, the difficulty at the end of the proof would have been
avoided. This would then lead easily to a proof that iis rational, there® for o # 0 andlog «

for a # 1 are irrational. Since we will shortly be proving these numbers transcendental, we do not
labor on this point.

Corollary 1. If a is a non-zero rational number, then the numberg «), sin(«), tan(a), sec(a),
csc(a), andcot(«) are all irrational. Furthermore, the squares of these numbers are irrational.

Proof. It suffices to prove the second half of the corollary. This follows from expressing each of
the values of the squares of the trignometric functions in ternes<dfv). Or first observe that

cos®(a) = (1 + cos(2a))/2
to establish the result faos?(«), and then use that
sin(a) = 1 — cos?(a)

and .
200\ — anc(n) 1 — _
tan”(«) = sec”(a) — 1 o2 (@) 1

to obtain the result fosin?(a) andtan?(«). The others follow by considering reciprocals. [



Homework:

1. Prove that ifx is a non-zero rational number, then c@shis irrational. (You can probably
find this in a book, but you should try simply modifying the argument we gaveddi)
being irrational. Recall that the second half of that argument should not be necessary for this
problem.)




