8 The Gelfond-Schneider Theorem and Some Related Results

In this section, we begin by stating some results without proofs.

In 1900, David Hilbert posed a general problem which included determining whetRes
transcendental and whethet is transcendental. The problem was resolved independently by
Gelfond and Schneider in 1934. Their result is the following

Theorem 19. If o and 3 are algebraic numbers withr # 0, a # 1, and3 ¢ Q, thena” is
transcendental.

Observe that the theorem asserts that any value’a$ transcendental under the conditions
above. Itis clear that¥? is transcendental follows from this result, and sintés a value ofi~%,
the transcendence ef also follows from this result. We note that the following are equivalent
forms of this result:

(i) If ¢andg are complex numbers with+# 0 andg ¢ Q, then at least one of the three numbers
e!, 3, ande? is transcendental.

(i) If « and are non-zero algebraic numbers witly « andlog 5 linearly independent over
the rationals, theitbg o andlog 3 are linearly independent over the algebraic numbers.

Observe that (ii) is clearly equivalent to the statement thatadind 3 are non-zero algebraic
numbers with3 # 1 andlog o/ log 5 ¢ Q, thenlog o/ log (3 is transcendental.

Proofs of EquivalencesTo see that Theorem 19 implies (i), take= e‘. Thena is not0 or 1.
Theorem 19 implies that if: and 3 are algebraic, thea® = ¢ is transcendental, which implies
().

To see that (i) implies (ii), observe that the conditiog « andlog  are linearly independent
over the rationals implies that bothand 5 are notl. Also, we get thatog o/ log 3 is not inQ.
Let? = log f andf’ = log o/ log 3. Then (i) implies that}' is transcendental, which implies (ii).

To see that (ii) implies Theorem 19, considér= e“°e®, Thenlog a andlog 3 are linearly
dependent over the algebraic numbers. Hence, bydg)y andlog 5’ are linearly dependent over
the rationals. This contradicts thatZ Q. O

There are results similar to (i). For example, Lang proved that

Theorem 20. Supposé, /5, and/; are linearly independent over the rationals and timatand
3, are are linearly independent over the rationals. Then at least one of the nurfbers tran-
scendental.

Let v be a transcendental numberalis an algebraic number different froorand1, then we
canset'; = 1,0, = v, {3 = 72, 3, = log o, and3; = ~log o to obtain that at least one of’,
o, or o is transcendental. Another similar result was independently obtained by Brownawell
and Waldschmidt which implies that eitheror e¢” is transcendentall.

In 1966, Baker established the following generalization of the Gelfond-Schneider Theorem
(Theorem 19).

Theorem 21.If aq, ..., a,, are non-zero algebraic numbers wilbg o, . . ., log a,,, linearly in-
dependent over the rationals, thérg a4, . . ., log o, are linearly independent over the algebraic
numbers.
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To further illustrate some directions that transcendental number theory has taken and how such
results can be applied to other areas of number theory, we give such an application to a result which
is of a similar flavor to Theorem 21. Basically, the result helps resolve the question as to how “far
from zero” is a linear combination of logarithms of algebraic numbers.

We say that an algebraic numberhas degreel and heightA if « satisfies an irreducible

polynomial f(x) = Z;lzo a;jx’ € Zlz] with ag # 0, ged(ag, . . ., a1,a0) = 1, andmaxo<;<q |a;| =
A.

Theorem 22. Let«y, ..., «, be non-zero algebraic numbers with degrees at mamtd heights
at mostA. Let 3y, 41, ..., 3. be algebraic numbers with degrees at mésind heights at most

B > 1. Suppose that
A= 0y+ Gilogay + -+ B log o, # 0.

Then there are numbers = C(r,d) > 0 andw = w(r) > 1 such that
|A| > B~CUes )"

Possibly do an application here (not included in the notes).

We turn now to proving Theorem 19. Suppesis an algebraic number with £ 0 anda # 1.
Further supposg is an algebraic number and thaft is algebraic. Then Theorem 19 will follow
if we can show thatt € Q. We consider now the special case that 0 andg are real (it would
suffice to havéog « real).

Observe that* 728 is an algebraic number for all integersands,. To establish the theorem,
it suffices to show that there are two distinct pairs of integerss.) and(s}, s5) for which

S1 + Sgﬁ = Sll + SIQﬁ
We will chooseS sufficiently large and show such pairs exist With< sy, sq, 57, s5 < S.

Lemma 1. Letay(t),...,a,(t) be non-zero polynomials iR[t] of degreesls, . . ., d,, respectively.
Letw,...,w, be pairwise distinct real numbers. Then

n

F(t) =) aj(t)e”!

j=1
has at mostl; + - - - + d,, + n — 1 real zeroes (counting multiplicities).

Proof. By multiplying through bye~*~! if necessary, we may suppose that = 0 and that
otherwisew; # 0. Letk = d; + --- + d,, + n. We do induction ork. If £ = 1, thenn = 1 and
d, = 0, and the lemma easily follows. Lét> 2 be such that the lemma holds whenevet /7,
and supposé = /. Let N be the number of real roots &f(¢). By Rolle’s Theorem, the number
of real roots ofF”(t) is at leastNV — 1. On the other hand,

F'(t) = Z b;(t)e"st

where



Note that forl < j <n — 1, b;(t) has degree exacthj;. Also, sincew,, = 0, either there are only
n— 1 non-zero polynomialg;(¢) in the expression foF’ (¢) above or there are such polynomials
and the degree df,(¢) is one less than the degreeaf(t). We get from the induction hypothesis
that 7/ (t) has at mostl; + - - - + d,, + n — 2 real roots. HenceN — 1 < d; +---+d, + n — 2,
and the result follows. O

We will make use of the following result concerning analytic functions. We omit the proof. It
is a version of the Maximum Modulus Principle (and follows fairly easily from the Open Mapping
Theorem). We use the notatiofi, to denote the maximum value pf(z)| for |z| = r.

Lemma 2. Supposef(z) is an analytic function in the disk = {z : [z[ < R} and that it is
continuous oD = {z : |z| < R}. Then

1f(2)] < |flr
for everyz € D.

Lemma 3. Letr and i be 2 real numbers with < r < R. Let f,(2), f2(2), ..., fr(2) be analytic
in D = {z: |z] < R} and continuous o) = {z : |z| < R}. Let(y,..., ¢, be such thai(;| < r
foreachj € {1,2,..., L}. Then the determinant

fi(&) - fu(G)
A = det :
flc) - fucr)

satisfies
R —L(L-1)/2 L
Al < = L! )
A= (3) 11

Proof. Let i(z) be the determinant of the x L matrix (f;(¢;z)). Thenh(z) is analytic inD’ =
{z : |z| < R/r} and continuous o’ = {z : |z| < R/r}. Let M = L(L — 1)/2, and write

M-1
Fi(Gz) = (i) + 2Mgiy(2)
k=0

whereb,(j) € C for eachk andg; ;(z) is analytic inD’ and continuous o’. Then since the
determinant is linear in its columns (to see this evaluate along the columns), we cal(vieas
2™ times an analytic function plus terms involving the factor

St tnL et (CZLJ) ’

where then; denote non-negative integers. Observe that the determinant in this last expression is
zero if then,; are not distinct. Therefore, the non-zero terms of this form satisfy

L(L—-1
n1+n2+-~'+nLZO—Fl—{—'--—I—(L—l):¥.
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Hence, we deduce thal(z) is divisible by z*'. More precisely(z)/2" is analytic inD’ and
continuous on’. Therefore, by Lemma 2, for any € D',

2 < |2~ (5)"

wM Z]W
For|z| = R/r, we get that(;z| < R. We boundh(z)|g/ by multiplying the number of terms in
det (f;(¢;2)) by an obvious upper bound on the maximum such term. Thus,

R/r

L
1(2) gy < LT 1
A=1

Observe thatA| = |h(1)| and1 < R/r < R. We deduce that

A< () )y < (}%)Muﬁ fla,
A=1

giving the desired conclusion. O]

To complete our proof, we will also want a lower bound|d) whenA # 0. The specificA
that we will use has not yet been specified. For now, we note that it will have the form given in our
previous lemma as well as the form given in our next lemma.

Lemma 4. Let
A = det(am)LxL

where they; ; are algebraic numbers. Suppose thais a positive rational integer for whicl'o; ;
is an algebraic integer for every j € {1,2,..., L}. Finally, suppose that\ = 0. Then there is a
conjugate ofA with absolute value> 7%,

Proof. Observe thaf"* A is an algebraic integer so that one of its conjugates has absolute value
> 1. The result follows. ]

Let ¢ be a sufficiently large real number (to be specified momentarily). Consider integers
Ly,andS each> 2. Let L = (Lo + 1)(L; + 1). Observe that we can find suéh, L, andS (and
we do so) with

cLolog S <L, cL1S<L, andL < (25—1)%

for example, take large and
Ly =[SlogS] and L;=1[S/log9].

(Observe that we could take= loglog S.) We consider a matriX\1 described as follows. Con-
sider some arrangeme(y; (i), so(i)) of the (25 — 1)? integral pairs(s;, sz) with |s;| < S and
|sa] < S. Also, consider some arrangemént;j), v(j)), with 1 < j < L, of the integral pairs
(u,v) where0 < u < Ly and0 < v < L;. Then we define

M= ((51(0) + 5a(1))0 (an+200) ")

so thatM is a(2S — 1) x L matrix. The idea is to:
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(i) Consider the determinadt of an arbitraryL x L submatrix ofM (anyonewould do).

(i) Use Lemma 3 to obtain an upper bouRd for the absolute value ak (or, more specifically,
an upper bound for thieg |A|).

(i) Use Lemma 4 to motivate that A # 0, thenA has absolute value B, for someB; > B;
(and assume this to be the case).

(iv) Conclude thatA must be0 and, hence, the rank g#1 is < L.

(v) Take a linear combination of the columns. bt to obtain anf'(¢) as in Lemma 1 with< L
roots but withF'(sy (i) + s2()5) =0for1 <i < L.

(vi) Conclude thap is rational as described at the beginning of this section.

Since we have not specified the arrangements definpig, v(j)) and(s; (i), s2(7)), it suffices to
considerA = det (f;(¢;)) where

fiz) = 2P0’V (1<j<L) and ¢=si(i)+ ()8 (1<i<L).

Observe that(5) is a non-negative integer for eaghAlso, a*)* = exp(v(j)zlog ), and we fix
log o so that it is real. Hencef;(2) is uniquely defined. Theffi;(z) represents an entire function
for eachj. Observe that

|€Z1Z2‘ — eRe(lez) < e|2122‘ — €‘Zl||22‘
for all complex numbers; andz,. Hence, for anyk > 0,

) u(jg) ,v(4) R log o
|fJ‘R < R"We .

We use Lemma 3 with = S(1 + |3]) and R = €?r. Then for some constant > 0, we obtain
that

log |A| < —L(L — 1) +log L! + L max {log |f;|r}
1<5<L
< —L(L—1)+ Llog L+ LLylog R+ LLR|log o

< —L2 + (LLQ lOgS + LLlS) .

The constant; above is independent ef Therefore, ifc is sufficiently large (namely; > 4c¢,),
then
log |A| < —L?*/2.

Suppose now thaf’ is a positive rational integer for whici «, 773, andT"o® are all algebraic
integers. The = (T")Lo*25L1 has the property thaf times any element oM (and, henceT
times any element of the matrix describig is an algebraic integer. Therefore, by Lemma 4, if
A # 0, then there is a conjugate of with absolute value

2 T*L — (Tl)fLL()fQSLLl'
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It is reasonable (maybe not) to expect a similar inequality might holgXoitself (rather than for
the absolute value of a conjugateAj. In fact, it can be shown (and will be shown later) that if
A # 0, then there is a constant (independent of) for which

log |A| > —co (LLglog S+ SLLy). (20)

By using our upper bound fdog |A| above, we see that fersufficiently large ¢ > 8¢, will do),
we obtain that\ = 0. SinceA = det (f;((;)) as defined above, we get that the column§fof¢;))
must be linearly dependent (over the reals). In other words, there exist real numbesall 0,
such that

L
j=1
By considering a particular ordering of the(j), v(j)), we deduce that

L1 Lo
Z Z b(L0+1)v+u+1C;LO‘vCi =0 forl1<i<L.
v=0 u=0
But
L1 L() Ll
Z Z Dot 1yurut1Gla™s = Z ay(t)e”
v=0 u=0 v=0
where

Lo
av(t) = Z b(L0+1)v+u+1tu7 Wy =V loga, and t= Cz = Sl(i) + 32(2)ﬁ
u=0

Each of theL values of(; is a root 0f25;0 a,(t)e** = 0. Since somé; # 0, we deduce from
Lemma 1 that there are at mdsf(L; + 1) + (L; + 1) — 1 < L distinct real roots. Therefore, two
roots(; must be the same, and we can conclude that

s1(i) + s2(1)8 = s1(i') + s2(i")3 for somei, ' with1 < i <4 < L.

On the other hand, the paifs; (i), s2(¢)) and (s1(7'), s2(¢')) are necessarily distinct, so we can
conclude thap is rational, completing the proof of Lemma 1.

We should note what assumptions we have made to obtain our result. First, we have used that
«a > 0 andg are real (this was used in applying Lemma 1 at the end of the argument). Also, we
have assumed the inequality in (10) above. This is it. In other words, if we want to complete the
proof for o > 0 and real or for some specific choice of > 0 andg real, then we merely need
to establish (10) (where in (10) we assume tha¥ 0).

Before continuing, we show how the material just presented leads to a proafthat irra-
tional (not transcendental). We take= 2 and3 = /2, and assume’ = /b with a andb
positive rational integers. We can deduce our result from the arguments in the previous section
provided we can show thati + 0, then (10) holds. Note that we are dealing with an irrationality
proof here rather than a transcendence proof because we will make uée-ofa/b to deduce
(10). Recall that

A = det (f;(¢))
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where
fi(z) = 2Da"V* (1<j<L) and ¢=s1(i)+ ()8 (1<i<L).

Also,
Is1(7)] < S, |s2(h)| < S, 0<w(j) <Ly, and0<wv(j) <L

for all relevant values of. Suppose\ # 0. Observe that
bSLl f](c» _ bSLlc-;J(j)av(j)sl(i) (Ozﬁ)v(j)SQ(i)
= (51(@') + 32(@')\/§> ) ()51 () o312 () S L1 (i) 2(0)

Hence,
VLA = A+ BY?2

whereA and B are rational integers satisfying
max{|Al,|B|} < L!(2ab) " 1#(38)kok,

On the other hand, the lemma to Liouville’s Theorem (i.e., see the lemma to Theorem 11) implies
that if B # 0, then
A+ BV2| > ¢/|B]

for some constant; > 0. We deduce that

bSIEA| = |A+ BV2| > %' > ¢i(L)) ! (2ab)~SHE(35) ok,
Hence,
log |A| > log ey — Llog L — SLyiL (log(2ab) + logb) — LoL log(35).

This easily implies (10) in the case thit# 0. On the other hand, iB = 0, the argument is even
easier (and in fact follows from Lemma 4 as outlined before (10)). More specifical, = 0
(andA # 0), then

|A| — |A|b—5’L1L 2 b—SLlL

so that
log |A| > =SLyLlogb

from which (10) follows. Therefore2V? is irrational.

To complete the proof of Theorem 19 whan> 0 and are real, it suffices to show that if
A # 0, then (10) holds. We are working under the assumptionscthatl anda, 3, anda® are
algebraic. The proof tha? is irrational made use of an inequality of Liouville. The idea is to
modify the inequality now to obtain the more general result. We will make use of the basic idea
given in Lemma 4. We leT” be a positive rational integer for whicHa, T'3, andT”«” are all
algebraic integers. Thef = (7")Lo*25l1 has the property thaf times any element ot (and,
hence,I' times any element of the matrix describingis an algebraic integer. It follows that A
is an algebraic integer.
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We suppose thah # 0. For an algebraic number, we denote by|w|| the maximum of the
absolute value of a conjugate ©f Then we obtain that

SLiL
ITEA|| = THA|| < TELIS™E (1 + I8 o[ |a”|]

(where the last inequality should be done with care noting that pos$ilyand||«?|| are < 1;
alternatively, one can replace these wjith|| + 1 and ||®|| + 1, respectively, and continue as
below). Sincel'* A is an algebraic integer i@(o, 3, o), we deduce thaf“ A is a root of a monic
polynomialg(z) of degreeV whereN is the product of the degrees of the minimal polynomials for
a, 3, anda”. Note that each root af(x) can be made to be a conjugateldfA. Since the product
of all the roots ofy(x) has absolute value(0)| > 1 and since each root gf x) has absolute value
< ||T*A||, we obtain that

ITEA| > |g(0)| /|| T AN
> 7= (N-DL(LN) N §=NEL (1 || 8]) "Nk ([[all||o?|| + 1)V
Hence,

log|A| > =NLlogT — NLlog L — NLyLlog S
— NLoLlog(1+ ||8|]) = NSLyLlog (||o][| ||| + 1) .

Recall thatl’ = (T")f+25L1, Here,T" and N are constants only depending arand3. We now
get that (10) holds, and the proof of Theorem 19 (fas 0 and real) follows.

Homework:
1. Using Theorem 19, explain whyg 2/ log 3 is transcendental.

2. Leta, b, andk be fixed positive integers. Using Theorem 21, explain why there is a constant
C(a, b, k) such that the number of pairs of positive integers n) for which

0<a®—b"<k

is < C(a, b, k).

33



