
4 The Irrationality of ζ(3)

For s > 1, we define ζ(s) =
∑∞

n=1 1/ns. We give here a proof by Frits Beukers that ζ(3) is
irrational (the result itself being originally due to R. Apery).

Theorem 10. The number ζ(3) =
∑∞

n=1 1/n3 is irrational.

In addition to Lemma 1 of the previous section (and the notation given there), we make use of
the following results.

Lemma 2. Let r and s be nonnegative integers. If r > s, then∫ 1

0

∫ 1

0

− log(xy)

1− xy
xrys dx dy

is a rational number whose denominator when reduced divides d3
r . Also,∫ 1

0

∫ 1

0

− log(xy)

1− xy
xryr dx dy = 2

(
ζ(3)−

r∑
k=1

1

k3

)
.

Proof. Integrating by parts, we obtain that for k ≥ 0∫ 1

0

(log x)xr+k dx = lim
ε→0

∫ 1

ε

(log x)xr+k dx

= lim
ε→0

1

r + k + 1

∫ 1

ε

(log x) d
(
xr+k+1

)
= lim

ε→0

−1

r + k + 1

∫ 1

ε

xr+k dx =
−1

(r + k + 1)2
.

We deduce that∫ 1

0

∫ 1

0

− log(xy)

1− xy
xrys dx dy = −

∫ 1

0

( ∞∑
k=0

∫ 1

0

log(xy)xr+kys+k dx

)
dy

= −
∞∑

k=0

∫ 1

0

(
ys+k log y

r + k + 1
− ys+k

(r + k + 1)2

)
dy.

Integrating now with respect to y in a similar fashion, we obtain∫ 1

0

∫ 1

0

− log(xy)

1− xy
xrys dx dy =

∞∑
k=0

(
1

(r + k + 1)(s + k + 1)2
+

1

(r + k + 1)2(s + k + 1)

)
.

If r > s, the right-hand side above can be written as

∞∑
k=0

1

r − s

(
1

(s + k + 1)2
− 1

(r + k + 1)2

)
=

1

r − s

r−s∑
k=1

1

(s + k)2
.
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If r = s, we obtain instead

2
∞∑

k=0

1

(r + k + 1)3
= 2

(
ζ(3)−

r∑
k=1

1

k3

)
.

Note that for r > s one has lcm
(
(r− s)(s + 1)2, (r− s)(s + 2)2, . . . , (r− s)r2

)
is a divisor of d3

r .
The lemma follows.

Lemma 3. Let D = {(u, v, w) : u, v, w ∈ (0, 1)}. Then the mapping f(u, v, w) = (x, y, z) defined

by x = u, y = v, and z =
1− w

1− (1− uv)w
from D to D is one-to-one and onto. Furthermore,

∂(x, y, z)

∂(u, v, w)
=

−uv(
1− (1− uv)w

)2 .

Proof. We begin by showing that f(D) ⊆ D. Consider (u, v, w) ∈ D. Then 0 < (1 − uv)w <
w < 1 so that 1 > 1− (1− uv)w > 1− w > 0. It follows that

1 >
1− w

1− (1− uv)w
> 0.

Hence, f(u, v, w) ∈ D.
Next, we show that f 2(u, v, w) = (u, v, w). This follows from

f 2(u, v, w) = f

(
u, v,

1− w

1− (1− uv)w

)
=

(
u, v,

1− (1− uv)w − (1− w)

1− (1− uv)w
× 1− (1− uv)w

1− (1− uv)w − (1− uv)(1− w)

)
=

(
u, v,

1− w + uvw − 1 + w

1− w + uvw − 1 + uv + w − uvw

)
= (u, v, w).

We deduce now that if (u, v, w) ∈ D and f(u, v, w) = (u′, v′, w′), then (u′, v′, w′) ∈ D and
f(u′, v′, w′) = (u, v, w). It follows that f is one-to-one and onto.

Observe that

∂z

∂w
=
−

(
1− (1− uv)w

)
+ (1− w)(1− uv)(

1− (1− uv)w
)2

=
−1 + w − uvw + 1− w − uv + uvw(

1− (1− uv)w
)2 =

−uv(
1− (1− uv)w

)2 .

Hence, for some A and B we have

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣
1 0 0
0 1 0

A B
−uv(

1− (1− uv)w
)2

∣∣∣∣∣∣∣∣ =
−uv(

1− (1− uv)w
)2 ,

which concludes the proof.
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Lemma 4. The function

f(u, v, w) =
u(1− u)v(1− v)w(1− w)

1− (1− uv)w

is bounded above by 1/27 in the region D.

Proof. We use the inequality

1− (1− uv)w = (1− w) + uvw ≥ 2
√

1− w
√

uvw.

We deduce that for (u, v, w) ∈ D one has

f(u, v, w) ≤ 1

2

√
u(1− u)

√
v(1− v)

√
w(1− w).

For t ∈ [0, 1], the maximum of t(1− t2) occurs at t = 1/
√

3 and the maximum of t(1− t) occurs
at t = 1/2. Hence, we deduce that

f(u, v, w) ≤ 1

2
× 1√

3

(
1− 1

3

)
× 1√

3

(
1− 1

3

)
×

√
1

2

(
1− 1

2

)
=

1

27
.

This establishes the lemma.

Proof of Theorem 10. Consider the integral∫ 1

0

∫ 1

0

− log(xy)

1− xy
Pn(x)Pn(y) dx dy,

where Pn is as defined in the proof of Theorem 8. Recall Pn(x) is in Z[x] and of degree n so that
Pn(x)Pn(y) is a sum of terms of the form aijx

iyj where 0 ≤ i ≤ n, 0 ≤ j ≤ n, and aij ∈ Z
for all such i and j. Also, aii ≥ 0 for each i and ann > 0 (in fact, aii > 0 for each i, but this is
not needed). Lemma 2 implies that the double integral above is a sum of rational numbers whose
denominators divide d3

n plus a positive integral multiple of ζ(3). In particular, there exist integers
An and Bn with Bn > 0 such that the double integral equals

(
An + Bnζ(3)

)
/d3

n.
We now find a second expression for the double integral. Since

− log(xy)

1− xy
=

∫ 1

0

1

1− (1− xy)z
dz,

the double integral becomes ∫ 1

0

∫ 1

0

∫ 1

0

Pn(x)Pn(y)

1− (1− xy)z
dz dx dy.

Note that for 0 ≤ k ≤ n− 1 the multiple derivative

dk

dxk

(
xn(1− x)n

)
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can be expressed as a sum of terms each having both x and 1 − x as a factor. Switching order of
integration and integrating by parts repeatedly, we obtain∫ 1

0

∫ 1

0

− log(xy)

1− xy
Pn(x)Pn(y) dx dy =

∫ 1

0

∫ 1

0

∫ 1

0

Pn(x)Pn(y)

1− (1− xy)z
dx dy dz

=
1

n!

∫ 1

0

∫ 1

0

∫ 1

0

Pn(y)

dn

dxn

(
xn(1− x)n

)
1− (1− xy)z

dx dy dz

=
1

n!

∫ 1

0

∫ 1

0

∫ 1

0

Pn(y)
1

1− (1− xy)z
d

(
dn−1

dxn−1

(
xn(1− x)n

))
dy dz

=
1

n!

∫ 1

0

∫ 1

0

∫ 1

0

Pn(y)yz

dn−1

dxn−1

(
xn(1− x)n

)
(
1− (1− xy)z

)2 dx dy dz

= · · · = 1

n!

∫ 1

0

∫ 1

0

∫ 1

0

Pn(y)n!(yz)n xn(1− x)n(
1− (1− xy)z

)n+1 dx dy dz

=

∫ 1

0

∫ 1

0

∫ 1

0

xnynzn(1− x)nPn(y)(
1− (1− xy)z

)n+1 dx dy dz.

We apply now the transformation of Lemma 3 so that

zn =
(1− w)n(

1− (1− uv)w
)n

and (
1− (1− xy)z

)n+1
=

(
1− (1− uv)

(1− w)

1− (1− uv)w

)n+1

=
(uv)n+1(

1− (1− uv)w
)n+1 .

The above integral becomes∫ 1

0

∫ 1

0

∫ 1

0

unvn(1− w)n(1− u)nPn(v)
(
1− (1− uv)w

)n+1(
1− (1− uv)w

)n
(uv)n+1

· uv(
1− (1− uv)w

)2 du dv dw

=

∫ 1

0

∫ 1

0

∫ 1

0

(1− w)n(1− u)n Pn(v)

1− (1− uv)w
du dv dw.

By similarity of this integral with a previous integral, exchanging the order of integration and
integrating by parts with respect to v and finally changing the order of integration back gives∫ 1

0

∫ 1

0

− log(xy)

1− xy
Pn(x)Pn(y) dx dy

=

∫ 1

0

∫ 1

0

∫ 1

0

un(1− u)nvn(1− v)nwn(1− w)n du dv dw(
1− (1− uv)w

)n+1 .
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We apply Lemma 4 and then Lemma 2 to obtain

0 <

∫ 1

0

∫ 1

0

− log(xy)

1− xy
Pn(x)Pn(y) dx dy ≤ (1/27)n

∫ 1

0

∫ 1

0

∫ 1

0

du dv dw

1− (1− uv)w

= (1/27)n

∫ 1

0

∫ 1

0

− log(uv)

1− uv
du dv = 2(1/27)nζ(3).

We now deduce that

0 <
|An + Bnζ(3)|

d3
n

< 2ζ(3)(1/27)n

for an arbitrary positive integer n and some integers An and Bn. Assume now that ζ(3) = a/b for
some integers a and b with b > 0. By Lemma 1,

0 < |bAn + aBn| ≤ 2ζ(3)(1/27)nd3
nb

< 2ζ(3)(1/27)n2.83nb = 2ζ(3)
(
2.83/27

)n
b < 2ζ(3)(0.9)nb.

Since bAn + aBn is an integer, we obtain a contradiction for n sufficiently large (so that (0.9)n <
1/(2ζ(3)b)). Hence, ζ(3) is irrational.

Homework:

1. Show that the argument above can be modified (actually simplified) to establish the irra-
tionality of ζ(2) =

∑∞
n=1 1/n2. Use the identity∫ 1

0

∫ 1

0

Pn(x)(1− y)n

1− xy
dx dy = (−1)n

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1
dx dy.

Besides giving some indication as to how the above identity can be established, you should
provide lemmas similar to Lemma 2 and Lemma 4 (but may need to give a little thought as
to what these should be).

2. Let f(u, v, w) be as in Lemma 4. Prove that the maximum value of f(u, v, w) in the region
D is (

√
2− 1)4.
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