
24 | Chapter 2: File I/O

Instead of referencing these integers directly, the C library provides the preprocessor
defines STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO.

Note that file descriptors can reference more than just regular files. They are used for
accessing device files and pipes, directories and futexes, FIFOs, and sockets—follow-
ing the everything-is-a-file philosophy, just about anything you can read or write is
accessible via a file descriptor.

Opening Files
The most basic method of accessing a file is via the read() and write() system calls.
Before a file can be accessed, however, it must be opened via an open() or creat()
system call. Once done using the file, it should be closed using the system call close().

The open() System Call
A file is opened, and a file descriptor is obtained with the open() system call:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *name, int flags);
int open (const char *name, int flags, mode_t mode);

The open() system call maps the file given by the pathname name to a file descriptor,
which it returns on success. The file position is set to zero, and the file is opened for
access according to the flags given by flags.

Flags for open()

The flags argument must be one of O_RDONLY, O_WRONLY, or O_RDWR. Respectively,
these arguments request that the file be opened only for reading, only for writing, or
for both reading and writing.

For example, the following code opens /home/kidd/madagascar for reading:

int fd;

fd = open ("/home/kidd/madagascar", O_RDONLY);
if (fd == -1)
 /* error */

A file opened only for writing cannot also be read, and vice versa. The process issu-
ing the open() system call must have sufficient permissions to obtain the access
requested.

The flags argument can be bitwise-ORed with one or more of the following values,
modifying the behavior of the open request:

Opening Files | 25

O_APPEND
The file will be opened in append mode. That is, before each write, the file posi-
tion will be updated to point to the end of the file. This occurs even if another
process has written to the file after the issuing process’ last write, thereby chang-
ing the file position. (See “Append Mode” later in this chapter).

O_ASYNC
A signal (SIGIO by default) will be generated when the specified file becomes
readable or writable. This flag is available only for terminals and sockets, not for
regular files.

O_CREAT
If the file denoted by name does not exist, the kernel will create it. If the file
already exists, this flag has no effect unless O_EXCL is also given.

O_DIRECT
The file will be opened for direct I/O (see “Direct I/O” later in this chapter).

O_DIRECTORY
If name is not a directory, the call to open() will fail. This flag is used internally by
the opendir() library call.

O_EXCL
When given with O_CREAT, this flag will cause the call to open() to fail if the file
given by name already exists. This is used to prevent race conditions on file
creation.

O_LARGEFILE
The given file will be opened using 64-bit offsets, allowing files larger than two
gigabytes to be opened. This is implied on 64-bit architectures.

O_NOCTTY
If the given name refers to a terminal device (say, /dev/tty), it will not become the
process’ controlling terminal, even if the process does not currently have a con-
trolling terminal. This flag is not frequently used.

O_NOFOLLOW
If name is a symbolic link, the call to open() will fail. Normally, the link is
resolved, and the target file is opened. If other components in the given path are
links, the call will still succeed. For example, if name is /etc/ship/plank.txt, the call
will fail if plank.txt is a symbolic link. It will succeed, however, if etc or ship is a
symbolic link, so long as plank.txt is not.

O_NONBLOCK
If possible, the file will be opened in nonblocking mode. Neither the open() call,
nor any other operation will cause the process to block (sleep) on the I/O. This
behavior may be defined only for FIFOs.

26 | Chapter 2: File I/O

O_SYNC
The file will be opened for synchronous I/O. No write operation will complete
until the data has been physically written to disk; normal read operations are
already synchronous, so this flag has no effect on reads. POSIX additionally
defines O_DSYNC and O_RSYNC; on Linux, these flags are synonymous with O_SYNC.
(See “The O_SYNC Flag,” later in this chapter.)

O_TRUNC
If the file exists, it is a regular file, and the given flags allow for writing, the file
will be truncated to zero length. Use of O_TRUNC on a FIFO or terminal device is
ignored. Use on other file types is undefined. Specifying O_TRUNC with O_RDONLY is
also undefined, as you need write access to the file in order to truncate it.

For example, the following code opens for writing the file /home/teach/pearl. If the
file already exists, it will be truncated to a length of zero. Because the O_CREAT flag is
not specified, if the file does not exist, the call will fail:

int fd;

fd = open ("/home/teach/pearl", O_WRONLY | O_TRUNC);
if (fd == -1)
 /* error */

Owners of New Files
Determining which user owns a new file is straightforward: the uid of the file’s
owner is the effective uid of the process creating the file.

Determining the owning group is more complicated. The default behavior is to set
the file’s group to the effective gid of the process creating the file. This is the System
V behavior (the behavioral model for much of Linux), and the standard Linux modus
operandi.

To be difficult, however, BSD defined its own behavior: the file’s group is set to the
gid of the parent directory. This behavior is available on Linux via a mount-time
option*—it is also the behavior that will occur on Linux by default if the file’s parent
directory has the set group ID (setgid) bit set. Although most Linux systems will use
the System V behavior (where new files receive the gid of the creating process), the
possibility of the BSD behavior (where new files receive the gid of the parent direc-
tory) implies that code that truly cares needs to manually set the group via the chown()
system call (see Chapter 7).

 Thankfully, caring about the owning group of a file is uncommon.

* The mount options bsdgroups or sysvgroups.

Opening Files | 27

Permissions of New Files
Both of the previously given forms of the open() system call are valid. The mode argu-
ment is ignored unless a file is created; it is required if O_CREAT is given. If you forget
to provide the mode argument when using O_CREAT, the results are undefined, and
often quite ugly—so don’t forget!

When a file is created, the mode argument provides the permissions of the newly
created file. The mode is not checked on this particular open of the file, so you can
perform contradictory operations, such as opening the file for writing, but assigning
the file read-only permissions.

The mode argument is the familiar Unix permission bitset, such as octal 0644 (owner
can read and write, everyone else can only read). Technically speaking, POSIX
allowed the exact values to be implementation-specific, allowing different Unix sys-
tems to lay out the permission bits however they desired. To compensate for the
nonportability of bit positions in the mode, POSIX introduced the following set of
constants that may be binary-ORed together, and supplied for the mode argument:

S_IRWXU
Owner has read, write, and execute permission.

S_IRUSR
Owner has read permission.

S_IWUSR
Owner has write permission.

S_IXUSR
Owner has execute permission.

S_IRWXG
Group has read, write, and execute permission.

S_IRGRP
Group has read permission.

S_IWGRP
Group has write permission.

S_IXGRP
Group has execute permission.

S_IRWXO
Everyone else has read, write, and execute permission.

S_IROTH
Everyone else has read permission.

28 | Chapter 2: File I/O

S_IWOTH
Everyone else has write permission.

S_IXOTH
Everyone else has execute permission.

The actual permission bits that hit the disk are determined by binary-ANDing the
mode argument with the complement of the user’s file creation mask (umask). Infor-
mally, the bits in the umask are turned off in the mode argument given to open().
Thus, the usual umask of 022 would cause a mode argument of 0666 to become 0644
(0666 & ~022). As a system programmer, you normally do not take into consider-
ation the umask when setting permissions—the umask exists to allow the user to
limit the permissions that his programs set on new files.

As an example, the following code opens the file given by file for writing. If the file
does not exist, assuming a umask of 022, it is created with the permissions 0644
(even though the mode argument specifies 0664). If it does exist, it is truncated to zero
length:

int fd;

fd = open (file, O_WRONLY | O_CREAT | O_TRUNC,
 S_IWUSR | S_IRUSR | S_IWGRP | S_IRGRP | S_IROTH);
if (fd == -1)
 /* error */

The creat() Function
The combination of O_WRONLY | O_CREAT | O_TRUNC is so common that a system call
exists to provide just that behavior:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat (const char *name, mode_t mode);

Yes, this function’s name is missing an e. Ken Thompson, the creator
of Unix, once joked that the missing letter was his largest regret in the
design of Unix.

The following typical creat() call:

int fd;

fd = creat (file, 0644);
if (fd == -1)
 /* error */

Reading via read() | 29

is identical to:

int fd;

fd = open (file, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd == -1)
 /* error */

On most Linux architectures,* creat() is a system call, even though it can be imple-
mented in user space as simply:

int creat (const char *name, int mode)
{
 return open (name, O_WRONLY | O_CREAT | O_TRUNC, mode);
}

This duplication is a historic relic from when open() had only two arguments.
Today, the creat() system call remains around for compatibility. New architectures
can implement creat() as shown in glibc.

Return Values and Error Codes
Both open() and creat() return a file descriptor on success. On error, both return -1,
and set errno to an appropriate error value (Chapter 1 discussed errno and listed the
potential error values). Handling an error on file open is not complicated, as gener-
ally there will have been few or no steps performed prior to the open that need to be
undone. A typical response would be prompting the user for a different filename or
simply terminating the program.

Reading via read()
Now that you know how to open a file, let’s look at how to read it. In the following
section, we will examine writing.

The most basic—and common—mechanism used for reading is the read() system
call, defined in POSIX.1:

#include <unistd.h>

ssize_t read (int fd, void *buf, size_t len);

Each call reads up to len bytes into buf from the current file offset of the file refer-
enced by fd. On success, the number of bytes written into buf is returned. On error,
the call returns -1, and errno is set. The file position is advanced by the number of
bytes read from fd. If the object represented by fd is not capable of seeking (for
example, a character device file), the read always occurs from the “current” position.

* Recall that system calls are defined on a per-architecture basis. Thus, while i386 has a creat() system call,
Alpha does not. You can use creat() on any architecture, of course, but it may be a library function instead
of having its own system call.

