Top of Form

[image: image1.wmf]

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image2.wmf]

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image3.wmf]

/wEPDwUKLTMy

[image: image4.png]

[image: image5.png]

[image: image6.png]

Welcome to TechNet Blogs Sign in | Join | Help

Mark's Blog
Mark Russinovich's technical blog covering topics such as Windows troubleshooting, technologies and security.

This Blog

· About

· Email

Syndication

· RSS 2.0

· Atom 1.0

Search

· [image: image7.wmf]

 HYPERLINK "javascript:__doPostBack('bp$_$ctl00$_$bs$_$ws$_$SearchButton','')" Go

Tags

No tags have been created or used yet.

Archives

· February 2008 (1)

· January 2008 (1)

· October 2007 (2)

· August 2007 (2)

· July 2007 (1)

· June 2007 (1)

· May 2007 (2)

· April 2007 (1)

· February 2007 (1)

· December 2006 (1)

· November 2006 (1)

· October 2006 (1)

· August 2006 (2)

· July 2006 (2)

· May 2006 (1)

· April 2006 (1)

· March 2006 (2)

· February 2006 (1)

· January 2006 (3)

· December 2005 (2)

· November 2005 (6)

· October 2005 (3)

· September 2005 (1)

· August 2005 (2)

· July 2005 (2)

· June 2005 (3)

· May 2005 (2)

· April 2005 (6)

· March 2005 (8)

Monday, February 04, 2008 6:47 PM
Inside Vista SP1 File Copy Improvements
Windows Vista SP1 includes a number of enhancements over the original Vista release in the areas of application compatibility, device support, power management, security and reliability. You can see a detailed list of the changes in the Notable Changes in Windows Vista Service Pack 1 whitepaper that you can download here. One of the improvements highlighted in the document is the increased performance of file copying for multiple scenarios, including local copies on the same disk, copying files from remote non-Windows Vista systems, and copying files between SP1 systems. How were these gains achieved? The answer is a complex one and lies in the changes to the file copy engine between Windows XP and Vista and further changes in SP1. Everyone copies files, so I thought it would be worth taking a break from the “Case of…” posts and dive deep into the evolution of the copy engine to show how SP1 improves its performance.

Copying a file seems like a relatively straightforward operation: open the source file, create the destination, and then read from the source and write to the destination. In reality, however, the performance of copying files is measured along the dimensions of accurate progress indication, CPU usage, memory usage, and throughput. In general, optimizing one area causes degradation in others. Further, there is semantic information not available to copy engines that could help them make better tradeoffs. For example, if they knew that you weren’t planning on accessing the target of the copy operation they could avoid caching the file’s data in memory, but if it knew that the file was going to be immediately consumed by another application, or in the case of a file server, client systems sharing the files, it would aggressively cache the data on the destination system.

File Copy in Previous Versions of Windows

In light of all the tradeoffs and imperfect information available to it, the Windows file copy engine tries to handle all scenarios well. Prior to Windows Vista, it took the straightforward approach of opening both the source and destination files in cached mode and marching sequentially through the source file reading 64KB (60KB for network copies because of an SMB1.0 protocol limit on individual read sizes) at a time and writing out the data to the destination as it went. When a file is accessed with cached I/O, as opposed to memory-mapped I/O or I/O with the no-buffering flag, the data read or written is stored in memory, at least until the Memory Manager decides that the memory should be repurposed for other uses, including caching the data of other files.

The copy engine relied on the Windows Cache Manager to perform asynchronous read-ahead, which essentially reads the source file in the background while Explorer is busy writing data to a different disk or a remote system. It also relied on the Cache Manager’s write-behind mechanism to flush the copied file’s contents from memory back to disk in a timely manner so that the memory could be quickly repurposed if necessary, and so that data loss is minimized in the face of a disk or system failure. You can see the algorithm at work in this Process Monitor trace of a 256KB file being copied on Windows XP from one directory to another with filters applied to focus on the data reads and writes:

[image: image8]
Explorer’s first read operation at event 0 of data that’s not present in memory causes the Cache Manager to perform a non-cached I/O, which is an I/O that reads or writes data directly to the disk without caching it in memory, to fetch the data from disk at event 1, as seen in the stack trace for event 1:

[image: image9]
In the stack trace, Explorer’s call to ReadFile is at frame 22 in its BaseCopyStream function and the Cache Manager invokes the non-cached read indirectly by touching the memory mapping of the file and causing a page fault at frame 8.

Because Explorer opens the file with the sequential-access hint (not visible in trace), the Cache Manager’s read-ahead thread, running in the System process, starts to aggressively read the file on behalf of Explorer at events 2 and 3. You can see the read-ahead functions in the stack for event 2:

[image: image10]
You may have noticed that the read-ahead reads are initially out of order with respect to the original non-cached read caused by the first Explorer read, which can cause disk head seeks and slow performance, but Explorer stops causing non-cached I/Os when it catches up with the data already read by the Cache Manager and its reads are satisfied from memory. The Cache Manager generally stays 128KB ahead of Explorer during file copies.

At event 4 in the trace, Explorer issues the first write and then you see a sequence of interleaved reads and writes. At the end of the trace the Cache Manager’s write-behind thread, also running in the System process, flushes the target file’s data from memory to disk with non-cached writes.

Vista Improvements to File Copy

During Windows Vista development, the product team revisited the copy engine to improve it for several key scenarios. One of the biggest problems with the engine’s implementation is that for copies involving lots of data, the Cache Manager write-behind thread on the target system often can’t keep up with the rate at which data is written and cached in memory. That causes the data to fill up memory, possibly forcing other useful code and data out, and eventually, the target’s system’s memory to become a tunnel through which all the copied data flows at a rate limited by the disk.

Another problem they noted was that when copying from a remote system, the file’s contents are cached twice on the local system: once as the source file is read and a second time as the target file is written. Besides causing memory pressure on the client system for files that likely won’t be accessed again, involving the Cache Manager introduces the CPU overhead that it must perform to manage its file mappings of the source and destination files.
A limitation of the relatively small and interleaved file operations is that the SMB file system driver, the driver that implements the Windows remote file sharing protocol, doesn’t have opportunities to pipeline data across high-bandwidth, high-latency networks like WLANs. Every time the local system waits for the remote system to receive data, the data flowing across the network drains and the copy pays the latency cost as the two systems wait for the each other’s acknowledgement and next block of data.

After studying various alternatives, the team decided to implement a copy engine that tended to issue large asynchronous non-cached I/Os, addressing all the problems they had identified. With non-cached I/Os, copied file data doesn’t consume memory on the local system, hence preserving memory’s existing contents. Asynchronous large file I/Os allow for the pipelining of data across high-latency network connections, and CPU usage is decreased because the Cache Manager doesn’t have to manage its memory mappings and inefficiencies of the original Vista Cache Manager for handling large I/Os contributed to the decision to use non-cached I/Os. They couldn’t make I/Os arbitrarily large, however, because the copy engine needs to read data before writing it, and performing reads and writes concurrently is desirable, especially for copies to different disks or systems. Large I/Os also pose challenges for providing accurate time estimates to the user because there are fewer points to measure progress and update the estimate. The team did note a significant downside of non-cached I/Os, though: during a copy of many small files the disk head constantly moves around the disk, first to a source file, then to destination, back to another source, and so on.

After much analysis, benchmarking and tuning, the team implemented an algorithm that uses cached I/O for files smaller than 256KB in size. For files larger than 256KB, the engine relies on an internal matrix to determine the number and size of non-cached I/Os it will have in flight at once. The number ranges from 2 for files smaller than 2MB to 8 for files larger than 8MB. The size of the I/O is the file size for files smaller than 1MB, 1MB for files up to 2MB, and 2MB for anything larger.

To copy a file 16MB file, for example, the engine issues eight 2MB asynchronous non-cached reads of the source file, waits for the I/Os to complete, issues eight 2MB asynchronous non-cached writes of the destination, waits again for the writes to complete, and then repeats the cycle. You can see that pattern in this Process Monitor trace of a 16MB file copy from a local system to a remote one:

[image: image11]
While this algorithm is an improvement over the previous one in many ways, it does have some drawbacks. One that occurs sporadically on network file copies is out-of-order write operations, one of which is visible in this trace of the receive side of a copy:

[image: image12]
Note how the write operation offsets jump from 327,680 to 458,752, skipping the block at offset 393,216. That skip causes a disk head seek and forces NTFS to issue an unnecessary write operation to the skipped region to zero that part of the file, which is why there are two writes to offset 393,216. You can see NTFS calling the Cache Manager’s CcZeroData function to zero the skipped block in the stack trace for the highlighted event:

[image: image13]
A bigger problem with using non-cached I/O is that performance can suffer in publishing scenarios. If you copy a group of files to a file share that represents the contents of a Web site for example, the Web server must read the files from disk when it first accesses them. This obviously applies to servers, but most copy operations are publishing scenarios even on client systems, because the appearance of new files causes desktop search indexing, triggers antivirus and antispyware scans, and queues Explorer to generate thumbnails for display on the parent directory’s folder icon.

Perhaps the biggest drawback of the algorithm, and the one that has caused many Vista users to complain, is that for copies involving a large group of files between 256KB and tens of MB in size, the perceived performance of the copy can be significantly worse than on Windows XP. That’s because the previous algorithm’s use of cached file I/O lets Explorer finish writing destination files to memory and dismiss the copy dialog long before the Cache Manager’s write-behind thread has actually committed the data to disk; with Vista’s non-cached implementation, Explorer is forced to wait for each write operation to complete before issuing more, and ultimately for all copied data to be on disk before indicating a copy’s completion. In Vista, Explorer also waits 12 seconds before making an estimate of the copy’s duration and the estimation algorithm is sensitive to fluctuations in the copy speed, both of which exacerbate user frustration with slower copies.

SP1 Improvements

During Vista SP1’s development, the product team decided to revisit the copy engine to explore ways to improve both the real and perceived performance of copy operations for the cases that suffered in the new implementation. The biggest change they made was to go back to using cached file I/O again for all file copies, both local and remote, with one exception that I’ll describe shortly. With caching, perceived copy time and the publishing scenario both improve. However, several significant changes in both the file copy algorithm and the platform were required to address the shortcomings of cached I/O I’ve already noted.

The one case where the SP1 file copy engine doesn't use caching is for remote file copies, where it prevents the double-caching problem by leveraging support in the Windows client-side remote file system driver, Rdbss.sys. It does so by issuing a command to the driver that tells it not to cache a remote file on the local system as it is being read or written. You can see the command being issued by Explorer in the following Process Monitor capture:

[image: image14]
Another enhancement for remote copies is the pipelined I/Os issued by the SMB2 file system driver, srv2.sys, which is new to Windows Vista and Windows Server 2008. Instead of issuing 60KB I/Os across the network like the original SMB implementation, SMB2 issues pipelined 64KB I/Os so that when it receives a large I/O from an application, it will issue multiple 64KB I/Os concurrently, allowing for the data to stream to or from the remote system with fewer latency stalls.

The copy engine also issues four initial I/Os of sizes ranging from 128KB to 1MB, depending on the size of the file being copied, which triggers the Cache Manager read-ahead thread to issue large I/Os. The platform change made in SP1 to the Cache Manager has it perform larger I/O for both read-ahead and write-behind. The larger I/Os are only possible because of work done in the original Vista I/O system to support I/Os larger than 64KB, which was the limit in previous versions of Windows. Larger I/Os also improve performance on local copies because there are fewer disk accesses and disk seeks, and it enables the Cache Manager write-behind thread to better keep up with the rate at which memory fills with copied file data. That reduces, though not necessarily eliminates, memory pressure that causes active memory contents to be discarded during a copy. Finally, for remote copies the large I/Os let the SMB2 driver use pipelining. The Cache Manager issues read I/Os that are twice the size of the I/O issued by the application, up to a maximum of 2MB on Vista and 16MB on Server 2008, and write I/Os of up to 1MB in size on Vista and up to 32MB on Server 2008.

This trace excerpt of a 16MB file copy from one SP1 system to another shows 1MB I/Os issued by Explorer and a 2MB Cache Manager read-ahead, which is distinguished by its non-cached I/O flag:

[image: image15]
Unfortunately, the SP1 changes, while delivering consistently better performance than previous versions of Windows, can be slower than the original Vista release in a couple of specific cases. The first is when copying to or from a Server 2003 system over a slow network. The original Vista copy engine would deliver a high-speed copy, but, because of the out-of-order I/O problem I mentioned earlier, trigger pathologic behavior in the Server 2003 Cache Manager that could cause all of the server’s memory to be filled with copied file data. The SP1 copy engine changes avoid that, but because the engine issues 32KB I/Os instead of 60KB I/Os, the throughput it achieves on high-latency connections can approach half of what the original Vista release achieved.

The other case where SP1 might not perform as well as original Vista is for large file copies on the same volume. Since SP1 issues smaller I/Os, primarily to allow the rest of the system to have better access to the disk and hence better responsiveness during a copy, the number of disk head seeks between reads from the source and writes to the destination files can be higher, especially on disks that don’t avoid seeks with efficient internal queuing algorithms.

One final SP1 change worth mentioning is that Explorer makes copy duration estimates much sooner than the original Vista release and the estimation algorithm is more accurate.

Summary

File copying is not as easy as it might first appear, but the product team took feedback they got from Vista customers very seriously and spent hundreds of hours evaluating different approaches and tuning the final implementation to restore most copy scenarios to at least the performance of previous versions of Windows and drastically improve some key scenarios. The changes apply both to Explorer copies as well as to ones initiated by applications using the CopyFileEx API and you’ll see the biggest improvements over older versions of Windows when copying files on high-latency, high-bandwidth networks where the large I/Os, SMB2’s I/O pipelining, and Vista’s TCP/IP stack receive-window auto-tuning can literally deliver what would be a ten minute copy on Windows XP or Server 2003 in one minute. Pretty cool.

Posted by markrussinovich | 98 Comments

[image: image16.wmf]

nochange

Wednesday, January 02, 2008 4:00 PM
The Case of the Missing AutoPlay
 I’ve been presenting talks on Windows Vista kernel changes since TechEd US in the summer of 2006 and one of the features I cover in the session is ReadyBoost, a write-through disk caching technology that can potentially improve system performance by leveraging flash media as a disk cache. I explain ReadyBoost in depth in my TechNet Magazine article, “Inside the Windows Vista Kernel: Part 2”, but the basic idea is that, since flash has significantly better random access latency than disk, ReadyBoost intercepts disk accesses and directs random-access reads to its cache when the cache holds the data, but sends sequential access to directly to the disk. During my presentation, I insert a USB key, whereupon Windows displays an AutoPlay dialog that includes an option to configure the device for ReadyBoost caching:
[image: image17]
The first time I gave the talk, the demonstration went flawlessly, but in subsequent deliveries I didn’t get the AutoPlay experience. I would notice the lack of AutoPlay as I ran through the demonstrations before a session, but was always pressed for time and so couldn’t investigate. As a workaround, I would manual open the properties dialog of the device’s volume after insertion to show the ReadyBoost page that’s displayed when you click on the “Speed up my system” link on the AutoPlay dialog.
The last time I presented the session, at TechEd/ITforum in Barcelona in November, I had some extra time beforehand so I decided to find out why AutoPlay wasn’t working. The first thing I did was to check the AutoPlay settings, which you configure in the AutoPlay section of the Control Panel’s Hardware and Sound page. Some of the entries were set to “Ask me every time”, which shouldn’t have had any effect, and even after resetting to the defaults, AutoPlay still didn’t work:
[image: image18]
At this point I had to look under the hood at an insertion’s associated Registry and file system activity to see if that would reveal the reason why Explorer wasn’t honoring the Control Panel’s AutoPlay settings. I ran Process Monitor, configured the filter to include Explorer’s Registry operations, and re-inserted the key. Then I stopped the capture and looked at what Process Monitor had collected.
A staggering 22,000 events meant that scanning through the trace event-by-event would take hours and there were no obvious error codes to search for, so I had to think of some keyword that might lead me to the relevant lines. I first searched for “autoplay”, but came up empty. I knew that Explorer looks for a file named Autorun.inf in the root directory of removable media volumes, which can contain pointers to an icon to show for the volume and an executable that launches when the user double-clicks on the volume, so I next searched for “autorun”. The first hit didn’t look interesting because it referred to the volume’s mount-point GUID, information that Windows generates dynamically when it notices a new volume:
[image: image19]
The next hits were just a few entries later and all referred to values that store Group Policy settings:
[image: image20]
The queries of the first two locations resulted in NAME NOT FOUND errors, indicating that the policies weren’t defined, but a query of HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\NoDriveTypeAutoRun was successful. Process Monitor showed the value Explorer had read in the Details column:
[image: image21]
I didn’t know how to interpret a setting of 255, so I executed a Web search for “nodrivetypeautorun” and found a page in the Windows 2000 Resource Kit that describes the value as a bitmask specifying which device types have AutoPlay disabled. A value of 255 decimal (0xFF hexadecimal) disables AutoPlay on all devices:
[image: image22]
I used Process Monitor’s Jump-To functionality to launch Regedit and navigate directly to the value, opened the value editor, and changed the setting to 0 to enable AutoPlay on all devices. Next I had to test the change. I removed and reinserted the key and, to my satisfaction, the AutoPlay dialog appeared. Note that on Windows Vista, AutoPlay no longer means "automatically execute what's in Autorun.inf", but rather, "show me my options", so I wasn't introcuding a potential security issue.
The case was almost closed, but I had one detail to wrap up. AutoPlay was disabled on my system by the Group Policy configuration of the Microsoft domain to which the system is joined. That explained why the demonstration had worked for the first few times: my first deliveries of the session were before I had joined Microsoft. It also meant that the value would get restored to its previous setting the next time I logged on and Group Policy reapplied the domain’s configuration. If I happened to logon before the session the demonstration would break again.
There’s no way to opt out of Group Policy updates short of removing the system from the domain or never connecting to the domain. However, because I have local administrative rights, I realized that I could prevent Group Policy from changing the value by setting the permissions on the policy’s key such that Group Policy wouldn’t have permission to do so. Group Policy processing occurs in the Local System account, so I opened Regedit’s permissions editor and removed write access for the Local System account:
[image: image23]
I was now confident that the demonstration would work for my current delivery of the Vista Kernel Changes session, as well as any future ones, and I closed the case. Besides highlighting Process Monitor’s usefulness for uncovering a root cause, this example also illustrates the power of local administrative rights. A local administrator is the master of the computer and is able to do anything they want, including circumventing domain policies, something I covered in a previous blog post, and that's just one more reason enterprises should strive to have their end users run as standard users.
Posted by markrussinovich | 31 Comments

[image: image24.wmf]

nochange

Monday, October 15, 2007 1:00 PM
The Case of the Frozen Clock Gadget
Besides Aero Glass, one of the most visible features of Windows Vista is the Sidebar with its set of default Gadgets, like the clock, RSS feed, and photo viewer. The convenience of having frequently-accessed information on the desktop and the ease of their development has led to the availability of literally thousands of third-party Gadgets through sites like the Windows Vista Gadget Gallery. I’ve downloaded and installed a few out of curiosity, and in some cases kept them in my Sidebar’s standard configuration, and never experienced a problem. A few days after installing a batch of new Gadgets, however, I noticed that a third-party clock Gadget had stopped updating, and so I set out to investigate.
My system was otherwise functioning normally, so my first step was to see if something was amiss with the Sidebar’s configuration. I right-clicked on the Sidebar screen area and selected the Properties menu item, but instead of displaying the Sidebar configuration dialog, the Sidebar crashed:
[image: image25]
Gadgets run inside of shared Sidebar processes, so my first thought was that memory corruption in the Sidebar process had caused the clock to stop and subsequent crash, and verifying that theory required that I analyze the crash. The Windows Error Reporting (WER) service creates a crash-dump file, which is the saved state of a faulting process, in case you agree to send information to Microsoft about a problem. I clicked open the View Details area to see where Windows had saved the dump:
[image: image26]
The last path displayed by the dialog, WERD8EE.tmp.mdmp, is a dump file, so I launched the Microsoft Debugging Tools for Windows Windbg utility and opened the file. When you open a dump file, Windbg automatically shows you the instruction that ultimately lead to the crash. In this case, it was a memory copy operation in Msvcrt, the Microsoft C Runtime:
[image: image27]
The right side of the line showing the instruction indicates that the target address of the copy is 0. When a memory resource is exhausted, memory-allocation functions typically return address 0, also known as a NULL pointer, because that’s an illegal address by default for a Windows process (an application can manually create read/write memory at address zero, but in general it’s not done). The fact that Sidebar referenced address 0 didn’t conclusively mean the crash was due to low-memory instead of corruption, but it appeared likely.
I next looked at the code that led to the crash, which would tell me if it was a Gadget or the Sidebar itself that had passed a NULL pointer to the C Runtime. To do so, I opened Windbg’s stack dialog:
[image: image28]
I had previously configured Windbg’s symbol path to point at the Microsoft symbol server so that Windbg reports names of internal functions in Windows images, because knowing function names can often make understanding a dump file easier. The functions listed in the stack trace implied that Sidebar was querying the version of a “package” when it crashed. I’m not sure what the Sidebar calls a package, but the trace did seem to show that Sidebar was the culprit, not a Gadget.
So had Sidebar run out of memory? There are several types of resource exhaustion that can cause a memory allocation to fail. For example, the system could have run out of committable memory, the process could have consumed all the memory in its own address space, or an internal heap could have reached its maximum size.
I started by checking the committed memory, since that was quick. Total commitable memory, also known as the commit limit, is the sum of the paging file(s) and most of physical memory. When commitable memory runs low, Windows Vista’s low-resource watchdog warns you by presenting a list of processes consuming the most memory and gives you the option of terminating them to relieve the memory pressure. I hadn’t seen a warning, so I doubted that this was the cause, but opened Process Explorer’s System Information dialog to check anyway:
[image: image29]
As I suspected, there was plenty of available Committable memory. I next looked at Sidebar’s virtual memory usage. Memory leaks are caused when a process allocates virtual memory, stores some data in it, uses the data, but doesn’t free the memory when it’s done with the data. Virtual memory that processes allocate to store their own data is called Private Bytes, so I opened Process Explorer and added the Private Bytes column:
[image: image30]
On a 32-bit Windows system, processes have 2 GB of address space available to them by default, so the highest possible Private Bytes value is close to 2 GB, which is exactly what the Sidebar process with process ID 4680 had consumed. That confirmed it: a memory leak in Sidebar caused it to run out of address space, which in turned caused a memory allocation to fail, which finally caused a NULL-pointer reference and a crash. I suspect that the clock stopped when Sidebar’s address space was exhausted and the clock Gadget couldn’t allocate resources to update its graphic.
Next I had to determine which Gadget was causing the leak, which may or may not have been the frozen clock Gadget. The Sidebar consists of two processes, one Sidebar.exe process that hosts the Windows Gadgets and a child Sidebar.exe process for third-party Gadgets. At this point I knew that a third-party Gadget had leaked memory or caused the Sidebar to leak, but I had several third-party Gadgets running and I didn’t know which one to blame. Unfortunately, the Sidebar offers no way to track memory usage by Gadget (or any other resource usage for that matter), so I had to apply manual steps to isolate the leak.
After restarting the Sidebar, I removed the third-party Gadgets and added them back one at a time, leaving each to run for a minute or two while I monitored Sidebar’s Private Bytes usage. I added the Private Bytes Delta column to Process Explorer’s display to make it easy to spot increases, and after adding one of the Gadgets I started to see periodic positive Private Bytes Delta values, implicating it as the leaker:
[image: image31]
Now that I knew the guilty Gadget, I could have simply uninstalled it and considered the case closed. But I was curious to know how the Gadget had managed to cause a leak in the Sidebar – a leak that persisted even after I removed the Gadget.
I navigated to the Gadget’s install directory and opened its HTML file to see what it was doing. The Gadget consists of around 3-dozen lines of pretty simple Javascript and I didn’t spot anything amiss. To narrow in on the problematic code, I began commenting out pieces and re-adding the Gadget to the Sidebar until the leak disappeared. The code I was left with was a function the Gadget configured to execute every 10 seconds to update its graphics. It called the Sidebar background object’s RemoveObjects method and then added back graphics and text by calling the background’s AddImageObject method. Here’s a simplified version of the relevant code:
[image: image32]
The fact that it was using these APIs correctly meant that the leak was in the Sidebar’s code, but a quick Internet search didn’t turn up any mentions of a leak in the background object. If Sidebar APIs had a memory leak, why wasn’t it well known? I scanned the source code to the other Gadget’s on my system and discovered that none of them used the APIs, which explained why the leak isn't commonly encountered. However, comments in the Windows Gadget Gallery for the Gadget that inadvertently caused the leak revealed that other users had noticed it.
Having tracked the original unresponsive Gadget problem down to a leaky Sidebar API, I filed a bug in the Windows bug database and closed the case.
Posted by markrussinovich | 45 Comments

[image: image33.wmf]

nochange

Monday, October 01, 2007 3:00 PM
The Case of the Failed File Copy
The other day a friend of mine called me to tell me that he was having a problem copying pictures to a USB flash drive. He’d been able to copy over two hundred files when he got this error dialog, after which he couldn’t copy any more without getting the same message:
[image: image34]
Unfortunately, the message, “The directory or file cannot be created”, provides no clue as to the underlying cause and the dialog explains that the error is unexpected and does not suggest where you can find the “additional help” to which it refers. My friend was sophisticated enough to make sure the drive had plenty of free space and he ran Chkdsk to check for corruption, but the scan didn’t find any problem and the error persisted on subsequent attempts to copy more files to the drive. At a loss, he turned to me.
I immediately asked him to capture a trace with Process Monitor, a real-time file system and registry monitoring tool, which would offer a look underneath the dialogs to reveal actual operating system errors returned by the file system. He sent me the resulting Process Monitor PML file, which I opened on my own system. After setting a filter for the volume in question to narrow the output to just the operations related to the file copy, I went to the end of the trace to look back for errors. I didn’t have to look far, because the last line appeared to be the operation with the error causing the dialog:
[image: image35]
To save screen space, Process Monitor strips the “STATUS” prefix from the errors it displays, so the actual operating system error is STATUS_CANNOT_MAKE. I’d never seen or even heard of this error message. In fact, the version of Process Monitor at the time showed a raw error code, 0xc00002ea, instead of the error’s display name, and so I had to look in the Windows Device Driver Kit’s Ntstatus.h header file to find the display name and add it to the Process Monitor function that converts error codes to text.
At that point I could have cheated and searched the Windows source code for the error, but I decided to see how someone without source access would troubleshoot the problem. A Web search took me to this old thread in a newsgroup for Windows file system developers:
[image: image36]
Sure enough, the volume was formatted with the FAT file system and the number of files on the drive, including those with long file names, could certainly have accounted for the use of all available 512 root-directory entries.
I had solved the mystery. I told my friend he had two options: he could create a subdirectory off the volume’s root and copy the remaining files into there, or he could reformat the volume with the FAT32 file system, which removes the limitation on entries in the root directory.
One question remained, however. Why was the volume formatted as FAT instead of FAT32? The answer lies with both the USB drive makers and Windows format dialog. I’m not sure what convention the makers follow, but my guess is that many format their drives with FAT simply because it’s the file system guaranteed to work on virtually any operating system, including those that don’t support FAT32, like DOS 6 and Windows 95.
As for Windows, I would have expected it to always default to FAT32, but a quick look at the Format dialog’s pick for one of my USB drives showed I was wrong:
[image: image37]
I couldn’t find the guidelines used by the dialog anywhere on the Web, so I looked at the source and found that Windows defaults to FAT for non-CD-ROM removable volumes that are smaller than 4GB in size.
I’d consider this case closed, but I have two loose ends to follow up on: see if I can get the error message fixed so that it’s more descriptive, and lobby to get the default format changed to FAT32. Wish me luck.
Posted by markrussinovich | 50 Comments

[image: image38.wmf]

nochange

Monday, August 27, 2007 8:00 AM
Vista Multimedia Playback and Network Throughput
A few weeks ago a poster with the handle dloneranger reported in the 2CPU forums that he experienced reduced network throughput on his Vista system when he played audio or video. Other posters chimed in with similar results, and in the last week attention has been drawn to the behavior by other sites, including Slashdot and Zdnet blogger Adrian Kingsley-Hughes.
Many people have correctly surmised that the degradation in network performance during multimedia playback is directly connected with mechanisms employed by the Multimedia Class Scheduler Service (MMCSS), a feature new to Windows Vista that I covered in my three-part TechNet Magazine article series on Windows Vista kernel changes. Multimedia playback requires a constant rate of media streaming, and playback will glitch or sputter if its requirements aren’t met. The MMCSS service runs in the generic service hosting process Svchost.exe, where it automatically prioritizes the playback of video and audio in order to prevent other tasks from interfering with the CPU usage of the playback software:
[image: image39]
When a multimedia application begins playback, the multimedia APIs it uses call the MMCSS service to boost the priority of the playback thread into the realtime range, which covers priorities 16-31, for up to 8ms of every 10ms interval of the time, depending on how much CPU the playback thread requires. Because other threads run at priorities in the dynamic priority range below 15, even very CPU intensive applications won’t interfere with the playback.
You can see the boost by playing an audio or video clip in Windows Media Player (WMP), running the Reliability and Performance Monitor (Start->Run->Perfmon), selecting the Performance Monitor item, and adding the Priority Current value for all the Wmplayer threads in the Thread object. Set the graph scale to 31 (the highest priority value on Windows) and you’ll easily spot the boosted thread, shown here running at priority 21:
[image: image40]
Besides activity by other threads, media playback can also be affected by network activity. When a network packet arrives at system, it triggers a CPU interrupt, which causes the device driver for the device at which the packet arrived to execute an Interrupt Service Routine (ISR). Other device interrupts are blocked while ISRs run, so ISRs typically do some device book-keeping and then perform the more lengthy transfer of data to or from their device in a Deferred Procedure Call (DPC) that runs with device interrupts enabled. While DPCs execute with interrupts enabled, they take precedence over all thread execution, regardless of priority, on the processor on which they run, and can therefore impede media playback threads.
Network DPC receive processing is among the most expensive, because it includes handing packets to the TCP/IP driver, which can result in lengthy computation. The TCP/IP driver verifies each packet, determines the packet’s protocol, updates the connection state, finds the receiving application, and copies the received data into the application’s buffers. This Process Explorer screenshot shows how CPU usage for DPCs rose dramatically when I copied a large file from another system:
[image: image41]
Tests of MMCSS during Vista development showed that, even with thread-priority boosting, heavy network traffic can cause enough long-running DPCs to prevent playback threads from keeping up with their media streaming requirements, resulting in glitching. MMCSS’ glitch-resistant mechanisms were therefore extended to include throttling of network activity. It does so by issuing a command to the NDIS device driver, which is the driver that gives packets received by network adapter drivers to the TCP/IP driver, that causes NDIS to “indicate”, or pass along, at most 10 packets per millisecond (10,000 packets per second).
Because the standard Ethernet frame size is about 1500 bytes, a limit of 10,000 packets per second equals a maximum throughput of roughly 15MB/s. 100Mb networks can handle at most 12MB/s, so if your system is on a 100Mb network, you typically won’t see any slowdown. However, if you have a 1Gb network infrastructure and both the sending system and your Vista receiving system have 1Gb network adapters, you’ll see throughput drop to roughly 15%.
Further, there’s an unfortunate bug in the NDIS throttling code that magnifies throttling if you have multiple NICs. If you have a system with both wireless and wired adapters, for instance, NDIS will process at most 8000 packets per second, and with three adapters it will process a maximum of 6000 packets per second. 6000 packets per second equals 9MB/s, a limit that’s visible even on 100Mb networks.
I caused throttling to be visible on my laptop, which has three adapters, by copying a large file to it from another system and then starting WMP and playing a song. The Task Manager screenshot below shows how the copy achieves a throughput of about 20%, but drops to around 6% on my 1Gb network after I start playing a song:
[image: image42]
You can monitor the number of receive packets NDIS processes by adding the “packets received per second” counter in the Network object to the Performance Monitor view. Below, you can see the packet receive rate change as I ran the experiment. The number of packets NDIS processed didn’t realize the theoretical throttling maximum of 6,000, probably due to handshaking with the remote system.
[image: image43]
Despite even this level of throttling, Internet traffic, even on the best broadband connection, won’t be affected. That’s because the multiplicity of intermediate connections between your system and another one on the Internet fragments packets and slows down packet travel, and therefore reduces the rate at which systems transfer data.
The throttling rate Vista uses was derived from experiments that reliably achieved glitch-resistant playback on systems with one CPU on 100Mb networks with high packet receive rates. The hard-coded limit was short-sighted with respect to today’s systems that have faster CPUs, multiple cores and Gigabit networks, and in addition to fixing the bug that affects throttling on multi-adapter systems, the networking team is actively working with the MMCSS team on a fix that allows for not so dramatically penalizing network traffic, while still delivering a glitch-resistant experience.
Stay tuned to my blog for more information.
Posted by markrussinovich | 131 Comments

[image: image44.wmf]

nochange

Tuesday, August 07, 2007 7:00 AM
The Case of the Failed File Compression
The other day Bryce tried to use Explorer’s Send To Compressed (zipped) Folder feature, seen below, to package up his latest Process Monitor source code updates to send me.
[image: image45]
Instead of presenting compression progress dialog followed by an opportunity to edit the name of resulting compressed file, Explorer aborted the compression with this error:
[image: image46]
Bryce was perplexed. The error didn’t seem to make any sense because he obviously had read permission to the files in the selection, which he’d just finished editing, and compressing files shouldn’t involve some kind of search that could result in a file not being found. He retried the compression operation, but got the same error, this time after a different number of files had finished compressing.
I happened to walk into his office at this point and he showed me the behavior by trying a few more times, all with the same outcome. Now both of us were perplexed. It was time to investigate, and the tool we called on for the job was, somewhat ironically, Process Monitor.
We launched Process Monitor, reproduced the failure, stopped the capture, and scanned through the thousands of operations in the trace looking for errors. We saw a slew of NOT FOUND errors near the start of the log, which are the generally innocuous result of an application checking for the pre-existence of a file. In fact, there were literally hundreds of them near the beginning of the log, all of which were queries for the file into which the compressed files would be placed:
[image: image47]
That was disturbing, but not directly related to our troubleshooting effort, so I filed it away to look at later.
Several hundred events into the trace later we came across a SHARING VIOLATION error that bore a closer look:
[image: image48]
When a process opens a file it can specify if and how it wants to share the file with other processes while it has the file opened. The three types of sharing are read, write and delete, and each is represented with a flag that a process passes to the CreateFile API. In the operation that failed, Explorer didn’t pass any of the flags, indicating that it didn’t want to share the file, as seen in the ShareMode field:
[image: image49]
For an open to succeed, the sharing mode of the opener must be compatible with the sharing allowed by a process that already has the file opened, so the explanation for the error was that another process already had the file opened.
Looking back at the trace, the open operation immediately preceding the one with the error is an open of the same file by a process named Inort.exe. Inort’s close of the file isn’t visible in the screenshot because it comes long after Explorer’s failed attempt to open the file. That confirmed that Explorer’s unwillingness to share the file conflicted with Inort having the file open, despite the fact that Inort specified read, write and delete sharing in its open of the file.
Process Monitor had closed another case: Inort holding the file open when Explorer tried to open it was the cause of the sharing violation and almost certainly the reason for the misleading error message. Next we had to identify Inort so that we could come up with a fix or workaround. Process Monitor also answered that question with its image tooltip:
[image: image50]
eTrust, Computer Associates’ Antivirus scanner, was apparently opening the file to scan it for viruses, but interfering with the operation of Explorer. Antivirus should be invisible to the system, so the error revealed a bug in eTrust. The workaround was for Bryce to set a directory filter that excludes his source directories from real-time scanning.
I couldn’t reproduce the error when I went back to my office, so I suspected that I had a different version of Inoculan on my system than Bryce. Process Monitor’s process page on the event properties dialog for an Inort.exe event showed that Bryce had version 7.01.0192.0001 and I had the more recent 7.01.0501.000:
[image: image51]

 INCLUDEPICTURE "Mark's%20Blog_datoteka/compress7.jpg" * MERGEFORMAT \d [image: image52]
Why we have different versions isn’t clear since we’re both using images deployed and managed by Microsoft IT, but it appears that Computer Associates has fixed the bug in newer releases.
Now I turned my attention back to the inefficiencies of Explorer’s compression feature. I captured a Process Monitor trace of the compression of a single file and counted the associated operations. Just for this simple case, Explorer opened the target ZIP file 14 times, 12 of those before it had actually created the file and therefore with NOT FOUND results, and performed directory look ups of the target 19 times. It was also redundant with the source file, opening it 28 times and querying the file’s basic properties 17 times. It’s not like Explorer doesn’t give eTrust plenty of opportunities to cause sharing problems.
In order to verify that Explorer itself was at fault, and not some third-party extension, I looked at the stacks of various events by selecting the event and typing Ctrl+K to open the event properties dialog to the stack page:
[image: image53]
Zipfldr.dll, the Explorer file compression DLL, was in most of the stack traces, meaning that the compression engine itself was ultimately responsible for the waste. Further, the number of repetitious operations explodes when you compress multiple files. There are clearly easy ways to improve the algorithm, so hopefully we’ll see a more efficient compression engine in Windows 7.
Update: I've learned that the compression engine has been updated in Vista SP1 to perform fewer file operations.
On a closing note, if you’d like to catch me at my next public speaking engagement, come to Wintellect’s Devscovery conference in Redmond, August 14-16, where I’m delivering a keynote on Vista kernel changes.
Posted by markrussinovich | 44 Comments

[image: image54.wmf]

nochange

Monday, July 09, 2007 7:00 AM
The Case of the Unexpected PsList Error
Not long after I deployed Windows Vista on my main desktop system I noticed that a process became unresponsive and appeared to be consuming excessive amounts of CPU. I had a command prompt handy, so I ran PsList to dump detailed information about the process as one of my troubleshooting steps. Instead of reporting apage full of statistics like I expected, however, PsList printed its banner, an error message, and exited:
 [image: image55]
PsList obtains information from the system performance counters, which an application accesses using standard Registry functions directed at the virtual HKEY_PERFORMANCE_DATA key, so the message indicated that PsList was unable to query the virtual performance keys. When you point PsList at a remote system and don’t have administrative rights on that system, or the system isn’t running the Remote Registry service, then PsList reports the same error, but I had never seen the message when using PsList to look at a local system. Something was different about Windows Vista and I set out to learn what.
Putting my original troubleshooting mission on hold, I launched Process Monitor and repeated the PsList command with Process Monitor looking on. I didn’t have a firm expectation that it would reveal the cause of the problem, but experience has taught me that Process Monitor (and its predecessors Filemon and Regmon) often solves seemingly unexplainable problems like this. I scanned the trace looking for anomalous error codes, because when they’re present they almost always point to the source of a problem, and found an access denied error:
[image: image56]
For some reason, PsList, running as a standard user because I hadn’t elevated the command prompt from which I ran it, was unable to open the PerfLib registry key for read access. I was perplexed because on Windows XP I had been able to run PsList as a standard user. I launched Regedit, navigated to the key, and viewed its permissions. As I suspected, standard users aren’t members of any of the groups the permissions grant access (note the presence of two new performance-related groups, Performance Log Users and Performance Monitor Users):
 [image: image57]
I quickly confirmed that to be the reason for PsList’s failure by granting the Interactive Users group read access to the key and verifying that PsList subsequently worked. Now I was left with the question of what permissions Windows XP assigns the key. I switched to a Windows XP test system and viewed the key’s permissions. Sure enough, Interactive Users have read access, explaining why PsList works as a standard user on Windows XP systems:
[image: image58]
I then pondered the reason for the change. I suspected the new permissions close an information disclosure hole, but after some thought I concluded that they aren’t closing any hole. The PerfLib key is where performance providers register their counters and DLLs, so when a tool like PsList queries a counter the performance API loads the associated DLL into the querying process and calls functions in the DLL that return the desired data. Because the DLLs execute in the context of the process into which they load, they can’t implement security that can’t be easily circumvented by the process. It’s therefore the responsibility of a performance data source, which might be the kernel or an application like Internet Information Server (IIS), to prevent unauthorized access to its performance data.
Preventing read access to the PerfLib key is therefore the equivalent of having a performance DLL implement security. While locking down the key prevents the performance API from determining what counters are available and what DLLs provide performance data, with the exception of add-on applications, the core registrations are constant from system to system. That means that a process can circumvent any protection the locked-down key is attempting to provide by directly loading performance DLLs and calling their data functions.
To make a long story short, I filed a bug against Windows Vista Service Pack 1 (SP1) and Windows Server 2008 to have Interactive Users added back to PerfLib’s permissions. The reliability and diagnostics team reported back that the permissions changed inadvertently during the release of Windows Server 2003, but I convinced them it didn’t make sense, so in SP1 and Windows Server 2008 you won’t need to edit PerfLib’s permissions to be able to run tools like PsList as a standard user.
Another case closed by Process Monitor!
Posted by markrussinovich | 15 Comments

[image: image59.wmf]

nochange

Tuesday, June 19, 2007 10:00 AM
The Case of the Insecure Security Software
A little over a year ago I set out to determine exactly why, prior to Window Vista, the Power Users security group was considered by most to be the equivalent of the Administrators group. I knew the answer lay in the fact that default Windows permissions allow the group to modify specific Registry keys and files that enable members of the group to elevate their privileges to that of the Local System or Administrators group, but I didn’t know of any concrete examples. I could have manually investigated the security on every file, directory and Registry key, but instead decided to write a utility, AccessChk, that would answer questions like this automatically. AccessChk quickly showed me directories, files, keys, and even Windows services written by third parties, that Power Users could modify to cause an elevation of privilege. I posted my findings in my blog post The Power in Power Users.
Since the posting, AccessChk has grown in popularity as a system security auditing tool that helps identify weak permissions problems. I’ve recently received requests from groups within Microsoft and elsewhere to extend its coverage of securable objects analyzed to include the Object Manager namespace (which stores named mutexes, semaphores and memory-mapped files), the Service Control Manager, and named pipes.
When I revisited the tool to add this support, I reran some of the same queries I had performed when I wrote the blog post, like seeing what system-global objects the Everyone and Users groups can modify. The ability to change those objects almost always indicates the ability for unprivileged users to compromise other accounts, elevate to system or administrative privilege, or prevent services or programs run by the system or other users from functioning. For example, if an unprivileged user can change an executable in the %programfiles% directory they might be able to cause another user to execute their code. Some applications include Windows services, so if a user could change the service executable they could obtain system privileges.
These local elevation-of-privilege and denial-of-service holes are unimportant on single-user systems where the user is an administrator, but on systems where a user expects to be secure when running as a standard user (like Windows Vista), and on shared computers like a family PCs that have unprivileged accounts, Terminal Server systems, and kiosk computers, they break down the security boundaries that Windows provides to separate unprivileged users from each other and from the system.
In my testing I executed AccessChk commands to look for potential security issues in each of the namespaces it supports. In the commands below, the -s option has AccessChk recurse a namespace, -w has it list only the objects for which the specified group – Everyone in the examples – has write access, and -u directs AccessChk to not report errors when it can’t query objects for which your account lacks permissions. The other switches indicate what namespace to examine, where the default is the file system.
File system:

accesschk everyone -wsu “%programfiles%”
File system:

accesschk everyone -wsu “%systemroot%”
Registry:

accesschk everyone -kwsu hklm
Processes:

accesschk everyone -pwu *
Named Objects:
accesschk everyone -owu \basenamedobjects
Services:

accesschk everyone -cwu *

I ran similar commands looking for write access from the Authenticated Users and Users groups. An output line, which looks like “RW C:\Program Files\Vendor”, reveals a probable security flaw.
To my surprise and dismay, I found security holes in several namespaces. The security settings on one application’s global synchronization and memory mapping objects, as well as on its installation directory, allow unprivileged users to effectively shut off the application, corrupt its configuration files, and replace its executables to elevate to Local System privileges. What application has such grossly insecure permissions? Ironically, that of a top-tier security vendor.
For instance, AccessChk showed output that indicated the Users group has write access to the application’s configuration directory (note that names have been changed):
RW C:\Program Files\SecurityVendor\Config\
RW C:\Program Files\ SecurityVendor\Config\scanmaster.db
RW C:\Program Files\ SecurityVendor\Config\realtimemaster.db
…
Because Malware would run in the Users group, it could modify the configuration data or create its own version and prevent the security software from changing it. It could also watch for dynamic updates to the files and reset their contents.
For the object namespace, it reported output lines like this:
RW [Section] \basenamedobjects\12345678-abcd-1234-cdef-123456789abc
RW [Mutant] \basenamedobjects\87654321-cdab-3124-efcd-6789abc12345
…
I executed handle searches in Process Explorer to determine which processes had these objects open and it reported those of the security software. Sections represent shared memory so it was likely that the security agent, running in user login sessions, was using it to communicate data to the security software’s service process that was running in the Local System account. Malware could therefore modify the contents of the memory, possibly triggering a bug in the service to that might allow the malware to obtain administrative rights. At the minimum it could manipulate the data to foil the communication.
“Mutant” is the internal name for Windows mutexes, and the security software’s service was using the mutex for synchronization. That means that malware could acquire the mutex and block forward progress by the service. There were more than few of these objects with wide-open security that could potentially be used to compromise or disable the security software.
In the wake of my discovery, I analyzed the rest of my systems, as well as trial versions of other popular security, game, ISP and consumer applications. A number of the most popular in each category had problems similar to those of the security software installed on my development system. I felt like I was shining a flashlight under a house and finding rotten beams where I had assumed there was a sturdy foundation. The security research community has focused its efforts uncovering local elevations via buffer overflows and unverified parameters, but has completely overlooked these obvious problems – problems often caused by the software of security ISVs, or in some cases, their own.
Why are these holes created? I can only speculate, but because allowing unprivileged groups write-access to global objects requires explicit override of secure defaults, my guess is that they are common in software that was originally written for Windows 9x or assumed a single administrative user. When faced with permissions issues that crop up when migrating to a version of Windows with security, or that occur when their software is run by standard user accounts, the software developers have taken the easy way out and essentially turned off security.
Regardless of the reason, it’s time for software vendors – especially those of security applications - to secure their software. If you discover insecure software on your system please file a bug with the publisher, and if you are a software developer please follow the guidance in "Writing Secure Code,” by Michael Howard and David LeBlanc.
Posted by markrussinovich | 15 Comments

[image: image60.wmf]

nochange

Monday, May 21, 2007 7:00 AM
The Case of the Unknown Autostart
A few weeks ago I installed an update to a popular Internet Explorer media-player ActiveX control on one of my systems. I knew from past experience that the plugin’s updates always configure an autostart, (an executable configured to automatically launch during boot, login or with another process) that I don’t believe serves any useful purpose, so as I had in the past, I launched Sysinternals Autoruns, set both Verify Code Signatures and Hide Signed Microsoft Entries in the options menu, pressed Refresh, found the autostart and deleted it. However, as I was about to close the window another entry caught my eye and caused my heart to stop:
[image: image61]
The entry, IECheck, has all the characteristics of malware: it has no icon, description, or company name, and it’s located in the Windows directory. Further, Autoruns’ Search Online feature, which executes a Web search, yielded no information on the suspicious executable.
I needed to investigate further to determine if the entry was a sign of a malware infection, so I turned to the Sysinternals Strings utility. Image files often contain plain-text strings that contain clues that can connect it with an application. For example, if a program reads configuration information from the registry, the registry path is embedded in the executable and usually includes the name of the vendor or application. Strings scans a file for printable strings (both Unicode and Ascii) and prints them, so my next step was to open a command prompt and dump those in IECheck.exe. Sometimes the output is so verbose that it’s easier to pipe the output to a text file and study the results with Notepad, but this time I spotted some interesting text as it scrolled past:
[image: image62]
Sure enough, the executable had string references to other executables that are probably part of the same application, and they revealed the name of the application, IconEdit2, as well the vendor, WinAppsPlanet. I then remembered that I had just downloaded IconEdit a few days earlier to edit hi-resolution Vista-style icons and so I was able to classify the incident as a false alarm and close the case. My heart returned to its normal rhythm.
This example highlights a few practices that software vendors should follow for reliability and to prevent the confusion I faced. First is the use of environment variables and Shell special paths instead of hard-coded strings. IECheck (which I presume stands for Icon Editor Check) references the Program Files directory by name, which is only valid on English installations of Windows, so if installed on a foreign system, IECheck would fail to find the executables it looks for. Instead, it should locate the Program Files directory by using the %PROGRAMFILES% environment variable, or call ShGetFolderPath with CSIDL_PROGRAM_FILES for the folder parameter.
To avoid scaring security-conscious users, all executables should have a version resource with a company name and a description that clearly identifies the executable’s purpose. Further, vendors should obtain a code signing certificate to digitally sign their code. Windows relies more and more on signature information to help users make trust decisions, and users can leverage tools like Process Explorer, Autoruns, and Sigcheck to verify that executables are what they advertise instead of malware. I’ve contacted the author of IconEdit2 and he’ll be updating his application to follow this guidance. All vendors need to do their part to avoid this kind of needless scare.
Posted by markrussinovich | 24 Comments

[image: image63.wmf]

nochange

Thursday, May 10, 2007 2:31 PM
WinHEC, TechEd and MSDRT
I love speaking at conferences. They provide great opportunities to share information, meet interesting people, hear the concerns and desires of people out in the real world, and see things from a different perspective. I’ve actually been remiss posting all my public appearances on Sysinternals. Some of my recent appearances included Microsoft’s TechReady conference in February, CanSecWest in Vancouver a few weeks ago and EUSecWest in London on March 2.
My next appearance will be my first keynote at a Microsoft conference, which is very exciting for me. It’s at the Microsoft Windows Hardware Engineering Conference (WinHEC) on May 15 and 16 in Los Angeles. Mine is one of several keynotes that include Bill Gates and Craig Mundie presenting on the first day and me on the second day. My talk, Windows Server Platform Internals, is more technical than your average keynote and is a bit of an experiment for the conference. The session will be a lot of fun with a bunch of demos, but because I only have an hour it will also be challenging because I have over three hours of material from which I have to pull highlights to fit.

I’m also speaking again at TechEd US in Orlando. The conference is the week of June 4, but my four sessions are all on the last two days.

Finally, if you happened to miss it, check out my first Channel 9 interview, where I talk about life at Microsoft, how Sysinternals got started, Windows Vista and UAC.

Speaking of how Sysinternals got started, the Winternals Administrator’s Pak, with ERD Commander at the core, has debuted in its Microsoft form as the Microsoft Diagnostics and Repair Toolkit (unfortunately, my technical position gives me no influence over product names). The toolkit is included in the Microsoft Desktop Optimization Pack (MDOP), which is available for purchase through Microsoft’s Software Assurance program, and you can download the 30-day trial version from the Microsoft download center.
I hope to see you at one of my sessions!

Posted by markrussinovich | 9 Comments

[image: image64.wmf]

nochange

Monday, April 09, 2007 10:46 PM
Botnets by Email
I make no effort to hide my email address, which means that I know the instant a new email-based virus, phishing attack, or penny-stock-pumping scam launches when my inbox floods. Most such emails are easy to distinguish from legitimate emails because of their lack of personalization, poor grammar, or low-quality images that attempt to foil spam filters. On occasion, however, I get a message that causes me to examine it a little more closely in order to make sure it’s junk. I also look out for ones that might trick unsophisticated users.

My family uses BlueMountain greetings to send eCards, so when I received this email I took a second look:
[image: image65]
There are a couple of immediate clues that the email is a fake. For example, the body doesn’t address me by name and there’s a space between “friend” and the exclamation point. Hovering the mouse over the link shows that it masks an address at a different site, but the presence of BlueMountains and the legitimate-looking KoKoCards in the name might be sufficient to fool a casual scan.

Curious to see what kind of con the email was perpetrating, I fired up a virtual machine that was isolated from the local network and clicked on the link. Instead of being taken to a web site like I expected, an Internet Explorer dialog appeared and asked me if I wanted to save or run “Postcard.jpg.exe.” Most users that might have followed the ruse this far would probably be suspicious and not run it, but out of curiosity I started Process Monitor to watch the action and ran it. What I found isn’t very sophisticated, but it’s interesting because it’s an email virus that’s making the rounds today.

First I saw the flash of a command prompt window starting and exiting and then a prompt from the firewall appeared:

[image: image66]
I immediately recognized that the program wanting through the firewall is a popular Internet Relay Chat (IRC) client. I unblocked it, waited a couple of minutes, and then turned my attention to Process Monitor to see what had transpired. I opened the process tree tool from the Tools menu, which shows all the processes that generated activity in a tracing session, including ones that have exited. I saw evidence of the initial installer, the command prompt that I had seen, and a Regedit child process of the command prompt, all of which have faded icons to show that they had exited by the end of the collected trace:

[image: image67]
The command prompt’s command line, visible in the process tree, indicates that it was launched to execute a batchfile, sup.bat. Sup.bat was left in the System32 directory, so I could see from its contents that it passes Regedit a registry file named sup.reg, which creates two auto-start entries:

REGEDIT4
[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run]
"taskmgr"="C:\\WINNT\\system32\\explorer.exe"
"IExplorer"="C:\\WINDOWS\\system32\\explorer.exe"

The seemingly redundant entries simply ensure that mIRC will autostart when the system boots regardless of whether the system directory is Winnt or Windows.
The process tree showed only one additional process still running, mIRC, which was using Explorer as its cover name to blend into the list of legitimate programs a user would see in Task Manager. Process Monitor of course reveals “explorer’s” true identify by showing the mIRC icon, description and company name:
[image: image68]
The mIRC I had on my system was unmodified from the one on the mIRC homepage. My guess is that the malware author didn’t alter the description or company name because they don’t show up in versions of Task Manager prior to the one in Windows Vista, and antivirus is left faced with the difficult position of flagging a legitimate program as malware.

Having completed my examination of the process tree, I returned to Process Monitor’s tracing window and scanned through the output. I set a Category filter to include operations in the Write category, which narrowed the output to modifications made during the installation and first run of mIRC. I quickly ran across a string of writes to .ini files in the \Windows\System32 directory:

 [image: image69]
I’m not familiar with mIRC, but after studying the contents of the files for a few minutes I figured out that the files cause mIRC to automatically join chat channels named mp3-w4r3z and mp3-download on a chat server randomly selected from the ones stored in the Server.ini file, all of which are in the undernet.org domain. Finally, the heart of the operation is the script.ini file, which appears to implement commands that remote users can execute, including “run.”

At this point I concluded that what I had installed was a very simple Botnet client. I left it running for several hours, but didn’t notice any further activity. Surprised that the system hadn’t become an active Bot, I opened mIRC and manually connected to several of the servers listed in the Servers.ini file, but none of them had mp3-w4r3z or mp3-download channels, so they had either been shut down or hadn’t been configured, yet.

A few days later I received a similar email, but this time Microsoft’s spam server had stripped the contents and indicated that what I had installed was Trojan-Spy.HTML.Pcard.w, but an Internet search for more information didn’t yield anything meaningful.
[image: image70]
I’m left wondering how successfully this type of lure brings users into a Bot herder’s web. There are numerous warnings that something funny is going on, from the lack of personalization to being asked to run a program and open a port in the firewall (and on Windows Vista there’s an additional UAC elevation prompt to give administrative privileges to Postcard.jpg.exe). The fact that this Bot herder didn’t bother with more sophistication leads me to believe that it’s still unnecessary: enough people ignore the warnings.

Users will get more wary, however, so we’re in store for craftier attacks that will fool even paranoid users. Other spam and virus emails I’ve received address me as Mark, which I assume they get from my old mark@sysinternals.com address, but there are other tricks for guessing or even obtaining a user’s name, like contact harvesting. Exploits of zero-day and unpatched vulnerabilities can deliver malware without user interaction, and malware can use communications techniques, like proxy servers, http traffic, or outbound-initiated bidirectional connections, to avoid causing firewall popups.

Windows Vista’s UAC and Protected Mode IE can help mitigate attacks, but adoption will take time and even these technologies give malware a lot of room to play. There’s work going on at Microsoft to address these threats, but there’s no silver bullet. The fight against malware continues.
Posted by markrussinovich | 29 Comments

[image: image71.wmf]

nochange

Monday, February 12, 2007 8:00 AM
PsExec, User Account Control and Security Boundaries
I introduced the -l switch to PsExec about a year and a half ago as an easy way to execute processes with standard-user rights from an administrative account on Windows XP. In Running as Limited User – The Easy Way I described how PsExec uses the CreateRestrictedToken API to create a security context that’s a version of the one your account is using, only without membership in the local administrators group or any of the privileges, such as Debug Programs, that are assigned to administrators. A process running with that kind of security context has the privileges and accesses of a standard user account, which prevents it from modifying system files and Registry keys or exercising privileges, like loading a device driver, that only administrators can perform.
There’s only one catch to the virtual sandbox the restricted token creates: processes running in the sandbox are running as you, and so can read and write any files, Registry keys, and even other processes to which your account has access. That caveat creates major gaps in the walls of the sandbox and malicious code written with awareness of the restricted environment could take advantage of them to escape and become full administrator. An easy way out is for the malware to simply use OpenProcess to gain access to one of your processes running outside the sandbox and to inject into it code and a thread to execute the code. Because your other processes are running as you and the Windows security model creates default permissions that grant your account full access to your processes, a sandboxed process will be able to open them. Another way out is to send window messages from the limited process to a normal process, like Explorer, and drive the normal process with synthesized mouse and keyboard input so that it executes code at the direction of the malware.
Given these holes, why do I still recommend using the PsExec feature to run processes with limited rights on Windows XP if you would rather use an administrator instead of standard user account? Because this type of sandbox has not been commonly used, malware authors haven’t bothered with writing the code necessary to escape and so they run into the walls.
Windows Vista changes that, however, because it uses an enhanced form of this sandbox in User Account Control (UAC) and Protected Mode Internet Explorer (IE). Let’s look at Vista’s version of the sandbox, how PsExec’s update lets you run programs in it, and explore its security implications.
UAC creates an alternate model where all users, including administrators, run with standard user rights. Executables that require administrative rights include a requestedExecutionLevel key in their manifest - XML embedded in their executable - that specifies “requireAdministrator”. When an administrator executes such an image, in its default configuration UAC presents a Consent dialog that asks permission for the image to run with administrative rights. Standard users see a similar dialog, but must enter the credentials of an administrative account to unlock administrative rights.
The act of giving an executable administrative rights is called “elevation” in UAC. Whether you elevate from a standard user account (Over the Shoulder – OTS - elevation) or from an administrative account (Admin Approval Mode – AAM - elevation), you create processes that have administrative rights on the same desktop as those that have standard user rights. Processes elevated from a standard user account run in a different account from those with standard user rights, so the Windows security model defines a wall around the elevated process that prevents the non-elevated processes from writing code into those that are elevated. However, the standard Windows security model does not prevent non-elevated processes from sending fake input into elevated processes, nor does it create a sandbox around the non-elevated processes of administrative users to stop the processes from compromising the administrator’s elevated processes. Windows Vista therefore introduces the Windows Integrity mechanism, which supplies additional fencing for the sandbox surrounding less-privileged processes.
In Vista’s integrity model, every process runs at an integrity level (IL) and every securable object has an integrity level. The primary integrity levels are low, medium (the default), high (for elevated processes) and system. The windowing system honors integrity levels to prevent lower-IL processes from sending all but a few informational window messages to the windows owned by processes of a higher IL, calling this protection User Interface Privilege Isolation (UIPI). The security model also changes in Vista to only allow a process to open an object for write access if the process IL is equal to or higher than that of the object. Further, to prevent access to secrets stored in memory, processes can’t open processes of a higher IL for read access.
If you add the Integrity Level column to Process Explorer’s display, as seen in the screenshot below, you can see that system processes, including Windows service processes, run at System IL. Most processes of your logon session run at Medium, any processes you elevated are at High, and Internet Explorer (IE) runs at Low when you have Protected Mode enabled. You can use the built-in icacls.exe utility to view and change the ILs of files and directories and the Sysinternals AccessChk tool shows ILs of files, directories, registry keys, and processes. Objects have a default IL of medium and you can use AccessChk’s -e option to search for objects that have an explicit IL.
[image: image72]
The new version of Psexec takes advantage of the enhanced Vista sandbox when you specify the -l switch, running the executable you specify with a standard user token at low IL. The sandbox PsExec creates is almost identical to the one surrounding Protected Mode IE and you can feel your way around the walls by launching a command prompt or Regedit at low IL and then seeing what you can modify. For example, I launched the command prompt seen below at low IL with this command: psexec -l -d cmd.exe
 [image: image73]
I first determined my profile’s temporary directory with the “set” command. When I tried to create a file in that directory I was denied access because the directory has a default IL of Medium, which is indicated by the fact that there’s no IL specified in Icacl’s output. Then I changed to Protected Mode IE’s temporary directory, which has an IL of Low, and successfully created a file.
As you experiment you’ll find that your actions are limited, but there are some design boundaries that you should be aware of. First, with the exception of processes and threads, the wall doesn’t block reads. That means that your low-IL command prompt or Protected Mode IE can read objects that your account (the standard-user version if you’re a member of the administrator’s group) can. This potentially includes a user’s documents and registry keys.
Even the ability of a process at low IL to manipulate objects of a higher IL isn’t necessarily prevented. Since processes running at different integrities are sharing the same desktop they share the same “session”. Each user logon results in a new session in which the processes of the user execute. The session also defines a local namespace through which the user’s processes can communicate via shared objects like synchronization objects and shared memory. That means that a process with a low IL could create a shared memory object (called a section or memory-mapped file) that it knows a higher IL process will open, and store data in the memory that causes the elevated process to execute arbitrary code if the elevated process doesn’t properly validate the data. That kind of escape, called a squatting attack, is sophisticated, requires the user to execute processes in a specific order and requires knowledge of the internal operation of an application that is susceptible to manipulation through shared objects.
However, let’s be clear that no matter how difficult to pull off, the mere possibility of such a breach of a sandbox wall implies that ILs, in and of themselves, do not define security boundaries. What’s a security boundary? It’s a wall through which code and data can’t pass without the authorization of a security policy. User accounts running in separate sessions are separated by a Windows security boundary, for example. One user should not be able to read or modify the data of another user, nor be able to cause other users to execute code, without the permission of the other user. If for some reason it was possible to bypass security policy, it would mean that there was a security bug in Windows (or third-party code that allows it).
It should be clear then, that neither UAC elevations nor Protected Mode IE define new Windows security boundaries. Microsoft has been communicating this but I want to make sure that the point is clearly heard. Further, as Jim Allchin pointed out in his blog post Security Features vs Convenience, Vista makes tradeoffs between security and convenience, and both UAC and Protected Mode IE have design choices that required paths to be opened in the IL wall for application compatibility and ease of use.
Not requiring a user to type Ctrl+Alt+Delete to verify that the credential dialog UAC presents for an OTS elevation is one example of security balanced against usability, but there are others, like the ones I describe in my TechEd/ITForum talk User Account Control Internals and Impact on Malware (Jim’s post describes some of the ways you can enhance security while tipping the balance against ease of use, like configuring Windows to require Ctrl+Al+Delete for the credential dialog). For instance, having your elevated AAM processes run in the same account as your other processes gives you the convenience of allowing your elevated processes access to your account’s code and data, but at the same time allows your non-elevated processes to modify that same code and data to potentially cause an elevated process to load arbitrary code.
Because elevations and ILs don’t define a security boundary, potential avenues of attack , regardless of ease or scope, are not security bugs. So if you aren’t guaranteed that your elevated processes aren’t susceptible to compromise by those running at a lower IL, why did Windows Vista go to the trouble of introducing elevations and ILs? To get us to a world where everyone runs as standard user by default and all software is written with that assumption.
Without the convenience of elevations most of us would continue to run the way we have on previous versions of Windows: with administrative rights all the time. Protected Mode IE and PsExec’s -l option simply take advantage of ILs to create a sandbox around malware that gets past other security defenses. The elevation and Protected Mode IE sandboxes might have potential avenues of attack , but they’re better than no sandbox at all. If you value security over any convenience you can, of course, leverage the security boundary of separate user accounts by running as standard user all the time and switching to dedicated accounts for unsafe browsing and administrative activities.
Look for my in-depth article on UAC internals in the June issue of TechNet Magazine, and if you want if you want to learn about other changes in Windows Vista then check out the first of my three-part Inside the Vista Kernel article series in the February issue of TechNet Magazine.
Posted by markrussinovich | 72 Comments

[image: image74.wmf]

nochange

Monday, December 11, 2006 5:35 PM
The Case of the Mysterious Code Signing Failures
I digitally sign code on a regular basis in the course of preparing Sysinternals executables for upload to the site. When you digitally sign a file, you encrypt the hash of the file with the private key of a public/private key pair. Someone can verify that you’ve signed the file by decrypting the encrypted hash with your public key and comparing the result with the hash of the file they calculate themselves. The signing process is made simple with Signtool.exe, a utility that comes with the Platform SDK and the .NET Framework. You pass it your signing certificate, private key file, and target file as command-line arguments and it does the rest, appending the signed hash in the file as a final step.
The other day I went to sign an updated Sysinternals tool and ran into this error message:
[image: image75]
It had been a week or so since the last time I had tried signing anything, but I couldn’t think of any changes I had made to the system that would have lead to this failure. However, anyone that’s used computers for any length of time knows that they’re not really deterministic and that system configuration is often subject to spontaneous corruption. I resigned myself to never knowing the root cause and set out to resolve the problem.
The first thing I did was search for capicom.dll with the built-in Where utility, which looks for the file you specify in each of the directories listed in the PATH environment variable. The PATH environment variable is used for DLL searches, so I expected this step to confirm that I was missing Capicom.dll:
[image: image76]
The output appeared to confirm it, but then I realized that because I was running on a 64-bit system and Signtool is a 32-bit executable, Where.exe wouldn’t look in the %SystemRoot%\Syswow64 directory, which is the directory in which 32-bit system DLLs are stored. When I manually looked in that directory I was surprised to find a copy of Capicom.dll:
[image: image77]
Signtool must therefore not be looking for Capicom.dll in the directories listed in the PATH environment variable, so the question before me was, where was Signtool looking? I knew Process Monitor was the perfect tool to answer a question like that, so ran it, configured an Include filter for any Path ending in “capicom.dll” and then repeated the Nmake command that triggered the error:
[image: image78]
The trace shows that, for some reason, Signtool only looks for Capicom.dll in two directories: the Microsoft Shared sub-directory of the system’s Common Files directory, and the \Bin directory, which was where Signtool is located on my system.
To fix the problem I simply copied the Capicom.dll file from the \Windows\Syswow64 to the \Bin directory. I reran the make command and, as I expected, it succeeded. Process Monitor to the rescue!
Posted by markrussinovich | 27 Comments

[image: image79.wmf]

nochange

Monday, November 27, 2006 5:13 PM
The Case of the Delayed Windows Vista File Open Dialogs
I was in Barcelona a couple of weeks ago speaking at Microsoft’s TechEd/ITForum conference, where I delivered several sessions (two, Advanced Malware Cleaning and Windows Vista Kernel Changes earned the top #1 and #2 rated breakout sessions for the week - you can see an interview of me at the conference here). The conference was a huge success and Windows Vista, which I had taken on the road for the first time, performed great. However, as I was running through some demos before one of my sessions, I noticed that the file open dialog, which is common to all Windows applications, would often take between 5 and 15 seconds to appear.
I didn’t have time to investigate before my talk, so the delays caused me consternation when they showed up during my Windows Vista Kernel Changes session immediately afterward. The behavior felt uncannily like the one I wrote up a few blog posts ago in The Case of the Process Startup Delays. In that case, Windows Defender’s Remote Procedure Call (RPC) communications during process startup tried to contact a domain controller, which resulted in hangs when the system was disconnected from its domain. I mumbled excuses on behalf of Windows Vista and tried to distract the audience by explaining the subsequent demonstrations.
It wasn’t until the plane ride home that I got a chance to look into it. I followed steps similar to the ones I had when I explored the Windows Defender hangs. I launched Notepad from within Debugging Tools for Windows’ Windbg tool, typed Ctrl+O to open the File Open dialog, and when I got the hang broke in and looked at the stack of Notepad’s main thread:
[image: image80]
If you haven’t seen a stack before, it’s a history from most recent to least of nested functions called by a thread. You read it from bottom to top, so the stack shows that Notepad had loaded Browseui.Dll and called its CAddressBand::SetNavigationState function. That function called CBreadcrumbBar::SetNavigationState, which called CBreadcrumbBar::SetIDList, and so on.
A look at the function names on the stack immediately told me what was happening: when you access the Open dialog the first time within an application it navigates to your documents folder. On Windows Vista my folder is C:\Users\Markruss\Documents, but the shell wants to make the path in the dialog’s new “bread crumb” bar pretty by displaying it as “Mark Russinovich\Documents”, and so it calls GetUserNameEx to lookup my account’s display named as it’s stored in my User object in Active Directory. I confirmed my theory by verifying that the first parameter SHGetUserDisplayName passes to GetUserNameEx, which is interpreted as the EXTENDED_NAME_FORMAT enumeration, is 3: NameDisplay.
I set a breakpoint on the call’s return and hit it after the delay completed. GetUserNameEx returned the ERROR_NO_SUCH_DOMAIN error code, and stepping through SHGetUserDisplayName revealed that it falls back to calling GetUserName. Instead of looking up the user’s display name, that function just obtains the Security Identifier (SID) of the user from the process token (the kernel data structure that defined the owner of a process) and calls LookupAccountName to translate the SID to its account name, which in my case is simply “markruss”. Thus, the dialog that appeared looked like this:
[image: image81]
As opposed to this, which is what I saw when I got back to the office and connected to the corporate network:
[image: image82]
I had solved the case, but was curious to know where exactly the delay was taking place and so continued by researching what was happening on the other end of the Secure32!CallSPM call that’s on top of the stack listing. I knew that the Local Security Authority (LSASS) process is responsible for authentication, including interactions with domain controllers and account name translations, so I attached Windbg to the Lsass.exe process (make sure that you detach the debugger from LSASS before exiting with the “qd” command, otherwise LSASS will terminate and the system will begin a 30-second shutdown). I figured that Secur32.Dll acts like both a client and server and confirmed that it was loaded into LSASS, but I needed to determined the server-side function that corresponds to Secur32!SecpGetUserName. I did so by brute force: I dumped the functions implemented by Secur32.Dll and looked for ones with “name” in them:
[image: image83]
I set breakpoints on several of them and when I reproduced the delay I hit the one on SecpGetUserName and stepped through it to eventually get to this stack:
[image: image84]
The DsGetDcName function is documented as returning the name of a domain controller in the specified domain. SecpTranslateName obviously need to find a domain controller to which to send the account display name query. I traced further, and discovered that LSASS caches the result of the lookup for 45 seconds, which explained why I didn’t see the delay if I ran a different application and accessed the File Open dialog immediately after getting a delay. Then I hit a temporary dead-end when Netapi32!DsrGetDcNameEx2 executed a RPC request.
Again, figuring that Netapi32 acts like a client and a server, I dumped its symbols and set breakpoints on functions containing “dc”. I let LSASS continue executing and to my surprise hit the exact same function, Netapi32!DsrGetDcNameEx2. I traced into the call deeper and deeper until the thread finally called into the kernel (Ntdll!KiFastSystemCallRet):
[image: image85]
I was close to the end of my investigation. The last question I had was what device driver was Netlogon calling to send a browser datagram? I answered this by looking at the first parameter it passed to NlBrowserDeviceIoControl, which I guessed was a handle to a file object. Then I opened Windbg in Local Kernel Debugging mode (note that on Windows Vista you have to boot in debugging mode to do this), which lets you look at live kernel data structures, and dumped the handle’s information. That showed me the device object that was opened, which told me that the driver is Bowser.sys, the “NT Lan Manager Datagram Receiver Driver”:
[image: image86]
I thought my investigation was complete, but when I later tried to reproduce the delays I failed. I retraced my footsteps and found that LsapGetUserNameForLogonSession caches the display name for 30 minutes. Further, an account’s display name is cached with cached credentials so you won’t experience the delays for the first 30 minutes after logging in or disconnecting from the corporate network. I confirmed that by waiting 30 minutes and reproducing the hangs.
My investigation had come to a close. I had determined that Windows Vista’s File Open dialog tries to look up a user’s display name for the “bread crumb” bar when showing the documents folder and in the process tries to locate a domain controller by sending a Lan Manager datagram via the Bowser.sys device driver. I also knew that there’s no workaround for the delayed dialogs and that anyone that has a domain joined system that’s not connected to their domain will experience the same delays - at least until Windows Vista Service Pack 1.
Posted by markrussinovich | 59 Comments

[image: image87.wmf]

nochange

Sunday, October 01, 2006 11:24 PM
The Case of the Notepad that Wouldn't Run
Dave Solomon was on campus a couple of weeks ago presenting a Windows internals seminar to Microsoft developers. Before I joined Microsoft I taught the classes here at Microsoft with him, but now with my other responsibilities here I step into the class and guest present a module or two if my schedule permits. This time I presented the security module, which describes logon (authentication) and the access check (authorization) model. It also includes a separate section on Vista’s User Account Control (UAC) feature, which consists of several technologies including virtualization and a new Mandatory Integrity Control (MIC) security model that’s layered on top of the existing Discretionary Access Control model that Windows NT introduced in its first release.

UAC allows for users, even administrators, to run as standard users most of the time, while giving them the ability to run executables with administrator rights when necessary. There are several mechanisms by which executables can trigger a request for administrator rights:

1. If the executable image includes a Vista manifest file that specifies a desire or need for administrator rights (this would be added by the developer who creates the image).

2. If the executable is in Vista’s application compatibility database as a legacy application that Microsoft has identified as requiring administrator rights to run correctly.

3. If the user explicitly requests an elevation using Explorer’s “Run as administrator” menu item in the context menu for executables (also can be set as an advanced shortcut property). Note that this does not run the executable under the Administrator account, but rather under the account of the logged in user, but with the Administrator group enabled in the process security token.

4. If the executable is determined to be a setup or installer program (for example, if the word “setup” or “update” is in the image’s name).

Perhaps the most common need for administrator rights comes from setup programs, which generally can’t install properly without write access to HKLM\Software and \Program Files, two locations that only administrators can modify. As an ad-hoc demonstration of the last request method, during the presentation I copied \Windows\Notepad.exe to my account’s profile directory, renaming it to Notepad-setup.exe in the process. Then I launched it, expecting to see a Consent dialog like the one below ask me to grant the renamed Notepad administrative rights:

[image: image88]
To my consternation, no such dialog appeared. In fact, nothing happened. I reran it and got the same result. I was thoroughly confused, but didn’t have time to investigate in front of the class, so I moved on.

When I later got a chance to investigate what had happened, I started Notepad-setup.exe using Windbg (part of the free Debugging Tools for Windows) by clicking “File->Open Executable” followed by “Debug->Go” (or you can press F5). I then stepped through the initial instructions of Notepad’s entry point, Winmain. I saw it call an initialization function named NPInit that invokes LoadAccelerators to load Notepad’s keyboard accelerators. Strangely, LoadAccelerators was failing, causing NPInit to return an error to Winmain and Notepad to silently exit. But why would Notepad fail to load its accelerators, which should be included in the Notepad image itself?

My next step was to see if the file’s name was somehow causing the different behavior so I tried running a copy of Notepad.exe with the original name from my user directory, but got the same behavior (or lack thereof). It was time to watch what was happening with Filemon.

This scenario called for logging the operation of Notepad’s successful execution and comparing that to the log of the failing execution. I started Filemon, set the Include filter to Notepad.exe and the Exclude filter to list the processes that reference Notepad’s image when Notepad launches, including Svchost (where the prefetcher runs) and Explorer (which I was using to launch Notepad):

[image: image89]
I collected both traces, but before I could compare them I had to remove the columns that are always different in different execution traces: Sequence, Timestamp, and Process. To do this I loaded the traces into Excel, selected the data in the first three columns, deleted it, and saved the traces back out as tab-demitted text. You can get the two trace files here.

There are a number of text comparison tools available, but one that’s both free and that serves the needs of this type of comparison is Microsoft’s Windiff. Simply open both files and red and yellow lines highlight differences.

The first few lines that Windiff flags are Notepad reading its prefetch file, which has a different name in each trace because the name encodes the full path of the Notepad image it is associated with in a hash number:

[image: image90]
The next set of differences are operations present only in the successful run of Notepad, and appear to be queries of some kind of global Windows resource cache that’s new to Windows Vista:

[image: image91]
It wasn't clear to me why one run references the cache and the other doesn’t, so I continued to scan through the differences. The next group of differences are at lines 47-51 and are simply due to the different paths of the two Notepad copies:

[image: image92]
Finally, at line 121 I came across something that looked like it might be the source of the problem:

[image: image93]
The execution of \Windows\Notepad.exe successfully reads a file named Notepad.exe.mui from the \Windows\En-us subdirectory. Further, at line 172 in the trace comparison the failed launch of Notepad tries to read a file of the same name from an En-us subdirectory, but fails because the subdirectory doesn’t exist:

[image: image94]
I knew that .mui files store language-dependent resources like strings and accelerators, so I was pretty certain that Notepad’s failure to load its accelerators was due to its inability to find the appropriate resource file for my local, US English (En-us). To verify this I made an En-us subdirectory in my profile directory and copied Notepad.exe.mui into it, reran Notepad from my directory, and it worked.

Previous versions of Windows used .mui files to separate language-specific data from executables, but didn’t know that in Windows Vista this capability is exposed for applications to use. The nice thing about the .mui support is that resource-related functions like LoadAccelerators and FindResourceEx do the magic of the language-specific resource files so application developers don’t need to do anything special coding to take advantage of it.

Now that I had Notepad working outside of the Windows directory I turned my attention to why I hadn’t been presented with a UAC Consent dialog asking me to give it permission to run with administrator rights. What I discovered empirically and then confirmed later in the Understanding and Configuring User Account Control in Windows Vista article on Microsoft.com, is that heuristic setup detection only applies to files that don’t have an embedded manifest that specifies a security TrustLevel. Notepad, like all the Windows executables in Windows Vista, does include a manifest. You can see it when you do a dump of Notepad’s strings with the Sysinternals Strings utility:

[image: image95]
So, thanks to Filemon, the case of the Notepad that wouldn’t run was closed!

Posted by markrussinovich | 34 Comments

[image: image96.wmf]

nochange

More Posts Next page »

[image: image97.png]

Bottom of Form

[image: image98]
_1265562458.unknown

_1265562462.unknown

_1265562464.unknown

_1265562465.unknown

_1265562463.unknown

_1265562460.unknown

_1265562461.unknown

_1265562459.unknown

_1265562454.unknown

_1265562456.unknown

_1265562457.unknown

_1265562455.unknown

_1265562452.unknown

_1265562453.unknown

_1265562450.unknown

_1265562451.unknown

_1265562448.unknown

_1265562449.unknown

_1265562447.unknown

