
Introduction and basic C++ programming

Computer Organization

Virtually every computer has six logical components:

Input Unit ‑ obtains data (and programs) from an input device for processing. Keyboard, mouse, CD‑ROM drive, diskette drive, scanner, digital camera...

Output Unit ‑ takes information from the computer and places it on an output device ‑ monitor screen, printer, diskette drive, CD‑Writer…

Central Processing Unit (CPU) ‑ Coordinates the operation of the other sections of the computer.

Arithmetic & Logical Unit (ALU) ‑ where calculations, relational and logical operations are performed ‑ part of the CPU.

Main Memory Unit ‑ primary memory, primary storage ‑ short‑term main storage area for data and executable programs (RAM). Ordered sequence of storage locations called memory cells, each memory cell has a unique address.

Secondary Storage Unit ‑ secondary memory, permanent memory ‑ long term, secondary storage area for data and programs.

	Primary memory
	Secondary

	Temporary, volatile
	Permanent, non‑volatile

	Rapid access
	Slower access (1/0)

	Low capacity
	High capacity

	High cost
	Low cost

1/0 Devices ‑ we use these to communicate with the computer

Computer Networks ‑ allows each computer to access (e.g.) the same large hard disk drive and high‑quality printer ‑ LAN.

In order to communicate with the computer we use one of several programming languages.

Types of Computer Languages

First generation ‑ Machine Language

Each type of computer has its own machine language, the only language it can understand. Most machine languages consist of binary codes for both data and instructions. Machine dependent. E.g., to add overtime pay to base pay we would need a series of binary codes such as:

0010 0000 0000 0100

0100 0000 0000 0101

0011 0000 0000 0110

Second generation ‑ Assembly Languages

Use English‑like abbreviations to represent the machine‑language instructions. Use a translator program called an assembler to convert each instruction from the assembly language word to the machine language binary code. E.g.:

LOAD
BASEPAY

ADD
OVERPAY

STORE
GROSSPAY

Third generation ‑ Compiler Languages

High‑level, machine independent, more English‑like, more natural. Each high-level language statement translates to several low-level language statements. Use compilers to translate from the high‑level language into machine language. Compilers translate the whole program first, then execute the object program. E.g.,

GROSSPAY = BASEPAY + OVERPAY

A compiler language is a high-level language which is machine-independent.

High-level languages are more English-like, easier to code, more costly to run, less flexible. e.g., FORTRAN, BASIC, COBOL, PL/1, ALGOL, APL, Pascal, SIMSCRIPT, Smalltalk, C, C++, Java.

A compiler is a translator program that transforms high-level program code into a low-level machine-level executable program.

[image: image1.png]Fies Projects | Workspaces | Dther Documents

ATLCOM Appizard
B0 Devstudo AddinWizsd
1S4P) Entension Wizad
- IMaketle
MFC ActiveX Corlrawizard
] MFC Appwizard (d)
MEC Appiizad (eve)
e Uity Project
(= w32 Applcation

() Wiz Oyramo ik Lvay
5] wina2 st Loty

Froject name:
programd

Logation
CAMyC++Progiamstrogrand

& Croate new workspace.
P4
g

Il

Blatfos:

[image: image14.wmf]f

de

c

b

-

+

[image: image15.wmf]f

e

d

c

b

)

(

-

+

[image: image16.png][(Inactive F:\CPLUSAMEAN2.EXE) [-Io0x]
Second Arithmetic Progran by Big Bird. ﬂ

]

[image: image17.png]I (Inactive F:\CPLUSAMEAN3.EXE) [-1o[x]

Third Arithmetic Progran by Big Bird. ﬂ

	High‑level Language Translators

	Compilers
	Interpreters

	Slower translation

Entire program

Faster execution

More efficient execution

Good for commercial applications

	Faster translation

One instruction or macro at a time

Slower execution

Less efficient execution

Good for program development

Programming

When learning to program in any programming language, it’s best just to learn the “rules of the game.”

Definition -- A program is a set of instructions in proper sequence, that causes a computer to perform a particular task.

Modern programs are projects composed of many of individual program modules that have to be linked together in order to be run. In fact most developer systems have their own environment (ide) and programs are developed in phases within the ide:

C++ Program Phases: …in the C++ programming environment
Edit - Text editor window. Save with .cpp extension

Preprocess - e.g., text replacement, including other library files with the file to be compiled

Compile - to object code

Link - links the object code with the code for the standard library functions referred to in the program. This produces an executable image (with no missing pieces). During Build process

Load - program is placed in memory

Execute - one instruction at a time

C++ Programming

Every programming language has facilities to:
in C++

1. Read data from some input device
cin >>
2. Write output information onto an output device
cout <<

3. Perform arithmetic operations
+ - * /
4. Perform relational operations
< == >

5. Perform logical operations
! && ||
6. Branch to a non-sequential instruction (w/wo structure)
while
7. Store (and retrieve) data values to (and from) memory
=
Homework

Running a simple C++ program in Microsoft Visual C++

When you are in the MS Visual C++ environment, select File (New.

You get the New dialog window. Make sure the Projects tab is selected.

Select Win 32 Console Application, and enter a project name, for example, program0.

The Location is the path to the directory on your disk where the program will be stored, for example, C:\myPrograms or A: Enter the desired path. Click OK.

[image: image29.wmf]f

e

d

c

b

)

(

-

+

Next you get a window asking for the kind of console application you wish to create. Select an empty project and click Finish.

You will see some information about how your project is stored. Click OK.

You should see a workspace window and an output window. If you don’t, select the appropriate window from the View menu.

Now you need to enter a program into a file in this project. Select File (New.
Make sure the Files tab of the New dialog window is in view. Select C++ Source File, and enter a name for this file. The name can be the same as the project name, good practice if you have one project for each program. Click OK.

[image: image2.png]Fies | Pt | Woksasces

Other Documents

] Active Server Page
(o e
@i Fie
) C/Cns Hee Fle
[Co+ Source File
B Cucor il
(G114 Page

g Resource Scipt
{IResource Template

A to project:

programd

File pame:

programd

Logation

CAMyC++Progiamstrogrand

Your screen should now look something like this:

[image: image3.png]program0.cpp]

B Ele Edt View Insert Project Buld Tooks Window Help

—ls|x
[az@@ =2l o [BER Ffea \1“
[[gobat members) =][No members - Create Nom Class.] SELLEN
2l T =

" 908 ClassView [[5] Fieiew
]
4

el |

[T\ buila { Gobu . FramriesT), FranFiss2

IR —
Ready

Tni,Col__[REC [COL [0VA [FEAD

Enter the following program into the program1.cpp file window.

// hello.cpp

// A First Program in C++

#include <iostream.h>

int main()

{

cout << "Hello. My name is Big Bird.\n";

return 0;
//indicates that the program ended successfully

}

From the Build menu, select Build program0.exe. If there are errors, you probably did not enter the program exactly as it is here. If there are no errors, run the program by selecting Build (Execute program0.exe.

You should get an output window like this:

[image: image4.png]Hello. My name is Big Bird.

[Press any key to continue_

You have just written (OK, typed) and run your first C++ program! (Whew!)

Now you have to print the program (the .cpp text file you created) and the output to hand in. Your assignments must always include the source code (the program) and the output.

Print the program by selecting File (Print. [In order to “date-stamp” the program listing, first select File (Page Setup. Then click on the drop down menu to add the current date to either the header or footer of the page.]

Print the output by typing <Alt-PrintScreen>, i.e., press the Alt key and the PrintScreen key at the same time. This will copy the active window (the MS-DOS console window containing your output) to the clipboard; then, paste this image onto a Word document. This is not an ideal way to print your output, but it will be good enough for us at first. We will soon learn a better way.

Before you may hand in this assignment, make sure to add the required comment lines to the beginning of the program. See the Programming Assignment Guidelines.

Some Parts of the Program

// hello.cpp

// A First Program in C++

#include <iostream.h>

int main()

{

cout << "Hello. My name is Big Bird.\n";

return 0;
//indicates that the program ended successfully

}

(1) Comments - a type of program documentation

// indicates that the remainder of the line is a comment

/* comments can also look like this */

/*
also

like

this

*/

(2) #include <iostream.h> - a preprocessor directive

Tells the pre-processor to include in the program the contents of the I/O stream header file called iostream.h . This allows us to use standard stream input and output objects like cout (displays to the screen).

(3) int main() - main function header

Every C++ program has at least one function, called main. Program execution begins with the first statement in main.

(4) { brackets denote the body of the function }

(5) ; statement terminator

Every C++ statement must end with a semicolon.

(6) << stream insertion operator

Expression to the right of the operator is inserted (sent) to the cout object (the display screen).

(7) \n newline escape sequence

The backslash is an escape character. The character following it takes on a different meaning. eg,
\t - tab
\a - alert; ring bell

\\ - prints a backslash
\” - prints a double quotation mark

(8) return - exits from the function

In this case control over execution is transferred back to the operating system.

 A simple C++ program

This program:

//mean1.cpp

// This program calculates the mean of three numbers.

#include <iostream>

using namespace std;
//need this to drop .h
int main()

{

cout << "First Arithmetic Program by Big Bird.\n\n";

cout << (12+5+10)/3;

return 0;

} //end main

produces this output:

[image: image18.png]W (Inactive F:\CPLUS\MEAN4.EXE) [_[CIx]
Fourth Arithmetic Program by Big Bird.

8.66667

Now, let’s try using a variable to store the mean before printing it.

//mean2.cpp

// This program calculates the mean of three numbers.

// Big Bird learns about variables.

#include <iostream>

using namespace std;

int main()

{

float mean;

cout << "Second Arithmetic Program by Big Bird.\n\n";

mean = (12+5+10)/3;

cout << mean;

return 0;

} //end main

Output:

[image: image19.png]F:ACPLUSAMEAN1.EXE)
hnetic Program by

Stored Data

Variables must be declared as a certain type, e.g., int, float, char, … This declaration may appear anywhere in the program before the variable is first used. The declaration creates the object.

int n;

The name of the object is n, the type [or class] is int. The object does not yet have a value.

n = 66; //now it has a value

or

int n=66; //declaration can be anywhere in the program

Names (identifiers) - Names should be meaningful to help document your program.

· may use letters, digits, underscores. No spaces.
· may not begin with a digit
· may be any length but better if less than 31 characters long.
· C++ is case sensitive; upper and lower case letters are different.

· no reserved words (e.g., const, void, int, …).
Avoid using names beginning with _ (underscore) or __ (double underscore). The C++ compiler uses names like that for special purposes.

· Try a different set of three numbers. Edit the program and run it again.

//mean3.cpp

// This program calculates the mean of three numbers.

// Big Bird tries new data.

#include <iostream>

using namespace std;

int main()

{

float mean;

cout << "Third Arithmetic Program by Big Bird.\n\n";

mean = (11+5+10)/3;

cout << mean;

return 0;

} //end main

[image: image20.png]W (Inactive F:\CPLUS\GPA EXE) [_[CIx]
Tell ne your grades and 1 will calculate your GPA. fj

How many units of A?
How many units of B?
How many units of C?
How many units of D?
How many units of F?

"

Your grade point average is 3.33333

o

OOPS!! What happened? [syntax (compile-time) error vs. logic (run-time) error]

//mean4.cpp

// This program calculates the mean of three numbers.

// Big Bird learns that expressions have a type.

#include <iostream>

using namespace std;

int main()

{

float mean;

cout << "Fourth Arithmetic Program by Big Bird.\n\n";

mean = (11+5+10)/3.0;

cout << mean;

return 0;

} //end main

Output [that’s better!]:

[image: image21.png]I (Inactive F:\CPLUSAMEANS.EXE) [-1o[x]

Big Bird learns about input data. fj
Enter first number: 12
Enter second number: 10

Enter third number: 5
The average of 10 and 12 and 5 is equal to = 9

Th-th-that's all folks?

o

What if we want to be able to calculate the mean of ANY three numbers?

//mean5.cpp

// This program calculates the mean of ANY three numbers.

#include <iostream>

using namespace std;

int main()

{

float num1, num2, num3, mean;

cout << "Big Bird learns about input data.\n";

cout << endl;

cout << "Enter first number: "; //prompt user for input

cin >> num1;

cout << "Enter second number: ";

cin >> num2;

cout << "Enter third number: ";

cin >> num3;

mean = (num1+num2+num3)/3.0;

cout << "The average of " << num1 << " and " << num2 <<

" and " << num3;

cout << " is equal to = " << mean << endl <<endl;

cout << "Th-th-that's all folks!\n";

return 0;

} //end main

Interactive screen session:

[image: image22.png]

Stream Input/Output

cout <<

//means “cout gets a value”

cin >> var
//means “cin gives a value to var”

//note: on execution press enter key to end input

<< is the stream insertion operator

>> is the stream extraction operator
The stream insertion operator “knows” how to output different types of data.

Cascading stream insertion operators - using multiple stream insertion operators in a single statement. Also known as concatenating or chaining.

e.g.,

cout << “The answer is: ” << result << ".\n";

Data Types - CLASSES
-- How a particular set of values is represented in memory, and

-- what operations can be performed on those values.

Predefined data types - part of the C++ language definition.

float, double - real. int - integer. char - single character.

Type char literals use single quotes: ‘A’ ‘*’ ‘2’

A string literal is a sequence of characters in double quotes:

“ABCDE” “127” (not the same as int 127)

“true” (not the same as bool true)

System-defined types - part of the C++ libraries

Standard I/O stream objects cin, cout defined in iostream library

e.g., string, ofstream - ofstream cprint (“file.txt”);

User-defined types - e.g., enum type, classes

Declarations

Constant declarations:

Used to associate meaningful names with constants -- items that will never change throughout execution of the program.

const float PI=3.14159;

//Note: one convention is to use all

//uppercase letters for constant identifiers

const float METERS_TO_YARDS=1.196;

Variable declarations:

Used to associate identifiers of a given type with memory cells used to store values of this type. - the values stored in the data cells are changeable.

char letter;

char letter1, letter2;

float x, y;

Object declarations:

Like variables, these are used to associate identifiers of a given type with memory cells used to store values of this type. - the values stored in the data cells are changeable. We use some system-defined classes in the standard C++ class libraries. A class is equivalent to a type; variables can store data values and are called objects.

ofstream cprn (“printfile.txt”);
//see p. 138 Staugaard
[image: image23.png]-437.298

[image: image24.png]I (Inactive F:\CPLUS\OVERFLOW EXE) [_ o] x]

32766
32767
-32768
-32767

[image: image25.png]

[image: image26.png][(Inactive D:\BCS\BIN\EX 313 EXE) [_[oIx]

E

Number of bytes use
char
short:
int
1ong
unsigned char
unsigned shor
unsigned int
unsigned long
signed char:

dmEaEeNaEeN S

long double:

The variable’s type (or, class) tells the compiler how the variable’s values are to be stored and how they may be used. On some computers (DOS PCs) the int set of values consists of all integers in the range –32,768 to 32,767.

There are nine int types:

short int
unsigned short int
char

int
unsigned int
signed char

long int
unsigned long int
unsigned char

The difference among these 9 types is the range of values they allow. These ranges may depend somewhat on the computer system.

short

is the same as
short int
char type uses 8 bits to store a single character. Is actually numeric in that it stores the ASCII code value of the character. Character input is automatically converted; on output the value is converted to char first.

char

signed char
unsigned char

Use unsigned char for a very short bit-string. Depending on the system, char will be equivalent to either signed char or unsigned char.

examples using char data type:

char c = 54;

char d = 2 * c – 7;

c++ ;

…

…

char c = 64;

cout << c << “ “; //prints ‘@’

c = c + 1;

//increments c to 65

cout << c << “ “; //prints ‘A’

c = c + 1;

//increments c to 66

cout << c << “ “; //prints ‘B’

c = c + 1;

//increments c to 67

cout << c << “ “; //prints ‘C’

…

The int(char) function is a “cast” – In this next example, it converts c from char type to int type:
#include <iostream>

using namespace std;

void main ()

{

char c = 64;

 cout << c << " is the same as " << int(c) << endl;

c = c+ 1;

 cout << c << " is the same as " << int(c) << endl;

c = c+ 1;

 cout << c << " is the same as " << int(c) << endl;

c = c+ 1;

 cout << c << " is the same as " << int(c) << endl;

 return;

}

[image: image27.png][(Inactive D:\BCS\BINATEST3.EXE) [_[oIx]
@ is the same as 64)
A is the same as 65
B is the same as 66
€ is the same as 67

Typecasting – we can also cast, e.g., float(c); int(fl); …

Real number types.

float

double

long double

On most systems, double uses twice as many bytes as float. In general, float uses 4 bytes, double uses 8 bytes, and long double uses 8, 10, 12, or 16 bytes.

//ex313.cpp

// Prints the amount of space each of the 12 fundamental types uses.

// From Hubbard Ex. 3.13, p. 66

#include <iostream>

using namespace std;

void main()

{

cout << "Number of bytes used:\n ";

 cout << "\t char: " << sizeof(char) << endl;

 cout << "\t short: " << sizeof(short) << endl;

 cout << "\t int: " << sizeof(int) << endl;

 cout << "\t long: " << sizeof(long) << endl;

 cout << "\t unsigned char: " << sizeof(unsigned char) << endl;

 cout << "\t unsigned short: " << sizeof(unsigned short) << endl;

 cout << "\t unsigned int: " << sizeof(unsigned int) << endl;

 cout << "\t unsigned long: " << sizeof(unsigned long) << endl;

 cout << "\t signed char: " << sizeof(signed char) << endl;

 cout << "\t float: " << sizeof(float) << endl;

 cout << "\t double: " << sizeof(double) << endl;

 cout << "\t long double: " << sizeof(long double) << endl;

return;

}

[image: image28.wmf]f

de

c

b

-

+

Example:

//ex114.cpp

// Prints the constants stored in limits.h

// From Hubbard Ex. 1.14,p.13

#include <iostream>

#include <limits>

using namespace std;

void main(){

cout << "minimum char = " << CHAR_MIN << endl;

cout << "maximum char = " << CHAR_MAX << endl;

cout << "minimum short = " << SHRT_MIN << endl;

cout << "maximum short = " << SHRT_MAX << endl;

cout << "minimum int = " << INT_MIN << endl;

cout << "maximum int = " << INT_MAX << endl;

cout << "maximum long = " << LONG_MAX << endl;

cout << "maximum unsigned short = " << USHRT_MAX << endl;

cout << "maximum unsigned = " << UINT_MAX << endl;

cout << "maximum unsigned long = " << ULONG_MAX << endl;

cout << endl << endl << endl;

return;

}
The output:

[image: image5.png]int = -2147483648
int = 2147483647
long = 2147483647
unsigned short = 65535

unsigned = 4294967295
unsigned long - 4294967295

ress any key to continue

More on run-time errors: Overflow

//overflow.cpp

// Hubbard ex. 1.21. Tests for overflow.

#include <iostream>

#include <limits>

using namespace std;

void main()

{

 short n= SHRT_MAX - 1;

 cout << n++ << endl;

 cout << n++ << endl;

 cout << n++ << endl;

 cout << n++ << endl;

 return; //successful termination

} //end main

Using Strings

The string type is part of the ANSI standard C++. Must include the string header file, not string.h:

#include <string>

and may also require:

using namespace std;

variable declaration:

string name = “Jack”; // or

string name; // initialized as " "

use:

name = “Jill”;

entering from keyboard:

cout << “Please enter your name: “;

cin >> name;

Since the space character ends an input stream, this will only enter a first name. For example, if I type Linda Weiser Friedman, the variable name will only contain “Linda” .

One way to get around this problem, the function getline (cin, name, ‘#’) will read into the variable name all characters (including whitespace) until the # delimiter, and save it in name without saving the delimiter. You may use any delimiter character you wish. See the discussion in the Staugaard text of the getline function, beginning on page 130.

Another good solution is to simply create two variables, firstName and lastName.

See pp. 128 – 135.

 Arithmetic Operators

· Addition +

· Subtraction (
· Multiplication *

· Division / (is integer division if operators are integers)

· Modulus % (remainder)

e.g., if the value of

is to be assigned to variable x, it is coded:

x = b + c - d * e / f;

Parentheses may be used. These are evaluated first. e.g.,

x = (b + c - d)* e / f; is evaluated as:

order of operations

()

* / %

+ -

left to right

ex. z= p*r%q+w/x-y; Order of operations?

	Z
	=
	P
	*
	R
	%
	Q
	+
	W
	/
	X
	-
	Y
	;

	
	6
	
	1
	
	2
	
	4
	
	3
	
	5
	
	

Exercise: For each of the following arithmetic expressions, construct the equivalent C++ expression.

[image: image6.wmf]d

c

b

a

-

+

[image: image7.wmf]2

c

b

a

+

[image: image8.wmf]c

b

a

d

4

+

-

[image: image9.wmf]a

ac

b

2

4

2

-

[image: image10.wmf]a

d

c

b

a

-

+

A Simple Program Using Stored Data and Arithmetic

// from Schaum's ex 1.26 p. 27

// Prints the sum, difference, etc. of given integers.

#include <iostream>

using namespace std;

int main(){

int m = 6, n = 7;

cout << "The integers are " << m << " and " << n << endl;

cout << "Their sum is " << (m+n) << endl;

cout << "Their difference is " << (m-n) << endl;

cout << "Their product is " << (m*n) << endl;

cout << "Their quotient is " << (m/n) << endl;

cout << "Their remainder is " << (m%n) << endl << endl << endl;

return 0;

}

Trace this program.

[image: image11.png]he_integers are 6 and 7

Their
Their
Their
Their
Their

Press

sun is 13
difference is —1
product is 42
quotient is @
remainder is 6

any key to continue_

Assignment

c = c + 3; same as c +=3;

The += operation adds the value of the expression of the right to the value of the variable on the left and stores the result in the variable on the left.

In general, <var> = <var> op <exp>; can be written as: <var> op = <exp>;

Examples:

c (= 4; same as c = c (4;

c *= 5; same as c = c *5;

c /= 6; same as c = c /6;

Can we reverse the order of the double operator? e.g.: c =(4;

No. This simply is the same as the assignment c = (4;

Unary Increment/Decrement Operators

a++; same as a = a + 1; same as ++a;

a((; same as a = a (1; same as ((a;

a++
postincrement

++a
preincrement

a((
postdecrement

((a
predecrement

Example:

int c;

c = 5;

cout << c << endl;

//prints 5

cout << c++ << endl;

//prints 5 (then increments)

cout << c << endl << endl;
//prints 6

c = 5;

cout << c << endl;

//prints 5

cout << ++c << endl;

//prints 6 (after incrementing)

cout << c << endl;

//prints 6

Grade Point Average

//gpa.cpp

// This program will calculate your grade point average.

#include <iostream>

using namespace std;

int main()

{

int A, B, C, D, F;

float sum, GPA;

cout << "Tell me your grades and I will calculate your GPA.";

cout << endl << endl;

cout << "How many units of A? ";

cin >> A;

cout << "How many units of B? ";

cin >> B;

cout << "How many units of C? ";

cin >> C;

cout << "How many units of D? ";

cin >> D;

cout << "How many units of F? ";

cin >> F;

sum = A + B + C + D + F;

GPA = (4*A + 3*B + 2*C + D)/sum;

cout << endl;

cout << "Your grade point average is " << GPA <<endl;

return 0;

} //end main

A Polynomial Program

//polynom.cpp

// Polynomial Program

#include <iostream>

using namespace std;

int main()

{

float A, B, C, X;

cout << "A=? ";

cin >> A;

cout << "B=? ";

cin >> B;

cout << "C=? ";

cin >> C;

X = 5*A*A*B*C*C*C + 8*A*B*B*C*C - 4*B*B*B*C;

cout << endl;

cout << "X = " << X <<endl;

return 0;

} //end main
Run #1:

Run #2:

C++ has no arithmetic operator for exponentiation. There is, however, a power function that can do it for us. Use the math.h header file.

//polypow.cpp

// Polynomial Program

// Using the pow() power function

#include <iostream>

#include <math>

using namespace std;

int main()

{

 float A, B, C, X;

cout << "A=? ";

 cin >> A;

 cout << "B=? ";

 cin >> B;

 cout << "C=? ";

 cin >> C;

 X = 5*pow(A,2)*B*pow(C,3) + 8*A*pow(B,2)*pow(C,2) - 4*pow(B,3)*C;

 cout << endl;

 cout << "X = " << X <<endl;

 return 0;

} //end main

Some Built-in Functions in the Math Library - Use the <math.h> header file

Returned value

abs(a)
absolute value of a
same data type as argument

pow(a1,a2)
a1 raised to the power of a2
data type of argument a1

sqrt(a)
square root of a
same data type as argument

sin(a)
sine of a (a in radians)
double

cos(a)
cosine
double

tan(a)
tangent
double

log(a)
natural logarithm of a
double

log10(a)
base 10 log of a
double

exp(a)
e raised to the power of a
double

[see p. 179 in the Staugaard text for more]

To Output a Report to a Text File

The GPA program:

//gpa.cpp

// This program will calculate the user's grade point average

#include <iostream>

#include <string>

#include <fstream>

using namespace std;

int main(){

int a, b, c, d, f;

float sum, gpa;

//File report.txt contains the report

ofstream cprn ("report.txt");

string name;

cprn << "School of Hard Knocks\n"

<< "Grade Point Average Program\n\n";

cout << "What is your full name? (end with a #) ";

getline (cin, name, '#');

cout << "\nTell me your grades and I will calculate your GPA.\n";

cout << "How many credits of A? ";

cin >> a;

cout << "How many credits of B? ";

cin >> b;

cout << "How many credits of C? ";

cin >> c;

cout << "How many credits of D? ";

cin >> d;

cout << "How many credits of F? ";

cin >> f;

cprn << "\n\n\nResults\n\n";

cprn << name << ", these are the grades you entered: \n";

cprn << "\nGrade \t #credits\n";

cprn << "\nA \t " << a;

cprn << "\nB \t " << b;

cprn << "\nC \t " << c;

cprn << "\nD \t " << d;

cprn << "\nF \t " << f;

sum = a + b + c + d + f;

gpa = a*4.0 + b*3 + c*2 + d;

gpa = gpa/sum;

cprn << "\n\nYour grade point average is " << gpa << endl;

cout << "\n\nSee report in report.txt\n\n";

return 0;

}

The interactive data entry screen:

[image: image12.png]hat is your full name? (end with a #) Linda U. Friednantt

€11 ne your grades and I will calculate your GPA.
ou many credits of A?

ou many credits of B?
ou many credits of C?
ou many credits of D7
o many credits of F?

wowe.
X

ce report in report.txt

ress any key to continue

This is the textfile report.txt:

School of Hard Knocks

Grade Point Average Program

Results

Linda W. Friedman, these are the grades you entered:

Grade
 #credits

A
 24

B
 6

C
 3

D
 0

F
 3

Your grade point average is 3.33333

Problem: Where is report.txt?

More on Creating Projects in MS Visual C++

To create a new project as a subproject, click File (New and then click the Projects tab.

Enter a Project Name and Location for the new subproject. Click on Add to Current Workspace, click the Dependency of box, and then select the name of the project you want the new project to be a subproject of. Select the appropriate project type (Win32 console application). Click OK, etc.

e.g.,

[image: image13.png]T Workspace oles' 6 proect(]
14 fes
meani fles
£ mean? fies
=423 Source Files

Header Files
Resaurce Fiks

meand fes
meand fies
mean files

/7 This progran calculates the mean of thres nunbers
/7 Big Bird learns about variables

cout << Second Arithmetic Program by Big Bird \mwn':
mean = (12+5+10)/3.
cout << mean:
cout << "\an':
return 0;
} //end main

This is a good way of managing a lot of small projects (like the ones we do in the first part of this semester), but will be especially useful when we learn to write several larger programs that use the same files.
compiler

or interpreter

source program

object program

class

object

� EMBED Equation.3 ���

� EMBED Equation.3 ���

n_intro.doc

4 of 34

_1073815844.unknown

_1114767090.unknown

_1114767198.unknown

_1073815531.unknown

_1073815806.unknown

_996474860.unknown

_996475085.unknown

