

Free Study Notes on Ruby
By Satish Talim

http://www.linkedin.com/in/satishtalim�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 1

Free Study Notes on Ruby
Copyright © 2006 - 2007
All rights reserved.

Author: Satish Talim

You may freely copy and distribute this eBook as long as you do not
modify the text or remove this copyright notice. You must not make any
charge for this eBook.

Notice: These notes are to be used for reference purposes only. The
author will not accept any liability for any damage caused by the use of
this material.

Revised Edition – 24th June 2007
First Edition – June 2006

http://www.linkedin.com/in/satishtalim�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 2

About
Satish Talim is a senior software consultant based in Pune, India with over 29+ years of
I.T. experience. His experience lies in developing and executing business for high
technology and manufacturing industry customers. Personally his strengths lie in
Business Development and Business Networking apart from new product and solution
ideas. Good experience of organization development. Excellent cross disciplinary
background in engineering, computer science and management.

He has -

• helped start subsidiaries for many US based software companies like Infonox
(based in San Jose, CA), Maybole Technologies Pvt. Ltd. (Servient Inc. based in
Houston, Texas) in Pune, India.

• been associated with Java / J2EE since 1995 and currently involved with Ruby
and Rails.

• also started and manages two very active Java and Ruby User Groups in Pune,
India - PuneJava and PuneRuby

• A Ruby Mentor on rubyforge.org, helping people get started with Ruby.

http://www.linkedin.com/in/satishtalim�
http://www.infonox.com/default.shtml�
http://servient.com/�
http://tech.groups.yahoo.com/group/pune-java/�
http://tech.groups.yahoo.com/group/puneruby/�
http://rubymentor.rubyforge.org/wiki/wiki.pl?AvailablePureRubyMentors�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 3

Table of Contents

Learn Ruby with me.. 9

Preamble ... 9
Assumptions.. 10
Using this eBook... 10
What is Ruby?... 13
How Ruby can help you, in more detail ... 14
Downloading Ruby and an Editor... 14
Ruby Programming Environment ... 15

Our First Ruby program.. 18
Some Features of Ruby... 23
Numbers in Ruby .. 25

Operators and Precedence... 28
Fun with Strings.. 30
Variables and Assignment .. 32
Scope... 36

Global scope and global variables .. 36
Built-in global variables.. 36

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 4

Local scope ... 37
Getting input ... 38
Names in Ruby.. 40
More on methods .. 44
Writing Own Methods in Ruby... 45

Bang (!) methods... 51
Ruby Method Missing .. 54
More on the String class ... 56

Listing all methods of a class or object... 58
Comparing two strings for equality .. 59

Simple Constructs in Ruby ... 62
Case Expressions .. 65
Ruby nil is an Object... 66

Arrays in Ruby.. 67
Ranges... 73
Blocks and Procs... 75
Random Numbers ... 82
Reading from / Writing to text files.. 85

Traversing Directory Trees ... 86
Random Access... 87

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 5

Writing our own Class .. 90
Literal Constructors .. 96
Garbage Collection ... 97
Class Methods... 98

Including Other Files .. 101
Open classes.. 105
Inheritance... 108
Duck Typing ... 114
Overloading Methods.. 119
Overriding Methods .. 121

Usage of super... 122
Redefining methods .. 124

Symbols... 126
Hashes ... 130
Exploring Time class .. 133
Exceptions... 135

Raising an Exception .. 135
Handling an Exception.. 139

Access Control .. 145
Top-level methods .. 149

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 6

Accessor methods ... 151
Syntactic sugar .. 155
Mutable and Immutable Objects... 160

Freezing Objects ... 160
Object Serialization... 163
Constants... 165
Modules/Mixins .. 170
Self - The current/default object ... 176
Regular Expressions.. 183

Literal characters... 185
The wildcard character . (dot)... 186
Character classes... 186
Special escape sequences for common character classes 188

Unit Testing .. 193
Usage of TCPServer and TCPSocket Classes for Date and Time 209

Basic Networking.. 209
Port.. 210
Internet Addresses... 211
Sockets .. 211

Socket classes.. 212

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 7

The Date Time Server and Client ... 213
Summary ... 216

A Small Project using SMTP class ... 217
Web Services and Distributed Programming.. 220

Writing a SOAP Client ... 221
Writing a PuneRuby SOAP server and client ... 224

Ruby/Tk .. 227
Simple Tk applications ... 228

Using Ruby/MySQL ... 235
Ruby Tools.. 238

irb.. 238
The debugger .. 238
Profiling ... 239
ri and RDoc .. 240
ERb .. 241

Java and Ruby... 243
Similarities .. 243
Differences.. 243

JRuby Tutorial .. 246
What is JRuby? ... 246

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 8

Download and Setup ... 247
Where to use JRuby? .. 248
Resources: ... 250
Useful Articles .. 250

Ruby Quirks .. 251
Appendix A... 260

Ruby Resources .. 260
Books/eBooks/Magazines... 260
Useful Links.. 261
Blogs ... 263
Forums/User Groups... 264
Companies in India working in Ruby/Rails.. 264

Appendix B ... 266
Solutions to Assignments.. 266

Appendix C ... 275

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 9

Learn Ruby with me

Preamble

My interest in Ruby was aroused after I read an article Ruby the Rival in
November 2005. I decided to learn Ruby myself and started making my
study notes. What's presented here is a result of that.

I have made extensive references to the blogs and articles of various
Ruby Gurus and to the Ruby books from Manning, O'Reilly and Pragmatic
Programmers; my thanks to all of them.

I'd like to thank everyone on the ruby-talk mailing list for their thoughts
and encouragement; all of my wonderful PuneRuby RUG members for
their help in making these study notes far better than I could have done
alone.

http://www.onjava.com/pub/a/onjava/2005/11/16/ruby-the-rival.html�
http://www.manning.com/black/�
http://www.oreilly.com/pub/topic/ruby�
http://www.pragmaticprogrammer.com/titles/ruby/index.html�
http://www.pragmaticprogrammer.com/titles/ruby/index.html�
http://www.puneruby.com/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 10

Assumptions

1. I am assuming that you know some programming language.
2. Ruby covered here will give you the grounding you need to

understand Rails code.
3. The program examples are more tuned towards application- rather

than systems-programming.

Using this eBook

This eBook is a step-by-step tutorial to programming in Ruby and you can
follow it chapter by chapter, reading the text and running the sample
programs. On the other hand, if you prefer to try out some of the
programs in whichever order that takes your fancy; then refer back to
the text for explanations. There are no large applications in this book –
just small, self-contained sample programs.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 11

Any source code in this eBook, is written like this:

def hello
 puts ‘hello’
end

Explanatory notes (generally provides some hints or gives a more in-
depth explanation of some point mentioned in the text) are shown in a
shaded box like this:

This is an explanatory note. You can skip it if you like – but if you do so,
you may miss something of interest…!

When there is a sample program to accompany the code, the program
name is shown in a little box like this:

The blue box is for some notes related to Rails.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 12

hello.rb

You can download the source code of all the programs shown in the
eBook from here.

If you notice any errors or typos, or have any comments or suggestions or
good exercises I could include, please email me.

http://rubylearning.com/download/downloads.html�
mailto:satish.talim@gmail.com�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 13

What is Ruby?

Ruby is a cross-platform interpreted and an object-oriented language.
Ruby has been designed on the Principle of Least Surprise - Matz says "I
wanted to minimize my frustration during programming, so I want to
minimize my effort in programming. That was my primary goal in
designing Ruby. I want to have fun in programming myself. After
releasing Ruby and many people around the world got to know Ruby,
they said they feel the way I feel. They came up with the phrase the
principle of least surprise."

The year 2004 saw a massive surge of interest in Ruby, with the
introduction of the Ruby on Rails Web application framework by David
Heinemeier Hansson.

Yukihiro Matsumoto, commonly known as ‘Matz’ created the Ruby
language in 1993.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 14

How Ruby can help you, in more detail

In David Black’s book ‘Ruby for Rails’, he mentions that a solid grounding
in Ruby can serve you, as a Rails developer, in four ways:

• By helping you know what the code in your application (including
Rails boilerplate code) is doing

• By helping you do more in, and with, your Rails applications than
you can if you limit yourself to the readily available Rails idioms
and techniques (as powerful as those are)

• By allowing you to familiarize yourself with the Rails source code,
which in turn enables you to participate in discussions about Rails
and perhaps even submit bug reports and code patches

• By giving you a powerful tool for administrative and organization
tasks (for example, legacy code conversion) connected with your
application

Downloading Ruby and an Editor

The simplest way to get Ruby installed on a PC is by using the Ruby
Installer for Windows. Click on ruby185-22.exe. After you have

http://rubyforge.org/frs/?group_id=167�
http://rubyforge.org/frs/?group_id=167�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 15

downloaded this, double-click this file and install Ruby on your PC,
accepting all the defaults. After you have installed your Ruby software,
the System Environment Variable path is already set to point to the bin
folder of Ruby.

The installed Ruby includes the First Edition of Programming Ruby book
and the SciTE code editor.

Do note that these instructions assume that you are going to use a
Windows platform. For installation on other platforms, you can refer
here, here and here.

Ruby Programming Environment

Ruby releases with even subversion numbers – 1.6, 1.8, and so on are
stable, public releases.

http://poignantguide.net/ruby/expansion-pak-1.html�
http://pine.fm/LearnToProgram/?Chapter=00�
http://www.puneruby.com/wiki/index.php/RubyQuickStart�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 16

Let’s assume that you have installed Ruby in the folder c:/ruby, then the
installation creates a number of sub-folders. The folders:
c:/ruby/bin is where the Ruby executables (including ruby and irb) have
been installed.
c:/ruby/lib/ruby/1.8 you’ll find program files written in Ruby. These files
provide standard library facilities, which you can require from your own
programs if you need the functionality they provide.
c:/ruby/lib/ruby/1.8/i386-mswin32 contains architecture-specific extensions
and libraries. The files in this directory generally have names ending in
.so or .dll (depending on your platform). These files are C-language
extensions to Ruby; or, more precisely, they are the binary, runtime-
loadable files generated from Ruby’s C-language extension code,
compiled into binary form as part of the Ruby installation process.
c:/ruby/lib/ruby/site_ruby folder is where you and/or your system
administrator store third-party extensions and libraries. Some of these
may be code you yourself write; others are tools you download from
other people’s sites and archives of Ruby libraries.
c:/ruby/lib/ruby/gems is the Ruby-Gems packaging system. Inside the gems
directory are one or more subdirectories; and if you explore these, you’ll

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 17

find (possibly among other things) the source code for the Rails
framework.
c:/ruby/src is where you will find the Ruby source code.
c:/ruby/samples/RubySrc-1.8.4/sample is where you will find some sample
Ruby programs.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 18

Our First Ruby program

Let's start our Ruby editor SciTE. To do so, on your windows desktop
click on start/Programs/Ruby-185-22/SciTE. The editor window opens.
Press the F8 key to open an output window. Now, click on Options/Open
Global Options File and search for 'tabsize'. Edit and make tabsize=2 and
indent.size=2. I like my SciTE window to be maximised at start and for
that set the position.width=-1 and position.height=-1 Press Ctrl+S and
the Ctrl+W. Next, press Ctrl+Shift+I - this opens the Indentation Settings
window. Here, ensure that the Tab Size and Indent Size is set to 2 and
that the Use tabs box is not checked. Click OK. We are now ready to
write our first Ruby program.

Create a folder named say rubyprograms on your C:\ We shall store all
our programs in this folder. Our first program will display the string
‘Hello’ on the command window and the name of the program will be
p001hello.rb

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 19

In the left window of SciTE type: puts 'Hello' and then click File/Save
As... Give the name p001hello.rb and store it in your rubyprograms
folder. Press F5 to run your program. You should see Hello in the output
window on the right.

Note: In Ruby, program execution proceeds in general from top to
bottom. puts (s in puts stands for string; puts really means put string)
simply writes onto the screen whatever comes after it, but then it also
automatically goes to the next line.

All Ruby source files have the .rb file extension. The Ruby coding
convention states that file/directory name is lower case of
class/module name with .rb extension. For example, Foo class has
name foo.rb

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 20

The above can be verified by the following program (do not worry if you
do not understand the program, right now).

puts 'I am an object of class = ' + self.class.to_s
puts 'I am an object = ' + self.to_s

In Ruby, everything from an integer to a string is considered to be an
object (more on this later). And each object has built in 'methods'
(Ruby term for functions) which can be used to do various useful
things. To use a method, you need to put a dot after the object, and
then append the method name.

Some methods such as puts and gets are available everywhere and
don't need to be associated with a specific object. Technically
speaking, these methods are provided by Ruby's Kernel module (more
on this later) and they are included in all Ruby objects (the Kernel
module is included by class (more on this later) Object, so its methods
are available in every Ruby object). When you run a Ruby application,
an object called main of class Object is automatically created. This
object provides access to the Kernel methods.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 21

print 'The object methods are = '
puts self.private_methods.sort

Observe

a. Java and C programmers - no need for a main method/function
b. String literals are sequences of characters between single or double

quotation marks. I am using single quotes around Hello. ' is more
efficient than “ (more on this later)

c. Ruby is an interpreted language, so you don't have to recompile to
execute the program written in Ruby

d. Ruby releases with even subversion numbers - 1.6, 1.8, and so on -
are stable, public releases

e. The Ruby coding convention states that file/directory name is lower
case of class/module name with .rb extension. For example, Foo
class has name foo.rb

Some questions asked by you

What do you mean by "Ruby is a Dynamic programming language".

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 22

In computer science, a dynamic programming language is a kind of
programming language in which programs can change their structure as
they run: functions may be introduced or removed, new classes of
objects may be created, new modules may appear. Refer here for more
details.

http://en.wikipedia.org/wiki/Dynamic_programming_language�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 23

Some Features of Ruby

Now, let us explore some of the features of Ruby.

1. Free format
2. Case sensitive
3. Comments - Anything following an unquoted #, to the end of the line

on which it appears, is ignored by the interpreter. Also, to facilitate
large comment blocks, the ruby interpreter also ignores anything
between a line starting with =begin and another line starting with
=end

4. Statement delimiters - Multiple statements on one line must be
separated by semicolons, but they are not required at the end of a
line; a linefeed is treated like a semicolon. If a line ends with a
backslash (\), the linefeed following it is ignored; this allows you to
have a single logical line that spans several lines

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 24

Documentation - The complete documentation for Ruby is available
online here. The Ruby Cheat Sheet is here.

http://www.ruby-doc.org/�
http://ruby.cenophobie.com/RubyCheat.pdf�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 25

Numbers in Ruby

Let's play with Numbers. In Ruby, numbers without decimal points are
called integers, and numbers with decimal points are usually called
floating-point numbers or, more simply, floats (you must place at least
one digit before the decimal point). Here's the program
p002rubynumbers.rb

=begin
 Ruby Numbers
 Usual operators:
 + addition
 - subtraction
 * multiplication
 / division
=end

puts 1 + 2
puts 2 * 3
Integer division
When you do arithmetic with integers, you'll get integer answers
puts 3 / 2
puts 10 - 11

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 26

puts 1.5 / 2.6

The class hierarchy is as shown in this figure:

Ruby integers are objects of class Fixnum or Bignum. The floating-point
numbers are objects of class Float, corresponding to the native
architecture’s double data type.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 27

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 28

The above figure courtesy Donald Craig.

Operators and Precedence
Let us look at Ruby’s operators. They are arranged here in order from
highest to lowest precedence.

:: Scope
[] Indexing
** Exponentiation
+ - ! ~ Unary pos/neg, not,...

* / % Multiplication,
Division...

+ - Addition, subtraction...
<< >> Logical shifts,...
& Bitwise and
| ^ Bitwise or, xor
> >= < <= Comparison

http://www.cs.mun.ca/~donald/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 29

== === <=> != =~ !~ Equality, inequality...
&& Boolean and
|| Boolean or
.. ... Range operators
= (also +=, -=,...) Assignment
?: Ternary decision
not Boolean negation
and, or Boolean and, or

Assignment: Write a Ruby program that tells you how many minutes are
there in a year (do not bother right now about leap years etc.).

Suggestions:

1. Read online Chris Pine’s Learn to Program book
2. Read Matz’s The Philosophy of Ruby
3. Hear Geoff Grosenbach’s Ruby Basics

http://media.libsyn.com/media/carsonsystems/Vitamin_Training_-_Geoff_Grosenbach_01.mp3�
http://www.artima.com/intv/ruby.html�
http://media.libsyn.com/media/carsonsystems/Vitamin_Training_-_Geoff_Grosenbach_01.mp3�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 30

Fun with Strings

String literals are sequences of characters between single or double
quotation marks.

'' (ie. two single quotes) does not have anything in it at all; we call that
an empty string.

Here's a program p003rubystrings.rb that explores strings to some
extent.

=begin
 Ruby Strings
=end
puts "Hello World"
Can use " or ' for Strings, but ' is more efficient
puts 'Hello World'
String concatenation with +
puts 'I like' + ' Ruby'
Escape sequence with \
puts 'It\'s my Ruby'
displays the string three times

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 31

puts 'Hello' * 3

It’s worth knowing that a special kind of string exists that uses the back-
tick (`) as a beginning and ending delimiter. For example:

`dir`

The command output string is sent to the operating system as a
command to be executed, whereupon the output of the command is
substituted back into the string.

In Ruby, strings are mutable. They can expand as needed, without
using much time and memory. Ruby stores a string as a sequence of
bytes.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 32

Variables and Assignment

To store a number or a string in your computer’s memory for use later in
your program, you need to give the number or string a name.
Programmers often refer to this process as assignment and they call the
names variables. A variable springs into existence as soon as the
interpreter sees an assignment to that variable.

s = ‘Hello World!’
x = 10

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 33

The p004stringusage.rb program shows us some more usage with strings.

stringusage.rb
Defining a constant
PI = 3.1416

Local variables have the quality of barewords; they must start with
either a lowercase letter or the underscore character (_), and they
must consist entirely of letters, numbers, and underscores. When
Ruby sees a plain word sitting there, it interprets it as one of three
things: a local variable, a method call, or a keyword.
Keywords (around 38) are special reserved words that you can’t use
as variable names. def is a keyword; the only thing you can use it for
is to start a method definition. if is also a keyword; lots of Ruby code
involves conditional clauses that start with if, so it would be too
confusing to also allow the use of if as a variable name.
Method calls can be barewords, such as start_here. puts is a method
call; so is print. Here’s how Ruby decides what it’s seeing when it
encounters a bareword:

• If there’s an equal sign (=) to the right of the bareword, it’s a
local variable undergoing an assignment.

• If the bareword is a keyword, it’s a keyword (Ruby has an
internal list of these and recognizes them).

• Otherwise, the bareword is assumed to be a method call.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 34

puts PI
Defining a local variable
my_string = 'I love my city, Pune'
puts my_string
=begin
 The Ruby standard is to use two spaces for indentation
 Conversions
 .to_i, .to_f, .to_s
=end
var1 = 5;
var2 = '2'
Ruby doesn’t automatically convert from strings to integers.
puts var1 + var2.to_i
<< append
a = 'hello'
a<<'world.
I love this world...'
puts a

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 35

In the example:
x = "100".to_i
the dot means that the message “to_i” is being sent to the string
“100”, or that the method to_i is being called on the string “100”.
The string “100” is called the receiver of the message. Thus, when
you see a dot in what would otherwise be an inexplicable position,
you should interpret it as a message (on the right) being sent to an
object (on the left).

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 36

Scope
Scope refers to the reach or visibility of variables. Different types of
variables have different scoping rules. We’ll be talking chiefly about two
types: global and local variables.

Global scope and global variables

We’re starting with the scope that’s used least often, but which you
need to be aware of: global scope, meaning scope that covers the entire
program. Global scope is enjoyed by global variables. Global variables
are distinguished by starting with a dollar-sign ($) character. They are
available everywhere in your program. Global variables never go out of
scope. However, global variables are used very little by experienced
programmers (except perhaps a few of the built-in ones).

Built-in global variables

The Ruby interpreter starts up with a fairly large number of global
variables already initialized. These variables store information that’s of

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 37

potential use anywhere and everywhere in your program. For example,
the global variable $0 contains the name of the file Ruby is executing.
The global $: (dollar sign followed by a colon) contains the directories
that make up the path Ruby searches when you load an external file. $$
contains the process id of the Ruby process. And there are more.

Local scope

You can tell by looking at a Ruby program where the local scopes begin
and end, based on a few rules:

• The top level (outside of all definition blocks) has its own local
scope.

• Every class or module definition block (class, module) has its own
local scope, even nested class/module definition blocks.

• Every method definition (def) has its own local scope.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 38

Getting input

So far we had seen a method like puts that writes to the screen. How
does one accept user input? For this gets (get a string) and chomp are
useful. The example p005methods.rb below illustrates the same.

gets and chomp
puts "In which city do you stay?"
STDOUT.flush
city = gets.chomp
puts "The city is " + city

In the above example when you run it in SciTE, click on the output
window and then type the name of your city.

STDOUT is a global constant which is the actual standard output stream
for the program. flush flushes any buffered data within io to the
underlying operating system.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 39

chomp is a string method and gets retrieves only strings from your
keyboard. You must have realised that gets returns a string and a '\n'
character, while chomp removes this '\n'.

Assignment:
Write a Ruby program (p006ftoc.rb) that asks for a numeric value of the
temperature in degrees Fahrenheit. Finally, the program displays the
equivalent value in degrees Centigrade. To format the output to say 2
decimal places, we can use the Kernel's format method. For example, if x
= 45.5678 then format("%.2f", x) will return a string 45.57. Another way is to
use the round function as follows puts (x*100).round/100.0

Data comes from many sources. In the typical Rails application, it
comes from a database. As a Rails developer, you may find yourself
using relatively few of these facilities, because Rails does the data-
fetching for you; and your users, when they input from the keyboard,
will generally be typing on a Web form.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 40

Names in Ruby

Now, let us look at Names in Ruby.

1. Names - Ruby names are used to refer to constants, variables,

methods, classes, and modules. The first character of a name helps
Ruby to distinguish its intended use. Certain names, are reserved
words and should not be used as variable, method, class, or module
name. Lowercase letter means the characters ''a'' though ''z'', as well
as ''_'', the underscore. Uppercase letter means ''A'' though ''Z,'' and
digit means ''0'' through ''9.'' A name is an uppercase letter, lowercase
letter, or an underscore, followed by Name characters: This is any
combination of upper- and lowercase letters, underscore and digits.

2. Variables - Variables in Ruby can contain data of any type. You can

use variables in your Ruby programs without any declarations.
Variable name itself denotes its scope (local, global, instance, etc.).

2.1. A local variable name consists of a lowercase letter followed by
name characters (sunil, _z, hit_and_run).

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 41

2.2. An instance variable (declared within an object) name starts with
an ''at'' sign (''@'') followed by an upper- or lowercase letter,
optionally followed by name characters (@sign, @_, @Counter).

2.3. A class variable (declared within a class) name starts with two ''at''
signs (''@@'') followed by an upper- or lowercase letter, optionally
followed by name characters (@@sign, @@_, @@Counter).

2.4. A constant name starts with an uppercase letter followed by
name characters. Class names and module names are constants, and
follow the constant naming conventions. By convention, constant
variables are normally spelled using uppercase letters and
underscores throughout (module MyMath, PI=3.1416, class MyPune).

2.5. Global variables start with a dollar sign (''$'') followed by name
characters. A global variable name can be formed using ''$-'' followed
by any single character ($counter, $COUNTER, $-x).

3. Method names should begin with a lowercase letter. ''?'' and ''!'' are

the only weird characters allowed as method name suffixes (! or bang
labels a method as dangerous—specifically, as the dangerous
equivalent of a method with the same name but without the bang).

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 42

An example to show Ruby is dynamically typed – p007dt.rb

The Ruby convention is to use underscores to separate words in a
multiword method or variable name. For Class names, module names
and constants the convention is to use capitalization, rather than
underscores, to distinguish the start of words within the name.

It's to be noted that any given variable can at different times hold
references to objects of many different types. A Ruby constant is also
a reference to an object. Constants are created when they are first
assigned to (normally in a class or module definition; they should not
be defined in a method - more of this later). Ruby lets you alter the
value of a constant, although this will generate a warning message.
Also, variables in Ruby act as "references" to objects, which undergo
automatic garbage collection.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 43

Ruby is dynamic
x = 7 # integer
x = "house" # string
x = 7.5 # real

The basic types in Ruby are Numeric (subtypes include Fixnum, Integer, and
Float), String, Array, Hash, Object, Symbol, Range, and RegEx. Ruby doesn't
require you to use primitives (data types) when manipulating data of
these types—if it looks like an integer, it's probably an integer; if it looks
like a string, it is probably a string. class returns the class of an object,
for example:

s = ‘hello’
s.class # String

In Ruby, everything you manipulate is an object, and the results of those
manipulations are themselves objects. There are no primitives or data-
types.

5.times { puts "Mice!\n" } # more on blocks later
"Elephants Like Peanuts".length

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 44

More on methods

If objects (such as strings, integers and floats) are the nouns in Ruby
language, then methods are the verbs. Every method needs an object.
It's usually easy to tell which object is performing the method: it's what
comes right before the dot. Sometimes, though, it's not quite as obvious.
When we are using puts, gets - where are their objects? In Ruby, the
implicit object is whatever object you happen to be in. But we don't
even know how to be in an object yet; we've always been inside a
special object (main) Ruby has created for us that represents the whole
program. You can always see what object you are in (current object) by
using the special variable self.

puts self

For more details on self, refer here.

http://www.sitekreator.com/satishtalim/self.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 45

Writing Own Methods in Ruby

Let's look at writing one's own methods in Ruby with the help of a simple
program p008mymethods.rb. Observe that we use def and end to declare
a method. Parameters are simply a list of local variable names in
parentheses.

A simple method
def hello
 puts 'Hello'

We do not declare the return type; a method returns the value of the
last line. It is recommended that you leave a single blank line
between each method definition. As per the Ruby convention,
methods need parenthesis around their parameters. However, since
puts, p (more on this later) and gets are extensively used, the rule of
parenthesis is not applicable. In Rails, you will see methods calls with
no parentheses.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 46

end
#use the method
hello

Method with an argument - 1
def hello1(name)
 puts 'Hello ' + name
 return 'success'
end
puts(hello1('satish'))

Method with an argument - 2
def hello2 name2
 puts 'Hello ' + name2
 return 'success'
end
puts(hello2 'talim') # A method returns the value of the last line

The output is:

>ruby p008mymethods.rb
Hello
Hello satish
success
Hello talim
success

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 47

p008mymethods.rb:20: warning: parenthesize argument(s) for future
version
>Exit code: 0

Ruby lets you specify default values for a method’s arguments—values
that will be used if the caller doesn’t pass them explicitly. You do this
using the assignment operator. See example p009mymethods1.rb

def mtd(arg1="Dibya", arg2="Shashank", arg3="Shashank")
 "#{arg1}, #{arg2}, #{arg3}."
end
puts mtd
puts mtd("ruby")

The output is:

>ruby p009mymethods1.rb
Dibya, Shashank, Shashank.
ruby, Shashank, Shashank.
>Exit code: 0

In the above program the interpolation operator #{...} gets calculated
separately (please refer to expression interpolation for more details on

http://sitekreator.com/Shared/Html/1465930:11583048980118�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 48

this), and the results of the calculation are pasted automatically into
the string. When you run these lines, you don’t see the #{...} operator
on your screen; instead, you see the results of calculating or evaluating
what was inside that operator.

The example p010aliasmtd.rb talks about Aliasing a method.

alias new_name old_name

creates a new name that refers to an existing method. When a method is
aliased, the new name refers to a copy of the original method’s body. If
the method is subsequently redefined, the aliased name will still invoke
the original implementation.

def oldmtd
 "old method"
end
alias newmtd oldmtd
def oldmtd
 "old improved method"
end
puts oldmtd
puts newmtd

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 49

The output is:

>ruby p010aliasmtd.rb
old improved method
old method
>Exit code: 0

Does Ruby allow us to write functions that can accept variable number
of parameters?

Yes. See the following example p011vararg.rb:

def foo(*my_string)
 my_string.each do |words|
 puts words
 end
end
foo('hello','world')
foo()

The asterisk is actually taking all arguments you send to the method and
assigning them to an array named my_string. The do end is a Ruby block

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 50

which we talk in length here. As you can see, by making use of the
asterisk, we’re even able to pass in zero arguments. The code above will
result in the words hello and world written on successive lines in the
first method call and nothing being written on the second call, as you
can see in the following output:

>ruby p011vararg.rb
hello
world
>Exit code: 0

If you want to include optional arguments (*x), they have to come after
any non-optional arguments:
def opt_args(a,b,*x) # right
def opt_args(a,*x,b) # wrong

What is the maximum number of parameters we can pass in Ruby?
There’s no limit to the number of parameters. You can refer to:
http://www.recentrambles.com/pragmatic/view/68

What is the sequence in which the parameters are put on to the
stack? Left to right like C or right to left like Pascal?

http://rubylearning.com/satishtalim/ruby_blocks_and_procs.html�
http://www.recentrambles.com/pragmatic/view/68�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 51

Left to right as you can see in this example p012mtdstack.rb:

def mtd(a=99, b=a+1)
 [a,b]
end
puts mtd

Are the parameters passed by value or reference?
Look at this url -
http://dev.rubycentral.com/faq/rubyfaq-4.html
and see this example:

def downer(string)
 string.downcase!
end
a = "HELLO" # -> "HELLO"
downer(a) # -> "hello"
a

Bang (!) methods
Ruby methods that modify an object in-place and end in an exclamation
mark are known as bang methods. By convention, the bang labels a

http://dev.rubycentral.com/faq/rubyfaq-4.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 52

method as dangerous—specifically, as the dangerous equivalent of a
method with the same name but without the bang.

You’ll find a number of pairs of methods, one with the bang and one
without. Those without the bang perform an action and return a freshly
minted object, reflecting the results of the action (capitalizing a string,
sorting an array, and so on). The bang versions of the same methods
perform the action, but they do so in place: Instead of creating a new
object, they transform the original object.

Examples of such pairs of methods include sort/sort! for arrays,
upcase/upcase! for strings, chomp/chomp! for strings, and
reverse/reverse! for strings and arrays. In each case, if you call the non-
bang version of the method on the object, you get a new object. If you
call the bang version, you operate in-place on the same object to which
you sent the message.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 53

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 54

Ruby Method Missing

When you send a message to an object, the object executes the first
method it finds on its method lookup path with the same name as the
message. If it fails to find any such method, it raises a NoMethodError
exception - unless you have provided the object with a method called
method_missing. The method_missing method is passed the symbol of
the nonexistent method, and any arguments that were passed in.

method_missing is in part a safety net: It gives you a way to intercept
unanswerable messages and handle them gracefully. See the example -
p012zmm.rb below (we shall be talking about writing our own class
soon).
class Dummy
 def method_missing(m, *args)
 puts "There's no method called #{m} here -- please try
again."
 end
end
Dummy.new.anything

http://sitekreator.com/satishtalim/Admin/writing_our_own_class.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 55

The output is:

>ruby tmp.rb
There's no method called anything here -- please try again.
>Exit code: 0

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 56

More on the String class

There are many methods in the String class (you don't have to memorize
them all; you can look up the documentation) like the reverse that gives
a backwards version of a string (reverse does not change the original
string). length that tells us the number of characters (including spaces) in
the string. upcase changes every lowercase letter to uppercase, and
downcase changes every uppercase letter to lowercase. swapcase switches
the case of every letter in the string, and finally, capitalize is just like
downcase, except that it switches the first character to uppercase (if it is
a letter), slice gives you a substring of a larger string.

The methods upcase, downcase, swapcase and capitalize have corresponding
methods that modify a string in place rather than creating a new one:
upcase!, downcase!, swapcase! and capitalize!. Assuming you don’t need the
original string, these methods will save memory, especially if the string
is large.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 57

We know that String literals are sequences of characters between single
or double quotation marks. The difference between the two forms is the
amount of processing Ruby does on the string while constructing the
literal. In the single-quoted case, Ruby does very little. In the double-
quoted case, Ruby does more work. First, it looks for substitutions –
sequences that start with a backslash character – and replaces them with
some binary value. The second thing that Ruby does with double-quoted
strings is expression interpolation. Within the string, the sequence
#{expression} is replaced by the value of expression (refer
p013expint.rb). In this program, the value returned by a Ruby method is
the value of the last expression evaluated, so we can get rid of the
temporary variable (result) and the return statement altogether.

def say_goodnight(name)
 result = "Good night, #{name}"
 return result
end
puts say_goodnight('Satish')

modified program
def say_goodnight2(name)
 "Good night, #{name}"
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 58

puts say_goodnight2('Talim')

It is to be noted that every time a string literal is used in an assignment
or as a parameter, a new String object is created.

Some questions asked by members

How is memory managed for Strings in Ruby? Is there a separate pool
for Strings?
Strings are objects of class String. The String class has more than 75
standard methods. If you refer to Ruby User's Guide, it says that "we do
not have to consider the space occupied by a string. We are free from all
memory management."

Listing all methods of a class or object
String.methods.sort
shows you a list of methods that the Class object String responds to.

String.instance_methods.sort

http://www.rubyist.net/~slagell/ruby/strings.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 59

This method tells you all the instance methods that instances of String
are endowed with.

String.instance_methods(false).sort
With this method, you can view a class’s instance methods without those
of the class’s ancestors.

Comparing two strings for equality

Strings have several methods for testing equality. The most common one
is == (double equals sign). Another equality-test instance method,
String.eql?, tests two strings for identical content. It returns the same
result as ==. A third instance method, String.equal?, tests whether two
strings are the same object. An example (p013strcmp.rb) illustrates this:

s1 = 'Jonathan'
s2 = 'Jonathan'
s3 = s1
if s1 == s2
 puts 'Both Strings have identical content'
else
 puts 'Both Strings do not have identical content'

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 60

end
if s1.eql?(s2)
 puts 'Both Strings have identical content'
else
 puts 'Both Strings do not have identical content'
end
if s1.equal?(s2)
 puts 'Two Strings are identical objects'
else
 puts 'Two Strings are not identical objects'
end
if s1.equal?(s3)
 puts 'Two Strings are identical objects'
else
 puts 'Two Strings are not identical objects'
end

Exercise
Given a string, let us say that we want to reverse the word order (rather
than character order). You can use String.split, which gives you an array
of words. The Array class has a reverse method; so you can reverse the
array and join to make a new string:

http://sitekreator.com/Shared/Html/1465942:11583049770118�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 61

words = 'Learning Ruby - Your one stop guide'
puts words.split(" ").reverse.join(" ")
guide stop one Your - Ruby Learning

See the Complete String documentation

http://www.ruby-doc.org/core/classes/String.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 62

Simple Constructs in Ruby

In Ruby, nil and false evaluate to false, everything else (including true, 0)
means true.

Let’s explore some very simple constructs available in Ruby. The
example below (p014constructs.rb) illustrates the if else end construct.
By the Ruby convention, if and while do not require parenthesis.

if else end
var = 5
if var > 4
 puts "Variable is greater than 4"
 puts "I can have multiple statements here"
 if var == 5
 puts "Nested if else possible"
 else
 puts "Too cool"
 end
else
 puts "Variable is not greater than 5"
 puts "I can have multiple statements here"
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 63

An example of using elsif is there in the program p015elsifex.rb as shown
below:

elseif example
Original example
puts "Hello, what\'s your name?"
STDOUT.flush
name = gets.chomp
puts 'Hello, ' + name + '.'

if name == 'Satish'
 puts 'What a nice name!!'
else
 if name == 'Sunil'
 puts 'Another nice name!'
 end
end

Modified example with elseif
puts "Hello, what\'s your name?"
STDOUT.flush
name = gets.chomp
puts 'Hello, ' + name + '.'

if name == 'Satish'
 puts 'What a nice name!!'

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 64

elsif name == 'Sunil'
 puts 'Another nice name!'
end

Further modified
puts "Hello, what\'s your name?"
STDOUT.flush
name = gets.chomp
puts 'Hello, ' + name + '.'

|| is the logical or operator
if name == 'Satish' || name == 'Sunil'
 puts 'What a nice name!!'
end

Some common conditional operators are: ==, != >=, <=, >, <

Loops like the while loop are available. Again, the example below
illustrates the same.

Loops
var = 0
while var < 10
 puts var.to_s
 var += 1
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 65

Assignment:

1. Write a Ruby program (p016leapyear.rb) that asks for a year and
then displays to the user whether the year entered by him/her is
a leap year or not.

2. Write a method leap_year. Accept a year value from the user,
check whether it’s a leap year and then display the number of
minutes in that year – program p017leapyearmtd.rb.

Case Expressions
This form is fairly close to a series of if statements: it lets you list a
series of conditions and execute a statement corresponding to the first
one that’s true. For example, leap years must be divisible by 400, or
divisible by 4 and not by 100. Also, remember that case returns the value
of the last expression executed.

year = 2000
leap = case
 when year % 400 == 0: true

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 66

 when year % 100 == 0: false
 else year % 4 == 0
 end
puts leap
output is: true

Ruby nil is an Object
In Ruby, nil is an actual object. You can call methods on nil, just like
any other object. You can add methods to nil, just like any other object.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 67

Arrays in Ruby

An Array is just a list of items in order (like mangoes, apples, and
oranges). Every slot in the list acts like a variable: you can see what
object a particular slot points to, and you can make it point to a
different object. You can make an array by using square brackets and is
best explained by the following example p018arrays.rb. Please go
through the program carefully.

Arrays

Empty array
var1 = []
Array index starts from 0
puts var1[0]

an array holding a single number
var2 = [5]
puts var2[0]

an array holding two strings
var3 = ['Hello', 'Goodbye']
puts var3[0]

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 68

puts var3[1]

flavour = 'mango'
an array whose elements are pointing
to three objects - a float, a string and an array
var4 = [80.5, flavour, [true, false]]
puts var4[2]

a trailing comma is ignored
name = ['Satish', 'Talim', 'Ruby', 'Java',]
puts name[0]
puts name[1]
puts name[2]
puts name[3]
the next one outputs nil
nil is Ruby's way of saying nothing
puts name[4]
we can add more elements too
name[4] = 'Pune'
puts name[4]
we can add anything!
name[5] = 4.33
puts name[5]
we can add an array to an array
name[6] = [1, 2, 3]
puts name[6]

some methods on arrays

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 69

newarr = [45, 23, 1, 90]
puts newarr.sort
puts newarr.length

method each (iterator) - extracts each element into lang
languages = ['Pune', 'Mumbai', 'Bangalore']

languages.each do |lang|
 puts 'I love ' + lang + '!'
 puts 'Don\'t you?'
end

delete an entry in the middle and shift the remaining entries
languages.delete('Mumbai')
languages.each do |lang|
 puts 'I love ' + lang + '!'
 puts 'Don\'t you?'
end

The method each allows us to do something (whatever we want) to each
object the array points to. In the example, we are able to go through
each object in the array without using any numbers.

Here are a few things to remember:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 70

• The variable lang inside the “goalposts” refers to each item in the
array as it goes through the loop. You can give this any name you
want, but make it memorable.

• The do and end identify a block of code that will be executed for
each item. Blocks are used extensively in Ruby and we shall spend
more time on them later.

Here’s an interesting example of a method that returns an array.
Example p019mtdarry.rb

def mtdarry
 10.times do |num|
 square = num * num
 return num, square if num > 5
 end
end

num, square = mtdarry
puts num
puts square

The output is:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 71

>ruby mtdarry.rb
6
36
>Exit code: 0

The times method of the Integer class iterates block num times, passing in
values from zero to num-1. As we can see, if you give return multiple
parameters, the method returns them in an array. You can use parallel
assignment to collect this return value.

Some questions asked by you

Does Ruby have associative arrays like awk?
Hashes (sometimes known as associative arrays, maps or dictionaries)
are available in Ruby.

See the complete Array documentation

Assignment:

http://www.ruby-doc.org/core/classes/Array.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 72

1. Write a Ruby program (p020arraysum.rb) that, when given an
array as collection = [1, 2, 3, 4, 5] it calculates the sum of its
elements.

2. Write a Ruby program (p021oddeven.rb) that, when given an

array as collection = [12, 23, 456, 123, 4579] it displays for each
number, whether it is odd or even.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 73

Ranges
The first and perhaps most natural use of ranges is to express a
sequence. Sequences have a start point, an end point, and a way to
produce successive values in the sequence. In Ruby, these sequences are
created using the “. .” and “. . .” range operators. The two dot
form creates an inclusive range, and the three-dot form creates a range
that excludes the specified high value. In Ruby ranges are not
represented internally as lists: the sequence 1..100000 is held as a Range
object containing references to two Fixnum objects. Refer program
p021ranges.rb. If you need to, you can convert a range to a list using the
to_a method.

(1..10).to_a -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Ranges implement methods that let you iterate over them and test their
contents in a variety of ways.

digits = 0..9
digits.include?(5) -> true
digits.min -> 0

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 74

digits.max -> 9
digits.reject {|i| i < 5 } -> [5, 6, 7, 8, 9]

Another use of the versatile range is as an interval test: seeing if some
value falls within the interval represented by the range. We do this using
===, the case equality operator.

(1..10) === 5 -> true
(1..10) === 15 -> false
(1..10) === 3.14159 -> true
('a'..'j') === 'c' -> true
('a'..'j') === 'z' -> false

Assignment: Given a string s = ‘key=value’, create two strings s1 and s2
such that s1 contains key and s2 contains value. Hint: Use some of the
String functions – program p021rangesex.rb

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 75

Blocks and Procs

Ruby Code blocks (called closures in other languages) are definitely one
of the coolest features of Ruby and are chunks of code between braces
or between do… end that you can associate with method invocations,
almost as if they were parameters. A Ruby block is a way of grouping
statements, and may appear only in the source adjacent to a method
call; the block is written starting on the same line as the method call’s
last parameter (or the closing parenthesis of the parameter list). The
code in the block is not executed at the time it is encountered. Instead,
Ruby remembers the context in which the block appears (the local
variables, the current object, and so on) and then enters the method.

The Ruby standard is to use braces for single-line blocks and do… end for
multi-line blocks. Keep in mind that the braces syntax has a higher
precedence than the do..end syntax.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 76

Matz says that any method can be called with a block as an implicit
argument. Inside the method, you can call the block using the yield
keyword with a value.

Once you have created a block, you can associate it with a call to a
method. Usually the code blocks passed into methods are anonymous
objects, created on the spot. For example, in the following code, the
block containing puts “Hello” is associated with the call to a method
greet.

greet {puts ‘Hello’}

If the method has parameters, they appear before the block.

verbose_greet(“PuneRuby”) {puts ‘Hello’}

A method can then invoke an associated block one or more time using
the Ruby yield statement.

Program p022codeblock.rb illustrates what we have just discussed.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 77

def call_block
 puts 'Start of method'
 yield
 yield
 puts 'End of method'
end
call_block {puts 'In the block'}

The output is:

>ruby codeblock.rb
Start of method
In the block
In the block
End of method
>Exit code: 0

If you provide a code block when you call a method, then inside the
method, you can yield control to that code block—suspend execution of
the method; execute the code in the block; and return control to the
method body, right after the call to yield.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 78

You can provide parameters to the call to yield: these will be passed to
the block. Within the block, you list the names of the arguments to
receive the parameters between vertical bars (|).

The example p023codeblock2.rb illustrates the same.

def call_block
 yield('hello', 99)
end
call_block {|str, num| puts str + ' ' + num.to_s}

The Output is:

>ruby codeblock2.rb
hello 99
>Exit code: 0

Note that the code in the block is not executed at the time it is
encountered by the Ruby interpreter. Instead, Ruby remembers the
context in which the block appears and then enters the method.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 79

A code block’s return value (like that of a method) is the value of the
last expression evaluated in the code block. This return value is made
available inside the method; it comes through as the return value of
yield.

Blocks are not objects, but they can be converted into objects of class
Proc. This can be done by calling the lambda method of the module
Kernel. A block created with lambda acts like a Ruby method. If you don’t
specify the right number of arguments, you can’t call the block.

prc = lambda {“hello”}

Proc objects are blocks of code that have been bound to a set of local
variables. The class Proc has a method call that invokes the block. The
program p024proccall.rb illustrates this.

prc = lambda {puts 'Hello'}
prc.call

another example
toast = lambda do
 puts 'Cheers'

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 80

end
toast.call

The output is:

>ruby proccall.rb
Hello
Cheers
>Exit code: 0

Remember you cannot pass methods into other methods (but you can
pass procs into methods), and methods cannot return other methods
(but they can return procs).

The next example shows how methods can take procs. Example
p025mtdproc.rb

def some_mtd some_proc
 puts 'Start of mtd'
 some_proc.call
 puts 'End of mtd'
end

say = lambda do

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 81

 puts 'Hello'
end

some_mtd say

The output is:

>ruby mtdproc.rb
Start of mtd
Hello
End of mtd
>Exit code: 0

Here’s another example of passing arguments using lambda.

aBlock = lambda { |x| puts x }
aBlock.call 'Hello World!'
output is: Hello World!

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 82

Random Numbers

Ruby comes with a random number generator. The method to get a
randomly chosen number is rand. If you call rand, you’ll get a float
greater than or equal to 0.0 and less than 1.0. If you give it an integer
parameter (by calling rand(5), you will get an integer value greater than
or equal to 0 and less than 5.

Here’s an example: p026phrase.rb

word_list_one = ['24/7', 'multi-Tier', '30,000 foot', 'B-to-B',
'win-win', 'front-end', 'web-based', 'pervasive', 'smart', 'six-
sigma', 'critical-path', 'dynamic']
word_list_two = ['empowered', 'sticky', 'value-added', 'oriented',
'centric', 'distributed', 'clustered', 'branded', 'outside-the-
box', 'positioned', 'networked', 'focused', 'leveraged',
'aligned', 'targeted', 'shared', 'cooperative', 'accelerated']
word_list_three = ['process', 'tipping-point', 'solution',
'architecture', 'core competency', 'strategy', 'mindshare',
'portal', 'space', 'vision', 'paradigm', 'mission']

one_len = word_list_one.length
two_len = word_list_two.length

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 83

three_len = word_list_three.length

rand1 = rand(one_len)
rand2 = rand(two_len)
rand3 = rand(three_len)

phrase = word_list_one[rand1] + " " + word_list_two[rand2] + " " +
word_list_three[rand3]

puts phrase

The above program makes three lists of words, and then randomly picks
one word from each of the three lists and prints out the result.

Assignment:
This assignment is from Chris Pine’s Book.

a. Write a Deaf Grandma program (p026zdeafgm1.rb). Whatever you
say to grandma (whatever you type in), she should respond with
HUH?! SPEAK UP, SONNY!, unless you shout it (type in all
capitals). If you shout, she can hear you (or at least she thinks so)
and yells back, NO, NOT SINCE 1938! To make your program really
believable, have grandma shout a different year each time;

http://pine.fm/LearnToProgram/?Chapter=06�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 84

maybe any year at random between 1930 and 1950. You can't stop
talking to grandma until you shout BYE.

b. Program (p026zdeafgm2.rb) - Extend your Deaf Grandma
program: What if grandma doesn't want you to leave? When you
shout BYE, she could pretend not to hear you. Change your
previous program so that you have to shout BYE three times in a
row. Make sure to test your program: if you shout BYE three
times, but not in a row, you should still be talking to grandma.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 85

Reading from / Writing to text files

Let's look at how we can read / write to a text file with the help of a
simple program p027readwrite.rb.

Open and read from a text file
File.open('Constructs.rb', 'r') do |f1|
 while line = f1.gets
 puts line
 end
end

Create a new file and write to it
File.open('Test.rb', 'w') do |f2|
 # use "" for inserting a newline between quotation marks
 f2.puts "Created by Satish\nThank God!"
end

The File.open method can open the file in different modes like 'r' Read-
only, starts at beginning of file (default); 'r+' Read/Write, starts at
beginning of file; 'w' Write-only, truncates existing file to zero length or
creates a new file for writing. Please check the online documentation

http://www.ruby-doc.org/core/classes/File.html#M000065�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 86

for a full list of modes available. File.open opens a new File if there is no
associated block. If the optional block is given, it will be passed file as
an argument, and the file will automatically be closed when the block
terminates.

Assignment: Write a Ruby program (call it p028swapcontents.rb) to do
the following. Take two text files say A and B. The program should swap
the contents of A and B ie. after the program is executed, A should
contain B's contents and B should contains A's.

Traversing Directory Trees
The Find module supports top-down traversal of a set of file paths, given
as arguments to the find method. If an argument is a directory, then its
name and name of all its files and sub-directories will be passed in (in
the example below, this would be from where you run this program).

require 'find'

Find.find('./') do |f|
 type = case

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 87

 when File.file?(f): "F"
 when File.directory?(f): "D"
 else "?"
 end
 puts "#{type}: #{f}"
end

We shall talk about require soon here.

Random Access
It’s quite easy to access a file randomly. Let’s say we have a text file
(named hellousa.rb) , the contents of which is shown below:

puts ‘Hello USA’

We now need to display the contents of the file from the word USA.
Here’s how – program p028xrandom.rb:

f = File.new("hellousa.rb")
f.seek(12, IO::SEEK_SET)
print f.readline

http://sitekreator.com/satishtalim/including_other_files.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 88

The seek method of class IO, seeks to a given offset anInteger (first
parameterof method) in the stream according to the value of second
parameter in the method.

 IO::SEEK_CUR | Seeks to _amount_ plus current position
 --------------+--
 IO::SEEK_END | Seeks to _amount_ plus end of stream (you
 | probably
 | want a negative value for _amount_)
 --------------+--
 IO::SEEK_SET | Seeks to the absolute location given by
 | _amount_

More on the scope operator :: here.

Some questions asked by you

Does Ruby allow Object Serialization?
Java features the ability to serialize objects, letting you store them
somewhere and reconstitute them when needed. Ruby calls this kind of
serialization marshaling. Saving an object and some or all of its
components is done using the method Marshal.dump. Later on you can

http://www.ruby-doc.org/core/classes/IO.html�
http://sitekreator.com/satishtalim/constants.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 89

reconstitute the object using Marshal.load. Ruby uses marshaling to store
session data. Refer topic Object Serialization later on.

http://sitekreator.com/satishtalim/object_serialization.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 90

Writing our own Class

Objects are your agents, your proxies, in the universe of your program.
You ask them for information. You assign them tasks to accomplish. You
tell them to perform calculations and report back to you. You hand them
to each other and get them to work together.

When you design a class, think about the objects that will be created
from that class type. Think about the things the object knows and the
things the object does.

Things an object knows about itself are called instance variables. They
represent an object’s state (the data - for example, the quantity and the
product id), and can have unique values for each object of that type.

Things an object can do are called methods.

Thus, an object is an entity that serves as a container for data and also
controls access to the data. Associated with an object is a set of

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 91

attributes, which are essentially no more than variables belonging to
that object. Also associated with an object is a set of functions that
provide an interface to the functionality of the object, called methods.

A class is a combination of state and methods that use the state.

Hence a class is used to construct an object. A class is a blueprint for an
object. For example, you might use a Button class to make dozens of
different buttons, and each button might have its own color, size,
shape, label, and so on.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 92

The following Class Hierarchy is informative.

Let’s write our first, simple class – p029dog.rb

define class Dog
class Dog
 def initialize(breed, name)
 # Instance variables
 @breed = breed

Read this very carefully, it's a brain bender!
Classes in Ruby are first-class objects - each is an instance of class
Class. When a new class is defined (typically using class Name ... end),
an object of type Class is created and assigned to a constant (Name. in
this case). When Name.new is called to create a new object, the new
instance method in Class is run by default, which in turn invokes
allocate to allocate memory for the object, before finally calling the
new object's initialize method. The constructing and initializing phases
of an object are separate and both can be over-ridden. The
initialization is done via the initialize instance method while the
construction is done via the new class method. initialize is not a
constructor!

http://www.cs.mun.ca/~donald/slug/2003-10-16/presentation/img5.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 93

 @name = name
 end

 def bark
 puts 'Ruff! Ruff!'
 end

 def display
 puts "I am of #{@breed} breed and my name is #{@name}"
 end
end

make an object
method new used to create object
d = Dog.new('Labrador', 'Benzy')
puts d.methods.sort
puts "The id of obj is #{d.object_id}."
if d.respond_to?("talk")
 d.talk
else
 puts "Sorry, the object doesn't understand the 'talk' message."
end

d.bark
d.display

d1 = d
d1.display

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 94

d = nil
d.display

The output is:

>ruby dog.rb
Ruff! Ruff!
I am of Labrador breed and my name is Benzy
>Exit code: 0

The method new is used to create an object of class Dog. Objects are
created on the heap. The variable d is known as a reference variable. It
does not hold the object itself, but it holds something like a pointer or
an address of the object. You use the dot operator (.) on a reference
variable to say, “use the thing before the dot to get me the thing after
the dot.” For example:
d.bark

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 95

Even a newly created object isn’t a blank slate. As soon as an object
comes into existence, it already responds to a number of messages.
Every object is “born” with certain innate abilities. To see a list of
innate methods, you can call the methods method (and throw in a sort
operation, to make it easier to browse visually):
puts d.methods.sort
The result is a list of all the messages (methods) this newly minted
object comes bundled with. Amongst these many methods, the methods
object_id and respond_to? are important.

Every object in Ruby has a unique id number associated with it. You can
see an object’s id by asking the object to show you its object_id:
puts "The id of obj is #{d.object_id}."

If you’re writing a Rails application in which one of your entity models
is, say, Customer, then when you write the code that causes things to
happen - a customer logging into a site, updating a customer’s phone
number, adding an item to a customer’s shopping cart - in all
likelihood you’ll be sending messages to customer objects.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 96

You can determine in advance (before you ask the object to do
something) whether the object knows how to handle the message you
want to send it, by using the respond_to? method. This method exists for
all objects; you can ask any object whether it responds to any message.
respond_to? usually appears in connection with conditional (if) logic.
if d.respond_to?("talk")
 d.talk
else
 puts "Sorry, the object doesn't understand the 'talk' message."
end

Now, the statements:
d1 = d
d1.display
makes d and d1 point to the same object.

Literal Constructors
That means you can use special notation, instead of a call to new, to
create a new object of that class. The classes with literal constructors
are shown in the table below. When you use one of these literal
constructors, you bring a new object into existence.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 97

Garbage Collection

The statement:
d =nil
makes d a nil reference, meaning it does not refer to anything. If I now
say:
d1 = nil

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 98

then the Dog object is abandoned and eligible for Garbage collection.
The Ruby object heap allocates a minimum of 8 megabytes. Ruby’s GC is
called mark-and-sweep. The “mark” stage checks objects to see if they
are still in use. If an object is in a variable that can still be used in the
current scope, the object (and any object inside that object) is marked
for keeping. If the variable is long gone, off in another method, the
object isn’t marked. The “sweep” stage then frees objects which
haven’t been marked. Ruby uses a conservative mark-and-sweep GC
mechanism. There is no guarantee that an object will undergo garbage
collection before the program terminates.

If you stuff something in an array and you happen to keep that array
around, it’s all marked. If you stuff something in a constant or global
variable, it’s forever marked.

Class Methods
The idea of a class method is that you send a message to the object that
is the class rather than to one of the class’s instances. Class methods
serve a purpose. Some operations pertaining to a class can’t be

http://whytheluckystiff.net/articles/theFullyUpturnedBin.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 99

performed by individual instances of that class. new is an excellent
example. We call Dog.new because, until we’ve created an individual dog
instance, we can’t send it any messages! Besides, the job of spawning a
new object logically belongs to the class. It doesn’t make sense for
instances of Dog to spawn each other. It does make sense, however, for
the instance-creation process to be centralized as an activity of the class
Dog. It’s vital to understand that by Dog.new, we have a method that we
can access through the class object Dog but not through its instances.
Individual dog objects (instances of the class Dog) do not have this
method. A class object (like Dog) has its own methods, its own state, its
own identity. It doesn’t share these things with instances of itself.

The table below shows an example (borrowed from the book Ruby For
Rails) on the notation used:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 100

You will learn how to write class methods, later on here.

http://sitekreator.com/satishtalim/constants.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 101

Including Other Files

When writing your first Ruby programs, you tend to place all of your
code in a single file. But as you grow as a Ruby programmer, your Ruby
programs will also grow, and at some point you will realize that having a
single file contain all of your code just won't do. It is easier to break
your code up into logical groupings and place each group in a separate
file or files. When you begin using multiple files, you have a need for the
Ruby require and load methods that help you include other files in your
program.

The load method includes the named Ruby source file every time the
method is executed:

load ‘filename.rb’

The more commonly used require method loads any given file only once:

require ‘filename’

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 102

require gives you access to the many extensions and programming
libraries bundled with the Ruby programming language—as well as an
even larger number of extensions and libraries written independently by
other programmers and made available for use with Ruby.

Note that you say require 'filename', not require 'filename.rb'. Aside from
looking nicer, this bareword way of referring to the extension is
necessary because not all extensions use files ending in .rb. Specifically,
extensions written in C are stored in files ending with .so or .dll. To
keep the process transparent—that is, to save you the trouble of knowing
whether the extension you want uses a .rb file or not—Ruby accepts a
bareword and then does some automatic file-searching and trying out of
possible filenames until it finds the file corresponding to the extension
you have requested.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 103

Now, let’s look at an example of another class - p030motorcycle.rb.

class MotorCycle
 def initialize(make, color)
 # Instance variables
 @make = make
 @color = color
 end
 def startEngine
 if (@engineState)
 puts 'Engine Running'
 else
 @engineState = true
 puts 'Engine Idle'
 end
 end
end

Rails uses load in preference to require, for example, in development
mode - which means that if you’re trying your application in a
browser and making changes to the code at the same time, your
changes are reloaded, overriding any caching behavior on the part of
the Web server. Multiple require calls in the same place don’t have the
same effect if the application has already read the file in once.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 104

We write another program p031motorcycletest.rb to test out the above
class.

require 'p030motorcycle'
m = MotorCycle.new('Yamaha', 'red')
m.startEngine

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 105

Open classes

Now to the above program p031motorcycletest.rb add the method
dispAttr

require 'motorcycle'
m = MotorCycle.new('Yamaha', 'red')
m.startEngine

class MotorCycle
 def dispAttr
 puts 'Color of MotorCycle is ' + @color
 puts 'Make of MotorCycle is ' + @make
 end
end
m.dispAttr

In Ruby, classes are never closed: you can always add methods to an
existing class. This applies to the classes you write as well as the
standard, built-in classes. All you have to do is open up a class
definition for an existing class, and the new contents you specify will
be added to whatever's there.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 106

m.startEngine
puts self.class
puts self

Please note that self.class refers to and self refers to an object called
main of class Object.

One more example is program - p031xdognext.rb

require 'p029dog.rb'
define class Dog
class Dog
 def big_bark
 puts 'Woof! Woof!'
 end
end
make an object
d = Dog.new('Labrador', 'Benzy')
d.bark
d.big_bark
d.display

Here’s another example of adding a method to the String class. The
program p032mystring.rb illustrates the same.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 107

class String
 def writesize
 puts self.size
 end
end
size_writer = "Tell me my size!"
size_writer.writesize

(You can confirm the output to the above programs yourself).

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 108

Inheritance
Inheritance is a relation between two classes. We know that all cats are
mammals, and all mammals are animals. Smaller classes inherit
characteristics from the larger classes to which they belong. If all
mammals breathe, then all cats breathe.

We can express this concept in Ruby - see the p033mammal.rb program
below:

class Mammal
 def breathe
 puts "inhale and exhale"
 end
end

class Cat<Mammal
 def speak
 puts "Meow"
 end
end

rani = Cat.new
rani.breathe

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 109

rani.speak

Though we didn't specify how a Cat should breathe, every cat will inherit
that behaviour from the Mammal class since Cat was defined as a
subclass of Mammal. (In OO terminology, the smaller class is a subclass
and the larger class is a super-class. The subclass is sometimes also
known as a derived or child class and the super-class as base or parent
class). Hence from a programmer's standpoint, cats get the ability to
breathe for free; after we add a speak method, our cats can both
breathe and speak.

There will be situations where certain properties of the super-class
should not be inherited by a particular subclass. Though birds generally
know how to fly, penguins are a flightless subclass of birds. In the
example p034bird.rb below, we override fly in class Penguin.

class Bird
 def preen
 puts "I am cleaning my feathers."
 end
 def fly
 puts "I am flying."

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 110

 end
end

class Penguin<Bird
 def fly
 puts "Sorry. I'd rather swim."
 end
end

p = Penguin.new
p.preen
p.fly

Rather than exhaustively define every characteristic of every new class,
we need only to append or to redefine the differences between each
subclass and its super-class. This use of inheritance is sometimes called
differential programming. It is one of the benefits of object-oriented
programming.

The above two programs are taken from the online Ruby User’s Guide.

Thus, Inheritance allows you to create a class that is a refinement or
specialization of another class. Inheritance is indicated with <.

http://www.rubyist.net/~slagell/ruby/inheritance.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 111

Here’s another example, p035inherit.rb.

class GF
 def initialize
 puts 'In GF class'
 end
 def gfmethod
 puts 'GF method call'
 end
end

class F sub-class of GF
class F < GF
 def initialize
 puts 'In F class'
 end
end

class S sub-class of F
class S < F
 def initialize
 puts 'In S class'
 end
end
son = S.new
son.gfmethod

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 112

A class can only inherit from one class at a time (i.e. a class can inherit
from a class that inherits from another class which inherits from another
class, but a single class can not inherit from many classes at once).

There are many classes and modules (more on this later) built into the
standard Ruby language. They are available to every Ruby program
automatically; no require is required. Some built-in classes are Array,
Bignum, Class, Dir, Exception, File, Fixnum, Float, Integer, IO, Module, Numeric,
Object, Range, String, Thread, Time. Some built-in modules are
Comparable, Enumerable, GC, Kernel, Math.

The Object class is the parent class of all classes in Ruby. Its methods
are therefore available to all objects unless explicitly overridden.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 113

Inheritance is one of the key organizational techniques for Rails program
design and the design of the Rails framework.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 114

Duck Typing
You’ll have noticed that in Ruby we don’t declare the types of variables
or methods - everything is just some kind of object. Ruby objects (unlike
objects in some other object-oriented languages) can be individually
modified. You can always add methods on a per object
basis. In Ruby, the behavior or capabilities of an object can deviate from
those supplied by its class.

In Ruby, we rely less on the type (or class) of an object and more on its
capabilities. Hence, Duck Typing means an object type is defined by
what it can do, not by what it is. Duck Typing refers to the tendency of
Ruby to be less concerned with the class of an object and more
concerned with what methods can be called on it and what operations
can be performed on it. In Ruby, we would use respond_to? or might
simply pass an object to a method and know that an exception will be
raised if it is used inappropriately.

If an object walks like a duck and talks like a duck, then the Ruby
interpreter is happy to treat it as if it were a duck.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 115

Consider the following example.
Check whether the object defines the to_str method
puts ('A string'.respond_to? :to_str) # => true
puts (Exception.new.respond_to? :to_str) # => true
puts (4.respond_to? :to_str) # => false

The above example is the simplest example of Ruby's philosophy of "duck
typing:" if an object quacks like a duck (or acts like a string), just go
ahead and treat it as a duck (or a string). Whenever possible, you should
treat objects according to the methods they define rather than the
classes from which they inherit or the modules they include.

Exceptions, for instance, are essentially strings that have extra
information associated with them. But they don't subclass class name
"String". Code that uses is_a? String to check for stringness will overlook
the essential stringness of Exceptions.

Now consider the following three classes – Duck, Goose and
DuckRecording. Program p036duck.rb

class Duck

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 116

 def quack
 'Quack!'
 end

 def swim
 'Paddle paddle paddle...'
 end
end

class Goose
 def homk
 'Hock!'
 end
 def swim
 'Splash splash splash...'
 end
end

class DuckRecording
 def quack
 play
 end

 def play
 'Quack!'
 end
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 117

def make_it_quack(duck)
 duck.quack
end
puts make_it_quack(Duck.new)
puts make_it_quack(DuckRecording.new)

def make_it_swim(duck)
 duck.swim
end
puts make_it_swim(Duck.new)
puts make_it_swim(Goose.new)

If you refer to the code shown below:

def make_it_quack(duck)
 duck.quack
end
puts make_it_quack(Duck.new)
puts make_it_quack(DuckRecording.new)

A method that told a Duck to quack works when given a DuckRecoding,
due to Duck Typing. Similarly in the following code:

def make_it_swim(duck)
 duck.swim
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 118

puts make_it_swim(Duck.new)
puts make_it_swim(Goose.new)

A method that tells a Duck to swim when given a Goose, works.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 119

Overloading Methods
You want to create two different versions of a method with the same
name: two methods that differ in the arguments they take. However, a
Ruby class can have only one method with a given name. Within that
single method, though, you can put logic that branches depending on
how many and what kinds of objects were passed in as arguments.

Here’s a Rectangle class that represents a rectangular shape on a grid.
You can instantiate a Rectangle by one of two ways: by passing in the
coordinates of its top-left and bottom-left corners, or by passing in its
top-left corner along with its length and width. There’s only one initialize
method, but you can act as though there were two.

The Rectangle initialize accepts arguments in either
of the following forms:
Rectangle.new([x_top, y_left], length, width)
Rectangle.new([x_top, y_left], [x_bottom, y_right])
class Rectangle
 def initialize(*args)
 if args.size < 2 || args.size > 3
 # modify this to raise exception, later

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 120

 puts 'This method takes either 2 or 3 arguments'
 else
 if args.size == 2
 puts 'Two arguments'
 else
 puts 'Three arguments'
 end
 end
 end
end
Rectangle.new([10, 23], 4, 10)
Rectangle.new([10, 23], [14, 13])

The above code (p037rectangle.rb) is incomplete from the Rectangle
class viewpoint, but is enough to demonstrate how method overloading
can be achieved. Also remember that the initialize method takes in a
variable number of arguments.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 121

Overriding Methods

Method overriding, in object oriented programming, is a language
feature that allows a subclass to provide a specific implementation of a
method that is already provided by one of its super-classes. The
implementation in the subclass overrides (replaces) the implementation
in the super-class.

Here’s an example - p037xmtdovride.rb:

class A
 def a
 puts 'In class A'
 end
end

class B < A
 def a
 puts 'In class B'
 end
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 122

b = B.new
b.a

The method a in class B overrides the method a in class A.

Usage of super
The way super handles arguments, is as follows:

• When you invoke super with no arguments Ruby sends a message
to the parent of the current object, asking it to invoke a method
of the same name as the method invoking super. It automatically
forwards the arguments that were passed to the method from
which it’s called.

• Called with an empty argument list - super()—it sends no
arguments to the higher-up method, even if arguments were
passed to the current method.

• Called with specific arguments - super(a, b, c)—it sends exactly
those arguments.

An example (p038bicycle.rb) from Ruby for Rails book highlights this:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 123

class Bicycle
 attr_reader :gears, :wheels, :seats
 def initialize(gears = 1)
 @wheels = 2
 @seats = 1
 @gears = gears
 end
end

class Tandem < Bicycle
 def initialize(gears)
 super
 @seats = 2
 end
end
t = Tandem.new(2)
puts t.gears
puts t.wheels
puts t.seats
b = Bicycle.new
puts b.gears
puts b.wheels
puts b.seats

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 124

The output is:

>ruby p038bicycle.rb
2
2
2
1
2
1
>Exit code: 0

Redefining methods

(Adapted from David Black's book - Ruby For Rails)

Nothing stops you from defining a method twice. Program p038or.rb

class OR
 def mtd
 puts "First definition of method mtd"
 end
 def mtd
 puts "Second definition of method mtd"
 end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 125

end
OR.new.mtd

What happens when we call mtd on an instance of OR? Let’s find out:
OR.new.mtd
The printed result is Second definition of method mtd. The second
definition has prevailed: We see the output from that definition, not
from the first. When you override a method, the new version takes
precedence.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 126

Symbols
A symbol looks like a variable name but it’s prefixed with a colon.
Examples - :action, :line_items. You can think of symbols as string literals
that are magically turned into constants. Alternatively, you can consider
the colon to mean “thing named” so :id is “the thing named id.” You can
also think of :id as meaning the name of the variable id, and plain id as
meaning the value of the variable.

See the example: p039symbol.rb

p039symbol.rb
use the object_id method of class Object

A Symbol is the most basic Ruby object you can create. It’s just a
name and an internal ID. Symbols are useful because a given symbol
name refers to the same object throughout a Ruby program. Symbols
are more efficient than strings. Two strings with the same contents
are two different objects, but for any given name there is only one
Symbol object. This can save both time and memory.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 127

it returns an integer identifier for an object
puts "string".object_id
puts "string".object_id
puts :symbol.object_id
puts :symbol.object_id

The output when I ran the program on my PC was:

>ruby p039symbol.rb
21066960
21066930
132178
132178
>Exit code: 0

Therefore, when do we use a string versus a symbol?

• If the contents (the sequence of characters) of the object are
important, use a string

• If the identity of the object is important, use a symbol

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 128

A Symbol object is created by prefixing an operator, string, variable,
constant, method, class, module name with a colon. The symbol object
will be unique for each different name but does not refer to a particular
instance of the name, for the duration of a program’s execution. Thus, if
Fred is a constant in one context, a method in another, and a class in a
third, the Symbol :Fred will be the same object in all three contexts.

This can be illustrated by this simple program – p039xsymbol.rb:

class Test
 puts :Test.object_id.to_s
 def test
 puts :test.object_id.to_s

Ruby uses symbols, and maintains a Symbol Table to hold them.
Symbols are names - names of instance variables, names of methods,
names of classes. So if there is a method called control_movie, there
is automatically a symbol :control_movie. Ruby’s interpreted, so it
keeps its Symbol Table handy at all times. You can find out what’s on
it at any given moment by calling Symbol.all_symbols

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 129

 @test = 10
 puts :test.object_id.to_s
 end
end
t = Test.new
t.test

The output is:

>ruby p039xsymbol.rb
116458
79218
79218
>Exit code: 0

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 130

Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries)
are similar to arrays in that they are indexed collection of object
references. However, while you index arrays with integers, you can
index a hash with objects of any types: strings, regular expressions, and
so on. When you store a value in a hash, you actually supply two objects
– the index (normally called the key) and the value. You can
subsequently retrieve the value by indexing the hash with the same key.
The values in a hash can be objects of any type.

The example p040myhash.rb that follows uses hash literals: a list of key
=> value pairs between braces.

h = {'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine',
12 => 'dodecine'}
puts h.length # 3
puts h['dog'] # 'canine'
puts h
puts h[12]

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 131

The output is:

>ruby p040myhash.rb
4
canine
catfeline12dodecinedonkeyasininedogcanine
dodecine
>Exit code: 0

Compared with arrays, hashes have one significant advantage: they can
use any object as an index. However, their elements are not ordered, so
you cannot easily use a hash as a stack or a queue.

Hashes have a default value. This value is returned when an attempt is
made to access keys that do not exist in the hash. By default this value
is nil.

The Hash class has many methods and you can refer them here.

Using Symbols as Hash Keys

http://www.ruby-doc.org/core/classes/Hash.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 132

Whenever you would otherwise use a quoted string, use a symbol
instead. See the following example p041symbolhash.rb

people = Hash.new
people[:nickname] = 'IndianGuru'
people[:language] = 'Marathi'
people[:lastname] = 'Talim'

puts people[:lastname] # Talim

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 133

Exploring Time class

The Time class in Ruby has a powerful formatting function which can help
you represent the time in a variety of ways. The Time class contains
Ruby’s interface to the set of time libraries written in C. Time zero for
Ruby is the first second GMT of January 1, 1970. Ruby’s DateTime class is
superior to Time for astronomical and historical applications, but you can
use Time for most everyday programs.

The strftime function is modelled after C’s printf. The p042time.rb
program shows some of these functions.

First get the current local time
t = Time.now
to get day, month and year with century
also hour, minute and second
puts t.strftime("%d/%m/%Y %H:%M:%S")

You can use the upper case A and B to get the full
name of the weekday and month, respectively
puts t.strftime("%A")
puts t.strftime("%B")

http://www.ruby-doc.org/core/classes/Time.html#M000258�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 134

You can use the lower case a and b to get the abbreviated
name of the weekday and month, respectively
puts t.strftime("%a")
puts t.strftime("%b")

24 hour clock and Time zone name
puts t.strftime("at %H:%M %Z")

The output is:

>ruby p042time.rb
10/09/2006 10:06:31
Sunday
September
Sun
Sep
at 10:06 India Standard Time
>Exit code: 0

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 135

Exceptions
An exception is a special kind of object, an instance of the class
Exception or a descendant of that class. Raising an exception means
stopping normal execution of the program and either dealing with the
problem that’s been encountered or exiting the program completely.

Which of these happens - dealing with it or aborting the program –
depends on whether you have provided a rescue clause. If you haven’t
provided such a clause, the program terminates; if you have, control
flows to the rescue clause.

Raising an Exception
Ruby has some predefined classes – Exception and its children – that help
you to handle errors that can occur in your program. The following figure
shows the Ruby exception hierarchy.

http://www.ruby-doc.org/core/classes/Exception.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 136

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 137

Reference: The above figure is from the Programming Ruby book.

The following method raises an exception whenever it’s called. It’s
second message will never be printed. Program p043raise.rb

def raise_exception
 puts 'I am before the raise.'
 raise 'An error has occured'
 puts 'I am after the raise'
end
raise_exception

The output is:

>ruby p043raise.rb
I am before the raise.
raise.rb:3:in `raise_exception': An error has occured
(RuntimeError)
 from raise.rb:6
>Exit code: 1

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 138

The raise method is from the Kernel module. By default, raise creates an
exception of the RuntimeError class. To raise an exception of a specific
class, you can pass in the class name as an argument to raise. Refer
program p044inverse.rb

def inverse(x)
 raise ArgumentError, 'Argument is not numeric' unless x.is_a?
Numeric
 1.0 / x
end
puts inverse(2)
puts inverse('not a number')

The output is:

>ruby p044inverse.rb
0.5
inverse.rb:2:in `inverse': Argument is not numeric (ArgumentError)
 from inverse.rb:6
>Exit code: 1

Remember, methods that act as queries are often named with a trailing
?. is_a? is a method in the Object class and returns true or false. The

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 139

unless modifier when tacked at the end of a normal statement means
execute the preceding expression unless condition is true.

To be even more specific about an error, you can define your own
Exception subclass:

class NotInvertibleError < StandardError
end

Handling an Exception
To do exception handling, we enclose the code that could raise an
exception in a begin/end block and use one or more rescue clauses to tell
Ruby the types of exceptions we want to handle.

The program p045handexcp.rb illustrates this.

def raise_and_rescue
 begin
 puts 'I am before the raise.'
 raise 'An error has occured.'
 puts 'Iam after the raise.'
 rescue

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 140

 puts 'I am rescued.'
 end
 puts 'I am after the begin block.'
end
raise_and_rescue

The output is:

>ruby p045handexcp.rb
I am before the raise.
I am rescued.
I am after the begin block.
>Exit code: 0

Observe that the code interrupted by the exception never gets run. Once
the exception is handled, execution continues immediately after the
begin block that spawned it.

If you write a rescue clause with no parameter list, the parameter
defaults to StandardError. Each rescue clause can specify multiple
exceptions to catch. At the end of each rescue clause you can give Ruby
the name of a local variable to receive the matched exception. The
parameters to the rescue clause can also be arbitrary expressions

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 141

(including method calls) that return an Exception class. If we use raise
with no parameters, it re-raises the exception.

You can stack rescue clauses in a begin/rescue block. Exceptions not
handled by one rescue clause will trickle down to the next:

begin
 # …
rescue OneTypeOfException
 # …
rescue AnotherTypeOfException
 # …
end

For each rescue clause in the begin block, Ruby compares the raised
Exception against each of the parameters in turn. The match will
succeed if the exception named in the rescue clause is the same as the
type of the currently thrown exception, or is a superclass of that
exception.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 142

If you want to interrogate a rescued exception, you can map the
Exception object to a variable within the rescue clause, as shown in the
program p046excpvar.rb

begin
 raise 'A test exception.'
rescue Exception => e
 puts e.message
 puts e.backtrace.inspect
end

The output is:

>ruby p046excpvar.rb
A test exception.
["excpvar.rb:2"]
>Exit code: 0

If you need the guarantee that some processing is done at the end of a
block of code, regardless of whether an exception was raised then the
ensure clause can be used. ensure goes after the last rescue clause and
contains a chunk of code that will always be executed as the block
terminates. The ensure block will always run.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 143

Some common exceptions are shown in the following table (courtesy the
book Ruby For Rails):

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 144

Assignment: Previously you had written a program that swapped the
contents of two text files. Modify that program to include exception
handling.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 145

Access Control

The only easy way to change an object’s state in Ruby is by calling one
of its methods. Control access to the methods, and you have controlled
access to the object. A good rule of the thumb is never to expose
methods that could leave an object in an invalid state.

Ruby gives you three levels of protection.

• Public methods can be called by everyone – no access control is
enforced. A class’s instance methods (these do not belong only to
one object; instead, every instance of the class can call them) are
public by default; anyone can call them. The initialize method is
always private.

• Protected methods can be invoked only by objects of the
defining class and its subclasses. Access is kept within the family.

• Private methods cannot be called with an explicit receiver – the
receiver is always self. This means that private methods can be
called only in the context of the current object; you cannot
invoke another object’s private methods.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 146

Access control is determined dynamically, as the program runs, not
statically. You will get an access violation only when the code attempts
to execute the restricted method.

Let’s refer to the program p047classaccess.rb below.

class ClassAccess
 def m1 # this method is public
 end
 protected # subsequent methods will be 'protected’
 def m2 # this method is protected
 end
 def m3 # this method is protected
 end
 private # subsequent methods will be 'private’
 def m4 # this method is private
 end
 def m5 # this method is private
 end
end

Alternatively, you can set access levels of named methods by listing
them as arguments to the access control functions.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 147

class ClassAccess
 def m1 # this method is public
 end
... and so on
public :m1
protected :m2, :m3
private :m4, :m5
end

Peter Cooper the author of Beginning Ruby has this example
(p047zclassaccess.rb) for ‘protected’ access control:

class Person
 def initialize(age)
 @age = age
 end
 def age
 @age
 end
 def age_difference_with(other_person)
 (self.age - other_person.age).abs
 end
 protected :age

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 148

end
fred = Person.new(34)
chris = Person.new(25)
puts chris.age_difference_with(fred)
puts chris.age

The output is:

>ruby p047zclassaccess.rb
9
p047zclassaccess.rb:16: protected method `age' called for
#<Person:0x2bae148 @age=25> (NoMethodError)
>Exit code: 1

The preceding example uses a protected method so that the age method
cannot be used directly, except within any method belonging to an
object of the Person class. However, if age were made private, the
preceding example would fail because other_person.age would be
invalid. That’s because private makes methods accessible only by
methods of a specific object.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 149

Note that when you use age directly, on the last line, Ruby throws an
exception.

Instance variables are not directly accessible outside the class.

Top-level methods
When you write code at the top level, Ruby provides you automatically
with a default self. This object is a direct instance of Object. When you
ask it to describe itself
puts self

it says:
main
The object main is the current object as soon as your program starts up.

Suppose you define a method at the top level:

def talk
 puts "Hello"
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 150

Who, or what, does the method belong to? It’s not inside a class or
module definition block, so it doesn’t appear to be an instance method
of a class or module. It’s not attached to any particular object (as in def
obj.talk). What is it? Top-level methods are private instance methods of
the Kernel module.

Because top-level methods are private, you can’t call them with an
explicit receiver; you can only call them by using the implied receiver,
self. That means self must be an object on whose method search path the
given top-level method lies. But every object’s search path includes the
Kernel module, because the class Object mixes in Kernel, and every
object’s class has Object as an ancestor. That means you can always call
any top-level method, wherever you are in your program. It also means
you can never use an explicit receiver on a top-level method.

From our earliest examples onward, we’ve been making bareword-style
calls to puts and print, like this one:
puts "Hello"

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 151

puts and print are built-in private instance methods of Kernel. That’s
why you can - indeed, must - call them without a receiver.

Accessor methods
Encapsulation is achieved when the instance variables are private to an
object and you have public getters and setters (in Ruby, we call them
attribute readers and attribute writers). To make instance variables
available, Ruby provides accessor methods that return their values. The
program p048accessor.rb illustrates the same.

p048accessor.rb
First without accessor methods
class Song
 def initialize(name, artist)
 @name = name
 @artist = artist
 end
 def name
 @name
 end
 def artist
 @artist
 end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 152

end

song = Song.new("Brazil", "Ricky Martin")
puts song.name
puts song.artist

Now, with accessor methods
class Song
 def initialize(name, artist)
 @name = name
 @artist = artist
 end
 attr_reader :name, :artist # create reader only
 # For creating reader and writer methods
 # attr_accessor :name
 # For creating writer methods
 # attr_writer :name
end

song = Song.new("Brazil", "Ricky Martin")
puts song.name
puts song.artist

Are instance variables inherited by a sub-class?

David Black the author of Ruby for Rails has this to say: Instance
variables are per-object, not per-class, and they're not inherited. But if

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 153

a method uses one, and that method is available to subclasses, then it
will still use the variable -- but "the variable" in the sense of one per
object. See the following program - p049instvarinherit.rb:

class C
 def initialize
 @n = 100
 end

 def increase_n
 @n *= 20
 end
end

class D < C
 def show_n
 puts "n is #{@n}"
 end
end

d = D.new
d.increase_n
d.show_n

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 154

The output is:

>ruby p049instvarinherit.rb
n is 2000
>Exit code: 0

The @n in D's methods is the same (for each instance) as the one in C.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 155

Syntactic sugar

Programmers use the term syntactic sugar to refer to special rules that
let you write your code in a way that doesn’t correspond to the normal
rules but that is easier to remember how to do and looks better.

Let’s say we want to set the name of a dog. As a starting point, name
can be set along with everything else at object creation time, as in
example – p050newdog.rb

class NewDog
 def initialize(breed, name)
 @breed = breed
 @name = name
 end
 attr_reader :breed, :name # create reader only
end

nd = NewDog.new('Doberman', 'Benzy')
puts nd.name

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 156

Let’s write a set_name method that allows us to set, or reset, the name
of an existing dog. We’ll also rewrite the initialize method so that it
doesn’t expect a name:

class NewDog
 def initialize(breed)
 @breed = breed
 end
 attr_reader :breed, :name # create reader only

 # setter method
 def set_name(nm)
 @name = nm
 end
end

nd = NewDog.new('Doberman')
nd.set_name('Benzy')
puts nd.name

Ruby allows you to define methods that end with an equal sign (=). Let’s
replace set_name with a method called name=

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 157

def name=(nm)
 @name = nm
end

name= does exactly what set_name did, and in spite of the slightly odd
method name, you can call it just like any other method:

nd.name=(‘Benzy’)

Here’s the modified example –
class NewDog
 def initialize(breed)
 @breed = breed
 end
 attr_reader :breed, :name # create reader only

 # setter method
 def name=(nm)
 @name = nm
 end
end

nd = NewDog.new('Doberman')
nd.name=('Benzy')

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 158

puts nd.name

The equal sign gives you that familiar “assigning a value to something”
feeling, so you know you’re dealing with a setter method. It still looks
odd, but Ruby takes care of that, too.

Ruby gives you some syntactic sugar for calling setter methods. Instead
of this
nd.name=('Benzy')

you’re allowed to do this:
nd.name = 'Benzy'

When the interpreter sees the message “name” followed by “ =”, it
automatically ignores the space before equal sign and reads the single
message “name=” - a call to the method whose name is name=, which
we’ve defined. As for the right-hand side: parentheses are optional on
single arguments to methods, so you can just put ‘Benzy’ there and it
will be picked up as the argument to the name= method.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 159

Method calls using the equal-sign syntax are common in Rails
applications.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 160

Mutable and Immutable Objects
Mutable objects are objects whose state can change. Immutable objects
are objects whose state never changes after creation.

Immutable objects have many desirable properties:

• Immutable objects are thread-safe. Threads cannot corrupt what
they cannot change.

• Immutable objects make it easier to implement encapsulation. If
part of an object’s state is stored in an immutable object, then
accessor methods can return that object to outside callers,
without fear that those callers can change the object’s state.

• Immutable objects make good hash keys, since their hash codes
cannot change.

In Ruby, Mutability is a property of an instance, not of an entire class.
Any instance can become immutable by calling freeze.

Freezing Objects

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 161

The freeze method in class Object prevents you from changing an object,
effectively turning an object into a constant. After we freeze an object,
an attempt to modify it results in TypeError. The following program
(p050xfreeze.rb) illustrates this:

str = 'A simple string. '
str.freeze
begin
 str << 'An attempt to modify.'
rescue => err
 puts "#{err.class} #{err}"
end
The output is - TypeError can't modify frozen string

However, freeze operates on an object reference, not on a variable.
This means that any operation resulting in a new object will work. This
is illustrated by the following example:

str = 'Original string - '
str.freeze

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 162

str += 'attachment'
puts str
Output is - Original string - attachment

The expression str + 'attachment' is evaluated to a new object, which is
then assigned to str. The object is not changed, but the variable str now
refers to a new object. A method frozen? tells you whether an object is
frozen or not.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 163

Object Serialization

Java features the ability to serialize objects, letting you store them
somewhere and reconstitute them when needed. Ruby calls this kind of
serialization marshaling.

We will write a basic class p051gamecharacters.rb just for testing
marshalling.

class GameCharacter
 def initialize(power, type, weapons)
 @power = power
 @type = type
 @weapons = weapons
 end
 attr_reader :power, :type, :weapons
end

The program p052dumpgc.rb creates an object of the above class and
then uses Marshal.dump to save a serialized version of it to the disk.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 164

require 'p051gamecharacters.rb'
gc = GameCharacter.new(120, 'Magician', ['spells',
'invisibility'])
puts gc.power.to_s + ' ' + gc.type + ' '
gc.weapons.each do |w|
 puts w + ' '
end

File.open('game', 'w+') do |f|
 Marshal.dump(gc, f)
end

The program p053loadgc.rb uses Marshal.load to read it in.

require 'p051gamecharacters.rb'
File.open('game') do |f|
 @gc = Marshal.load(f)
end

puts @gc.power.to_s + ' ' + @gc.type + ' '
@gc.weapons.each do |w|
 puts w + ' '
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 165

Constants
A Ruby constant is a reference to an object. Constants are created when
they are first assigned to (as per the rules below). In the current
implementation of Ruby, reassignment of a constant generates a
warning but not an error as shown in this trivial example –
p054constwarn.rb

p054constwarn.rb
A_CONST = 10
A_CONST = 20

Produces a warning:

p054constwarn.rb:3: warning: already initialized constant A_CONST

Although constants should not be changed, you can modify the internal
states of the objects they reference, as seen in p055constalter.rb

p055constalter.rb
A_CONST = "Doshi"
B_CONST = A_CONST

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 166

A_CONST[0] = "J" # alter string referenced by constant
puts A_CONST # displays Joshi
puts B_CONST # also displays Joshi

You can find examples of this kind of operation (modify) in the Rails
source code, where constants figure prominently and the objects they
represent undergo fairly frequent changes.

• Constants defined within a class or module may be accessed

anywhere within the class or module.
• Outside the class or module, they may be accessed using the scope

operator, :: prefixed by an expression that returns the appropriate
class or module.

• Constants defined outside any class or module may be accessed as it
is or by using the scope operator with no prefix.

• Constants may not be defined in methods.
• Constants may be added to existing classes and modules from the

outside by using the class or module name and the scope operator
before the constant name. The program p056const.rb shows all of
this.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 167

p056const.rb
OUTER_CONST = 99
class Const
 def get_const
 CONST
 end
 CONST = OUTER_CONST + 1
end
puts Const.new.get_const
puts Const::CONST
puts ::OUTER_CONST
puts Const::NEW_CONST = 123

Another elaborate example on own methods in a class is
p057mymethods2.rb

Here we shall also see how to define class methods.

variables and methods start lowercase
$glob = 5 # global variables start with $
class TestVar # class name constant, start uppercase
 @@cla = 6 # class variables start with @@
 CONST_VAL = 7 # constant style, all caps, underscore
 def initialize(x)
 @inst = x # instance variables start with @
 @@cla += 1 # each object shares @@cla

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 168

 end
 def self.cla # class method, getter
 @@cla
 end
 def self.cla=(y) # class method, setter, also TestVar.
 @@cla = y
 end
 def inst # instance method, getter
 @inst
 end
 def inst=(i) # instance method, setter
 @inst = i
 end
end
puts $glob
test = TestVar.new(3)
puts TestVar.cla # calls getter
puts test.inspect # gives object ID and instance vars
TestVar.cla = 4 # calls setter
test.inst=8 # calls setter
puts TestVar.cla
puts test.inst # calls getter
other = TestVar.new(17)
puts other.inspect
puts TestVar.cla

Some questions asked by the members

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 169

Can we have an anonymous class in Ruby?
Yes. Refer page 382 of the second edition of the book Programming
Ruby, by Dave Thomas

Does Ruby have Multiple Inheritance?
Ruby uses modules to implement mix-ins that simulate multiple
inheritance.

http://www.pragmaticprogrammer.com/titles/ruby/index.html�
http://www.pragmaticprogrammer.com/titles/ruby/index.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 170

Modules/Mixins

Modules are similar to classes in that they hold a collection of methods,
constants, and other module and class definitions. Unlike classes, you
cannot create objects based on modules; instead, you specify that you
want the functionality of a particular module to be added to the
functionality of a class, or of a specific object.

Modules serve two purposes:

• First they act as namespace, letting you define methods whose
names will not clash with those defined elsewhere. The examples
p058mytrig.rb, p059mymoral.rb and p060usemodule.rb illustrates
this.

p058mytrig.rb
module Trig
 PI = 3.1416
 # class methods
 def Trig.sin(x)
 # ...
 end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 171

 def Trig.cos(x)
 # ...
 end
end

p059mymoral.rb
module Moral
 VERY_BAD = 0
 BAD = 1
 def Moral.sin(badness)
 # ...
 end
end

p060usemodule.rb
require 'p058mytrig'
require 'p059mymoral'
y = Trig.sin(Trig::PI/4)
wrongdoing = Moral.sin(Moral::VERY_BAD)

• Second, they allow you to share functionality between classes – if
a class mixes in a module, that module’s instance methods
become available as if they had been defined in the class. They
get mixed in. The program p061mixins.rb illustrates this:

p061mixins.rb

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 172

module D
 def initialize(name)
 @name =name
 end
 def to_s
 @name
 end
end

module Debug
 include D
 # Methods that act as queries are often
 # named with a trailing ?
 def who_am_i?
 "#{self.class.name} (\##{self.object_id}): #{self.to_s}"
 end
end

class Phonograph
 # the include statement simply makes a reference
 # to a named module

 # If that module is in a separate file, use require
 # to drag the file in

 # before using include
 include Debug
 # ...
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 173

class EightTrack
 include Debug
 # ...
end

ph = Phonograph.new("West End Blues")
et = EightTrack.new("Real Pillow")
puts ph.who_am_i?
puts et.who_am_i?

Some more examples –

p062stuff.rb
A module may contain constants, methods and classes.
No instances

SYNTAX OF require/load VS. SYNTAX OF include - You may have noticed
that when you use require or load, you put the name of the item you’re
requiring or loading in quotation marks, but with include, you don’t.
require and load take strings as their arguments, whereas include takes
the name of a module, in the form of a constant. The requirements to
require and load are usually literal strings (in quotation marks), but a
string in a variable will also work.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 174

module Stuff
 C = 10
 def Stuff.m(x) # prefix with the module name for a class method
 C*x
 end
 def p(x) # an instance method, mixin for other classes
 C + x
 end
 class T
 @t = 2
 end
end
puts Stuff::C # Stuff namespace
puts Stuff.m(3) # like a class method
x = Stuff::T.new
uninitialized constant error, if you try the following
puts C

p063stuffusage.rb
require ‘p062stuff' # loads Stuff module from p062stuff.rb
 # $: is a system variable -- contains the path
 # for loads
class D
 include Stuff # refers to the loaded module
 puts Stuff.m(4)
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 175

d = D.new
puts d.p(5) # method p from Stuff
puts $: # array of folders to search for load
$: << "c:/" # add a folder to the load path
puts $:
puts Stuff.m(5) # Stuff class methods not called from D object

The Rails source code makes heavy use of modules, in particular the
technique of reopening the definition bodies of both classes and
modules.

The main difference between inheriting from a class and mixing in a
module is that you can mix in more than one module. No class can
inherit from more than one class. In cases where you want numerous
extra behaviors for a class’s instances—and you don’t want to stash
them all into the class’s superclass—you can use modules to organize
your code in a more granular way. Each module can add something
different to the methods available through the class. Class names
tend to be nouns, while module names are often adjectives (like Stack
versus Stacklike).

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 176

Self - The current/default object
At every point when your program is running, there is one and only one
self- the current or default object accessible to you in your program. You
can tell which object self represents by following a small set of rules.

Top level context
The top level context is before you have entered any other context, such
as a class definition. Therefore the term top level refers to program
code written outside of a class or module. If you open a new text file
and type:
x = 1
you have created a top level local variable x. If you type
def m
end
you have created a top level method - a method that is not defined as
an instance method of a particular class or module.
Ruby provides you with a start-up self at the top level. If you type:
puts self it displays main - a special term the default self object uses to
refer to itself.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 177

Self inside class and module definitions
In a class or module definition, self is the class or module object.

p063xself1.rb
class S
 puts 'Just started class S'
 puts self
 module M
 puts 'Nested module S::M'
 puts self
 end
 puts 'Back in the outer level of S'
 puts self
end

The output is:

>ruby p063xself1.rb

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 178

Just started class S
S
Nested module S::M
S::M
Back in the outer level of S
S
>Exit code: 0

Self in instance method definitions

At the time the method definition is executed, the most you can say is
that self inside this method will be some future object that has access to
this method.

p063xself2.rb
class S
 def m
 puts 'Class S method m:'
 puts self
 end
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 179

s = S.new
s.m

The output is:

>ruby p063xself2.rb
Class S method m:
#<S:0x2835908>
>Exit code: 0

The output #<S:0x2835908> is Ruby's way of saying "an instance of S".

Self in singleton-method and class-method definitions

Singleton methods - those attached to a particular object can be called
by only one object. When a singleton method is executed, self is the
object that owns the method, as shown below:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 180

p063xself3.rb
obj = Object.new
def obj.show
 print 'I am an object; '
 puts "here's self inside a singleton method of mine:"
 puts self
end
obj.show
print 'And inspecting obj from outside, '
puts "to be sure it's the same object:"
puts obj

The output of the above example is:

>ruby p063xself3.rb
I am in object: here's self inside a singleton method of mine:
#<Object:0x2835688>
And inspecting obj from outside, to be sure it's the same object:
#<Object:0x2835688>
>Exit code: 0

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 181

Class methods are defined as singleton methods for class objects. Refer
the following program:

p063xself4.rb
class S
 def S.x
 puts "Class method of class S"
 puts self
 end
end
S.x

The output is:

>ruby p063xself4.rb
Class method of class S
S
>Exit code: 0

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 182

self inside a singleton method (a class method, in this case) is the object
whose singleton method it is.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 183

Regular Expressions

Regular expressions, though cryptic, is a powerful tool for working with
text. Ruby has this feature built-in. It’s used for pattern-matching and
text processing.

Many people find regular expressions difficult to use, difficult to read,
un-maintainable, and ultimately counterproductive. You may end up
using only a modest number of regular expressions in your Rails
applications. Becoming a regular expression wizard isn’t a prerequisite
for Rails programming. However, it’s advisable to learn at least the
basics of how regular expressions work.

A regular expression is simply a way of specifying a pattern of
characters to be matched in a string. In Ruby, you typically create a
regular expression by writing a pattern between slash characters
(/pattern/). In Ruby, regular expressions are objects (of type Regexp)
and can be manipulated as such. // is a regular expression and an
instance of the Regexp class, as shown below.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 184

//.class # Regexp

You could write a pattern that matches a string containing the text Pune
or the text Ruby using the following regular expression:
/Pune|Ruby/

The forward slashes delimit the pattern, which consists of the two things
we are matching, separated by a pipe character (|). The pipe character
means “either the thing on the right or the thing on the left,” in this
case Pune or Ruby.

The simplest way to find out whether there’s a match between a pattern
and a string is with the match method. You can do this in either
direction: Regular expression objects and string objects both respond to
match. If there’s no match, you get back nil. If there’s a match, it returns
an instance of the class MatchData. We can also use the match operator =~
to match a string against a regular expression. If the pattern is found in
the string, =~ returns its starting position, otherwise it returns nil.

/Ruby/.match("The future is Ruby")

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 185

it returns <MatchData:0x2c9b024>
"The future is Ruby" =~ /Ruby/
it returns 14

The possible components of a regular expression include the following:

Literal characters
Any literal character you put in a regular expression matches itself in
the string.
/a/
This regular expression matches the string “a”, as well as any string
containing the letter “a”.

Some characters have special meanings to the regexp parser. When you
want to match one of these special characters as itself, you have to
escape it with a backslash (\). For example, to match the character ?
(question mark), you have to write this:
/\?/
The backslash means “don’t treat the next character as special; treat it
as itself.”

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 186

The special characters include ^, $, ? , ., /, \, [,], {, }, (,), +, and *.

The wildcard character . (dot)
Sometimes you’ll want to match any character at some point in your
pattern. You do this with the special wildcard character . (dot). A dot
matches any character with the exception of a newline.

This regular expression
/.ejected/
matches both “dejected” and “rejected”. It also matches “%ejected”
and
“8ejected”. The wildcard dot is handy, but sometimes it gives you more
matches than you want. However, you can impose constraints on
matches while still allowing for multiple possible strings, using character
classes.

Character classes
A character class is an explicit list of characters, placed inside the
regular expression in square brackets:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 187

/[dr]ejected/
This means “match either d or r, followed by ejected. This new pattern
matches either “dejected” or “rejected” but not “&ejected”. A
character class is a kind of quasi-wildcard: It allows for multiple possible
characters, but only a limited number of them.

Inside a character class, you can also insert a range of characters. A
common case is this, for lowercase letters:
/[a-z]/

To match a hexadecimal digit, you might use several ranges inside a
character class:
/[A-Fa-f0-9]/
This matches any character a through f (upper- or lowercase) or any
digit.

Sometimes you need to match any character except those on a special
list. You may, for example, be looking for the first character in a string
that is not a valid hexadecimal digit.
You perform this kind of negative search by negating a character class.
To do so, you put a caret (^) at the beginning of the class. Here's the

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 188

character class that matches any character except a valid hexadecimal
digit:
/[^A-Fa-f0-9]/

Some character classes are so common that they have special
abbreviations.

Special escape sequences for common character classes
To match any digit, you can do this:
/[0-9]/
But you can also accomplish the same thing more concisely with the
special escape sequence \d:
/\d/

Two other useful escape sequences for predefined character classes are
these:
\w matches any digit, alphabetical character, or underscore (_).
\s matches any whitespace character (space, tab, newline).

Each of these predefined character classes also has a negated form. You
can match any character that is not a digit by doing this:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 189

/\D/

Similarly, \W matches any character other than an alphanumeric
character or underscore, and \S matches any non-whitespace character.

A successful match returns a MatchData object.

Every match operation either succeeds or fails. Let’s start with the
simpler case: failure. When you try to match a string to a pattern, and
the string doesn’t match, the result is always nil:
/a/.match("b")
nil
This nil stands in for the false or no answer when you treat the match as
a true/false test.

Unlike nil, the MatchData object returned by a successful match has a
Boolean value of true, which makes it handy for simple match/no-match
tests. Beyond this, however, it also stores information about the match,
which you can pry out of them with the appropriate methods: where the
match began (at what character in the string), how much of the string it
covered, what was captured in the parenthetical groups, and so forth.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 190

To use the MatchData object, you must first save it. Consider an example
where we want to pluck a phone number from a string and save the
various parts of it (area code, exchange, number) in groupings. Example
p064regexp.rb

string = "My phone number is (123) 555-1234."
phone_re = /\((\d{3})\)\s+(\d{3})-(\d{4})/
m = phone_re.match(string)
unless m
 puts "There was no match..."
 exit
end
print "The whole string we started with: "
puts m.string
print "The entire part of the string that matched: "
puts m[0]
puts "The three captures: "
3.times do |index|
 puts "Capture ##{index + 1}: #{m.captures[index]}"
end
puts "Here's another way to get at the first capture:"
print "Capture #1: "
puts m[1]

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 191

In this code, we use the string method of MatchData (puts m.string) to get
the entire string on which the match operation was performed. To get
the part of the string that matched our pattern, we address the
MatchData object with square brackets, with an index of 0 (puts m[0]). We
also use the times method (3.times do |index|) to iterate exactly three
times through a code block and print out the submatches (the
parenthetical captures) in succession. Inside that code block, a method
called captures fishes out the substrings that matched the parenthesized
parts of the pattern. Finally, we take another look at the first capture,
this time through a different technique: indexing the MatchData object
directly with square brackets and positive integers,
each integer corresponding to a capture.

Here’s the output:

>ruby p064regexp.rb
The whole string we started with: My phone number is (123) 555-
1234.
The entire part of the string that matched: (123) 555-1234
The three captures:
Capture #1: 123
Capture #2: 555

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 192

Capture #3: 1234
Here's another way to get at the first capture:
Capture #1: 123
>Exit code: 0

Read the Ruby-centric regular expression tutorial here, for a more
detailed coverage on regular expressions.

The above topic has been adapted from the Ruby for Rails book.

http://www.regular-expressions.info/ruby.html�
http://www.manning.com/black/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 193

Unit Testing

Unit testing is a method of testing your code in chunks -- typically
methods. You write individual tests, which you collect into test cases.
You bundle these test cases into a test suite. Because the tests are small
and run quickly, you can run them frequently to ensure that your code
works correctly. Most test runners (an interface for running your tests)
even allow you to select a subset of your tests to run instead of running
every test every time.

Basically, unit testing helps you write code more quickly and with more
confidence. You write smaller units of code at a time, reducing the
number of bugs you introduce. You see the bugs immediately as a failing
test and know exactly where to look for them in the code.

It might seem backwards, but coding test first really does mean that you
write your tests before you start writing code. Doing so gives you some
boundaries for your coding: You know what to write and when to stop
writing code. Ruby comes with one preinstalled, Nathaniel Talbott’s

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 194

Test::Unit framework that actually does most of the heavy lifting to make
this process work. It creates the test runner and collects the tests into
cases and suites for you.

A rule of thumb: Test anything that's likely to fail. You want to write
tests to ensure that your method does what it's supposed to do with
normal input. You should check that invalid input will be handled
correctly. Finally, test your boundary conditions -- the extreme edges of
your expected input.

The steps to writing unit tests are:

• require ‘test/unit’ and set your test class to inherit from
Test::Unit::TestCase

• Write methods prefixed with test_
• assert things you decide should be true
• Run your tests and fix the bugs until everything passes

Here’s a bare-bones testing implementation – p065my_first_test.rb

require 'test/unit'

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 195

class MyFirstTest < Test::Unit::TestCase
 def test_for_truth
 assert true
 end
end

As you can see above, your testing class (which is called a test suite)
inherits from Test::Unit::TestCase and each of your tests is a method called
test_that_thing_I_wanted_to_test. Within those tests, you use assertions
to test whether conditions are correct in each situation.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 196

Let's take a look at what kinds of assertions exist for you to test with.
Nearly every assertion takes an optional message string, which is used
to provide more information in the case of test failure.

The first group of assertions covers the values returned by the method
under test:

• assert(boolean, [message])

• assert_equal(expected, actual, [message])

• assert_not_equal(expected, actual, [message])

• assert_in_delta(expected_float, actual_float, delta, [message])

• assert_match(pattern, string, [message])

• assert_no_match(regexp, string, [message])

• assert_same(expected, actual, [message])

• assert_not_same(expected, actual, [message])

The second group of assertions tests which type of object you're
dealing with:

• assert_nil(object, [message])

• assert_not_nil(object, [message])

• assert_instance_of(klass, object, [message])

• assert_kind_of(klass, object, [message])

The third group of assertions covers an object's ability to respond to a
method or operator:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 197

Keeping in mind that coding test first really does mean that you write
your tests before you start writing code, we now write a test suite
p066testradius.rb for a simple class p067radius.rb that stores the radius
of a circle.

p066testradius.rb
require 'test/unit'
require 'p067radius'
class TestRadius < Test::Unit::TestCase
 def test_key
 robj = Radius.new('78')
 assert_equal('78', robj.key)
 end
end

Let's step through the example and see what needs to be done. Lines 1
and 2 pull in the libraries you need: Test::Unit (line 1) and radius (line
2). Lines 3-8 define the first TestCase, a class for testing Radius objects.
In line 3, you're making the new class a subclass of Test::Unit::TestCase.
Lines 4-7 define your first test, the test_key method of the TestRadius
class.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 198

The test itself consists of a bit of fixture code -- creating a radius object
(robj) -- and an assertion (more on this later). This assertion just says,
"The result of calling the key method on the Radius object is equal to
the string 78."

Because you're writing your application test first, you've written these
tests before you've written any code. The test suite actually forms a
Ruby program on its own. When you try to run it for the first time, it will
fail:

>ruby p066testradius.rb
c:/ruby/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:27:in
`gem_original_require': no such file to load -- radius (LoadError)
 from
c:/ruby/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:27:in
`require'
 from p066testradius.rb:2
>Exit code: 1

Fortunately, this problem is easy to fix. Simply create an empty
p067radius.rb file so you can load it when you run your tests. Running
the test again gives:

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 199

>ruby p066testradius.rb
Loaded suite p066testradius
Started
E
Finished in 0.0 seconds.

 1) Error:
test_key(TestRadius):
NameError: uninitialized constant TestRadius::Radius
 p066testradius.rb:5:in `test_key'

1 tests, 0 assertions, 0 failures, 1 errors
>Exit code: 1
Better, but still not quite what you want. This error message means that
your test has no Radius class to use. So, define the Radius class as
follows:

class Radius
end

Running your test suite again gives:

>ruby p066testradius.rb
Loaded suite p066testradius

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 200

Started
E
Finished in 0.0 seconds.

 1) Error:
test_key(TestRadius):
ArgumentError: wrong number of arguments (1 for 0)
 p066testradius.rb:5:in `initialize'
 p066testradius.rb:5:in `test_key'

1 tests, 0 assertions, 0 failures, 1 errors
>Exit code: 1

To fix these errors, you're going to have to write some actual code.
When you stepped away from the test suite, it still generated errors
because there wasn't a real initializer. You can fix that by writing an
initializer for the object.

class Radius
 def initialize(key)
 @key = key
 end
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 201

Lines 2 and 3 make up the initializer method. This method takes an
argument (called key) and sets an instance variable (called @key) to its
value. When you run the test suite again, you get:

>ruby p066testradius.rb
Loaded suite p066testradius
Started
E
Finished in 0.0 seconds.

 1) Error:
test_key(TestRadius):
NoMethodError: undefined method `key' for #<Radius:0x2cc6224
@key="78">
 p066testradius.rb:6:in `test_key'

1 tests, 0 assertions, 0 failures, 1 errors
>Exit code: 1

You're almost there. The next step is to create the getter method key.
Ruby makes this process easy. Your whole getter is shown on line 2:

class Radius
 attr_reader :key
 def initialize(key)

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 202

 @key = key
 end
end

You've written just enough code to pass your first test. The Radius class
can be initialized (with a key) and has a getter method that returns the
key. Now when you run your test suite, you see:

>ruby p066testradius.rb
Loaded suite p066testradius
Started
.
Finished in 0.0 seconds.

1 tests, 1 assertions, 0 failures, 0 errors
>Exit code: 0

Consider writing some additional tests to make sure your code doesn't
fail. This method is simple, but what happens if you pass in a key that's
not a String object? If it's a Fixnum object, you can just convert it to a
String object. If it's anything else, your initialize should return nil. Here's
what your new tests should look like:

require 'test/unit'

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 203

require 'p067radius'
class TestRadius < Test::Unit::TestCase
 def test_key
 robj = Radius.new('78')
 assert_equal('78', robj.key)
 robj = Radius.new(78)
 assert_equal('78', robj.key)
 robj = Radius.new([78])
 assert_nil(robj.key)
 end
end

You know that this code will fail, but run it anyway. You should see the
following output:

>ruby p066testradius.rb
Loaded suite p066testradius
Started
F
Finished in 0.016 seconds.

 1) Failure:
test_key(TestRadius) [p066testradius.rb:8]:
<"78"> expected but was
<78>.

1 tests, 2 assertions, 1 failures, 0 errors

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 204

>Exit code: 1

The report from your last test run points out some new information.
First of all, you get to see what a failure looks like, instead of an error.
This failure is significant because it means that your test and code work,
but not correctly. You've got a bug. Second, you see that the report
shows only two assertions, even though you wrote three. The report
shows only two assertions because Test::Unit won't continue past the first
failure. (That way, you can focus on getting your code right one test at a
time.)

To fix the first failure, ensure that Fixnum objects are converted to String
objects by changing your code as follows:

class Radius
 attr_reader :key
 def initialize(key)
 @key = key
 if @key.class == Fixnum then
 @key = @key.to_s
 end
 end
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 205

Output generated by re-running your test suite indicates that you've
fixed the first of two bugs:

>ruby p066testradius.rb
Loaded suite p066testradius
Started
F
Finished in 0.015 seconds.

 1) Failure:
test_key(TestRadius) [p066testradius.rb:10]:
<nil> expected but was
<[78]>.

1 tests, 3 assertions, 1 failures, 0 errors
>Exit code: 1

Now you can fix the next failure with the code by converting arrays to
strings with the to_s method:

class Radius
 attr_reader :key
 def initialize(key)
 @key = key

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 206

 if @key.class == Fixnum then
 @key = @key.to_s
 end
 if @key.class != String then
 @key = nil
 end
 end
end

Now your code passes all your tests:

>ruby p066testradius.rb
Loaded suite p066testradius
Started
.
Finished in 0.0 seconds.

1 tests, 3 assertions, 0 failures, 0 errors
>Exit code: 0

Nearly every test you write for Radius uses the robj object. Instead of
creating the object each time, you can use a setup method to do it for
you. Test::Unit has two special methods: setup and teardown. If a test class
has a setup method, it will be called before any of the assertion

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 207

methods. Conversely, any clean-up code that is required after each test
method runs can be placed in a method named teardown.

Let’s add a setup method to our above test suite.

def setup
 robj = Radius.new('78')
end
def test_key
 assert_equal('78', robj.key)
additional functionality removed for brevity
end

The entire topic has been adapted from the articles on this subject by
Pat Eyler, Kevin Clark and the Ruby Cookbook.

An interesting read is The Power of Tests.

Assignment:
Write a test suite for a simple class called Student. This class stores a
first name, a last name, and an age: a person’s full name is available as
a computed value.

http://on-ruby.blogspot.com/�
http://glu.ttono.us/�
http://www.oreilly.com/catalog/rubyckbk/�
http://grayproductions.net/ruby/first_steps.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 208

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 209

Usage of TCPServer and TCPSocket Classes for Date and
Time

We shall develop sockets-based networking applications using the Ruby
language. You need to have a basic familiarity with BSD-style sockets.
Nowadays it is safe just to say "sockets". Previously one had to say "BSD
sockets" because there were multiple socket APIs fighting for
domination. Eventually, in the Unix/POSIX world the Berkely Software
Distribution (BSD) style socket API won out. Most *Nix programmers that
do networking use BSD style sockets.

If you are accustomed to programming network connections in C or C++,
you will be pleasantly surprised at how easy it is to program them in the
Ruby programming language.

Basic Networking
Let us talk a little bit about basic networking.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 210

Our discussion of networking focuses on both sides of a client-server
relationship. The client requests that some action be performed, and
the server performs the action and responds to the client. A common
implementation of the request-response model is between World Wide
Web browsers and World Wide Web servers. When a user selects a Web
site to browse through a browser (the client application), a request is
sent to the appropriate Web server (the server application). The server
normally responds to the client by sending an appropriate HTML Web
page.

Port
A port is not a physical device, but an abstraction to facilitate
communication between a server and a client.

Ports are described by a 16-bit integer value. Hence, a machine can
have a maximum of 65535 port numbers (ranging from 0 to 65535). The
port numbers are divided into three ranges: the Well Known Ports, the
Registered Ports, and the Dynamic and/or Private Ports. The Well Known
Ports are those from 0 through 1023 (for example, port no. 80 is for
http, port no. 25 is for smtp and so on). The Registered Ports are those

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 211

from 1024 through 49151. The Dynamic and/or Private Ports are those
from 49152 through 65535.

Internet Addresses
These are the numerical host addresses that consist of four bytes such as
132.163.4.102. The IP address 127.0.0.1 (localhost) is a special address,
called the local loopback address, which denotes the local machine.

Sockets
A socket represents a single connection between two network
applications. These two applications nominally run on different
computers, but sockets can also be used for inter-process
communication on a single computer. Applications can create multiple
sockets for communicating with each other. Sockets are bidirectional,
meaning that either side of the connection is capable of both sending
and receiving data.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 212

Socket classes
Ruby has a rich and diverse set of sockets classes. These classes range
from the standard Socket class (which mimics the BSD Sockets API) to
more refined classes that focus on a particular protocol or application
type.

The class hierarchy of the base sockets classes is as shown below:

The above figure is from the book Programming Ruby.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 213

The TCPSocket class supports sockets for the connection-based, reliable
Transmission Control Protocol. A helper class for the creation of TCP
server sockets is also available in the TCPServer class. To create a stream
socket and connect it to a server, the TCPSocket class can be used.

The Date Time Server and Client
Now let us build a Ruby based DateTime server and client that displays
on the client computer the date and time at the server location, using
the Ruby socket API.

Here’s the code for the Date Time Server - p068dtserver.rb.

Date Time Server - server side using thread
usage: ruby p068dtserver.rb
require "socket"

dts = TCPServer.new('localhost', 20000)
loop do
 Thread.start(dts.accept) do |s|
 print(s, " is accepted\n")

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 214

 s.write(Time.now)
 print(s, " is gone\n")
 s.close
 end
end

Explanation of the p068dtserver.rb code:
You first load the socket library with the require command. The TCPServer
class is a helper class for building TCP socket servers. The
TCPServer.new(‘localhost’, 20000) statement creates a new socket identified
by localhost and port number. The Thread.start creates and runs a new
thread to execute instructions given in block. Any arguments passed to
Thread.start are passed into the block. The dts.accept method waits for a
connection on dts, and returns a new TCPSocket object connected to the
caller. The Kernel.loop iterator calls the associated block (do..end) forever
(or at least until you break out of the loop). We use s.write(Time.now) to
write the current date and time on the server to the socket. Finally, we
write s.close to close a socket using the close method. This method is
inherited from the IO class, but it's available for each of the socket
types.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 215

Since we are testing these programs on our local machine, open a new
command window, go to the folder containing your p068dtserver.rb
program and type ruby p068dtserver.rb. The program runs and waits for a
client to connect at port 20000.

Here’s the code for the Date Time Client - p069dtclient.rb

Date Time Client
usage: ruby p069dtclient.rb
require 'socket'

sock = TCPSocket.new(‘127.0.0.1’, 20000)
str = sock.recv(100)
print str
sock.close

Explanation of p069dtclient.rb code:
You first load the socket library with the require command. The
statement sock = TCPSocket.new(‘127.0.0.1’, 20000) opens a TCP connection
to localhost on port 20000. The statement str = sock.recv(100) receives up

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 216

to 100 bytes from sock. We display the date-time string received from
the server and finally we close the socket.

Summary
This topic has explored the classes that make networking application
development possible in Ruby. It discussed the basic classes for sockets
programming (such as the Socket class) and also the classes that help to
simplify sockets programming in Ruby, such as TCPSocket and TCPServer.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 217

A Small Project using SMTP class

To test our knowledge of what we have learnt in Ruby, we shall build a
small SMTP Client.

For this project, I am referring to Request for Comments (RFC’s) 1869,
2554, 2821, 2822 and 3207.

I’ll build the SMTP client and the explanation follows. Let’s call it
p070rubysmtp.rb

p070rubysmtp.rb
require 'net/smtp'
user_from = "satish@puneruby.com"
user_to = "ashish@puneruby.com"
the_email = "From: satish@puneruby.com\nSubject: Hello\n\nEmail by
Ruby.\n\n"
handling exceptions
begin
 Net::SMTP.start('auth.smtp.1and1.co.uk', 25, '1and1.co.uk',
'satish@puneruby.com', 'password', :login) do |smtpclient|
 smtpclient.send_message(the_email, user_from, user_to)

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 218

 end
rescue Exception => e
 print "Exception occured: " + e
end

Here’s some explanation of the code:

• The Net::SMTP library provides functionality to send internet mail
via SMTP, the Simple Mail Transfer Protocol. This library does NOT
provide functions to compose internet mails. You must create
them by yourself

• The line Net::SMTP.start creates a new Net::SMTP object, opens a
TCP connection and connects to the server.
'auth.smtp.1and1.co.uk' is the IP address of your SMTP server and
the port used is 25. Since we have called with a block, the newly-
opened Net::SMTP object is yielded to the block, and automatically
closed when the block finishes. The third argument is the domain
name which you are on (the host to send mail from). The next
three arguments are the login id, password and form of
authentication used (here :login). SMTP authentication schemes

http://www.ruby-doc.org/stdlib/libdoc/net/smtp/rdoc/classes/Net/SMTP.html�
http://www.ruby-doc.org/stdlib/libdoc/net/smtp/rdoc/classes/Net/SMTP.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 219

are represented with symbols (:login, :plain, :cram_md5). Any
given SMTP server may support any or all of these schemes.

• In the line smtpclient.send_message(the_email, user_from, user_to)
the_email is the message to be sent. Single CR and LF found in the
string, are converted to the CRLF pair. You cannot send a binary
message with this method. the_email should include both the
message headers and body. user_from is a String representing the
source mail address. user_to is a String or Array of Strings,
representing the destination mail address or addresses

• The way we have used Net::SMTP.start it finishes the SMTP session
and closes TCP connection

• We have also used begin and rescue for Exception handling

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 220

Web Services and Distributed Programming

The basic point of distributed programming is to let computers
communicate between themselves. The simplest and most common form
of distributed programming is the web service. Web services work on top
of HTTP: they generally involve sending an HTTP request to a certain
URL (possibly including an XML document), and getting a response in the
form of another XML document. Rather than showing this document to
an end user the way a web browser would, the web service parses the
XML response document and does something with it. Web services work
well when there’s a server with some interesting data and many clients
who want it.

From a high-level view, web service implementations can be broken
down into two categories: servers and clients. Most web services are
based on one of three architectures: Representational State Transfer
(REST), Simple Object Access Protocol (SOAP), or Extensible Markup
Language Remote Procedural Calls (XML-RPC). REST is HTTP; XML-RPC

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 221

and SOAP are protocols that run on top of HTTP. XML-RPC isn’t used
much nowadays.

WSDL stands for Web Service Description Language. A WSDL file is an
XML document that defines the interface to a SOAP service. WSDL files
provide details about the methods that the service exposes, the
methods’ arguments and return values, and the encodings used for data
travelling between the client and the server. Everything you would ever
need to know about a SOAP service can be described in a WSDL file.
WSDL files serve both as a form of documentation for SOAP services and
as a key to automating many of the steps of building SOAP clients. Thus
it’s possible to read a WSDL file and find out everything you need to
know about the API it describes. The primary use of WSDL is to automate
the client code so that you don’t have to explicitly write code to handle
different data encodings, different mappings between object types, and
so on. Most modern web service platforms automatically generate WSDL
files and make them available for clients to download.

Writing a SOAP Client

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 222

The following example (p071soapclient.rb) is thanks to Kevin Marshall.
Here we are going to call a remote method through a SOAP-based web
service. The SOAP client sends an XML representation of a method call to
a server, and gets back an XML representation of a return value. The
whole process is complex, but Ruby’s built-in SOAP library (implements
both the client and server sides of the SOAP protocol, including support
for WSDL) handles the low-level details for you, leaving you free to focus
on using the results in your program. To write the SOAP service, we use
Hiroshi Nakamura’s soap4r library. It is part of the Ruby standard library
and implements SOAP version 1.1. We use the SOAP RPC Driver in the
soap4r library. The simple program prints a quote of the day. It uses the
SOAP RPC Driver to connect to the SOAP web service at
codingtheweb.com.

Details of this web service are available here:
http://www.strikeiron.com/WebServiceDetail.aspx?WSID=1061

The web service’s WSDL file is available here:
http://webservices.codingtheweb.com/bin/qotd.wsdl

mailto:kevinm@rorbe.com�
http://www.strikeiron.com/WebServiceDetail.aspx?WSID=1061�
http://webservices.codingtheweb.com/bin/qotd.wsdl�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 223

We can use the following site to decipher a WSDL file. Enter the location
of the web services' WSDL file and it will report back the various
methods/options available.
http://www.strikeiron.com/analyzer/onlineanalyzer.aspx

In our case, it tells us that the method to be used is getQuote and the
service is qotd.

Here’s our program p071soapclient.rb

require 'soap/rpc/driver'
driver = SOAP::RPC::Driver.new(
 'http://webservices.codingtheweb.com/bin/qotd',
 'urn:xmethods-qotd')
driver.add_method('getQuote')
puts driver.getQuote

Here, 'http://webservices.codingtheweb.com/bin/qotd' is the location of the
web service (known as the endpoint URL). This is available in the tag
<soap:address location> in the wsdl file. Also, 'urn:xmethods-qotd' is the
namespace used by the service’s documents.

http://www.strikeiron.com/analyzer/onlineanalyzer.aspx�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 224

Once the driver is set up, we define the web service method we want to
call (getQuote). We can then call it like a normal Ruby method and
display the result. Behind the scenes, the call to add_method actually
defines a new method on the SOAP::RPC::Driver object. The SOAP
library uses metaprogramming to create custom Ruby methods that act
like SOAP methods.

Writing a PuneRuby SOAP server and client

Again thanks to Kevin Marshall for this too. Let’s say that PuneRuby
wants to host a SOAP-based web service (we are going to build a trivial
one just to show how it is done) using a standalone server (that is, not as
part of a Rails application).

Building our own SOAP server (program p072soapserver.rb) really only
requires three simple steps:

1. Subclass the SOAP::StandaloneServer class. In the initialize, register
the methods you want to expose and the arguments they should

mailto:kevinm@rorbe.com�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 225

take. Here we expose a method sayhelloto that expects one
parameter, username:
require 'soap/rpc/standaloneServer'
class MyServer < SOAP::RPC::StandaloneServer
 def initialize(* args)
 super
 add_method(self, 'sayhelloto', 'username')
 end
end

2. Define the methods you exposed in Step 1:

class MyServer < SOAP::RPC::StandaloneServer
 def sayhelloto(username)
 "Hello, #{username}."
 end
end

3. Finally, set up and start your server. Our example runs on port

12321 on www.puneruby.com It’s name is ‘PuneRubyServer’ and
its namespace is ‘urn:mySoapServer’:
server = MyServer.new('PuneRubyServer','urn:mySoapServer',
 'www.puneruby.com',12321)
trap('INT') {server.shutdown}
server.start

http://www.puneruby.com/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 226

We trap interrupt signals so that we can stop our server from the
command line.

We’ve now built a complete SOAP server. It uses the SOAP
StandaloneServer and hosts one simple sayhelloto method that can be
accessed at http://217.160.200.122:12321/ with a namespace of
“urn:mySoapServer”.

To test your service, start your server in one Ruby session and then use
the simple script (p073prclient.rb) below in another Ruby session to call
the method it exposes:

require 'soap/rpc/driver'
driver =
 SOAP::RPC::Driver.new('http://217.160.200.122:12321/',
 ‘urn:mySoapServer')
driver.add_method('sayhelloto', 'username')
puts driver.sayhelloto('PuneRuby')

http://217.160.200.122:12321/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 227

Ruby/Tk

Ruby/Tk provides Ruby with a graphical user interface (GUI). The Tk
extension works on Windows, Mac OS X and Unix systems.

Previous versions of the Ruby One-Click Installer contained an (old)
version of Tcl/Tk. Now this Ruby installer only contains the Ruby
bindings to whatever version of Tcl/Tk you wish to install. It's
recommended to use ActiveTcl. Download the file
ActiveTcl8.4.13.0.261555-win32-ix86-threaded.exe
and install it. Reboot your PC.

http://www.activestate.com/store/freedownload.aspx?prdGuid=f0cd6399-fefb-466e-ba17-220dcd6f4078�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 228

Simple Tk applications
Let’s understand the following program p074hellotk.rb

require 'tk'
hello = TkRoot.new {title "Hello World"}
Tk.mainloop

The Tk documentation shows the class hierarchy. Briefly, the hierarchy
is as follows:
Object->TclTkIp->TkKernel->TkObject->TkWindow->TkRoot
Object->TclTkIp->TkKernel->TkObject->TkWindow->TkLabel->TkButton

Tk works along a composition model – that is, you start by creating a
container (such as a TkFrame or TkRoot) and then create widgets (GUI
components) that populate it, such as buttons or labels. When you are
ready to start the GUI, you invoke Tk.mainloop. The Tk engine then
takes control of the program, displaying widgets and calling your code
in response to GUI events.

http://www.jbrowse.com/text/rubytk_en.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 229

There are many modules like:
Tk, Tk::Wm and many others.

TkKernel is the superclass of TkObject. The subclass redefines the class
method new to take a block.
TkObject is the superclass of all widgets and has an included Tk module.
TkRoot class represents the root widget. The root widget is at the top of
the Ruby/Tk widget hierarchy and has the included module Tk::Wm for
communicating with a window manager. The methods introduced here
are normally used as instance methods of TkRoot.

In the program, after loading the tk extension module, we create a root-
level frame using TkRoot.new. With Tk you create widgets and then bind
code blocks to them. When something happens (like the user clicking a
widget), Tk runs the appropriate code block. In our program, we use the
title and minsize instance methods (of module Tk::Wm) in the code block
to TkRoot.new. We are now ready with our GUI and we invoke Tk.mainloop

Let us now add some widgets to the above program, namely a TkLabel.
The modified program is p075hellotk1.rb

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 230

require 'tk'
hello = TkRoot.new do
 title "Hello World"
 # the min size of window
 minsize(400,400)
end
TkLabel.new(hello) do
 text 'Hello World'
 foreground 'red'
 pack { padx 15; pady 15; side 'left'}
end
Tk.mainloop

Here, we make a TkLabel widget (representing a label) as a child of the
root frame, setting several options for the label. Finally, we pack the
root frame and enter the main GUI event loop.

We also need to be able to get information back from our widgets while
our program is running by setting up callbacks (routines invoked when
certain events happen) and sharing data. The next example,
p076hellotk2.rb does that.

require 'tk'

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 231

TkButton.new do
 text "EXIT"
 command { exit }
 pack('side'=>'left', 'padx'=>10, 'pady'=>10)
end
Tk.mainloop

Callbacks are very easy to setup. The command option takes a Proc object,
which will be called when the callback fires. This means that the code
block passed into the command method is run when the user clicks the
button, allowing you to programmatically execute the same functionality
that would be invoked on an actual button press. Note that the
Kernel#exit method terminates your program here.

We shall now build a rudimentary GUI interface to our SOAP server
hosted at www.puneruby.com. The program is the p077soapguiclient.rb

require 'soap/rpc/driver'
require 'tk'

class SOAPGuiClient
 def connect
 @buttonconnect.configure('text' => 'Reset')
 @buttonconnect.command { reset }

http://www.puneruby.com/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 232

 begin
 driver =
SOAP::RPC::Driver.new('http://217.160.200.122:12321/',
 'urn:mySoapServer')
 driver.add_method('sayhelloto', 'username')
 s = driver.sayhelloto('Satish Talim')
 rescue Exception => e
 s = "Exception occured: " + e
 ensure
 @label.configure('text' => s)
 end
 end #connect

 def reset
 @label.configure('text' => "")
 @buttonconnect.configure('text' => 'Connect')
 @buttonconnect.command { connect }
 end # reset

#---
 def initialize
 root = TkRoot.new do
 title 'SOAP Client'
 # the min size of window
 minsize(535, 100)
 end
#---
 @label = TkLabel.new(root) do

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 233

 pack
 end
#---
 @buttonconnect = TkButton.new(root)
 @buttonconnect.configure('text' => 'Connect')
 @buttonconnect.command { connect }
 @buttonconnect.pack('side'=>'bottom')
#---
 Tk.mainloop
 end #initialize
end # class

SOAPGuiClient.new
#---

In the above program, we reconfigure a widget while it’s running. Every
widget supports the configure method, which takes a code block in the
same manner as new. We have also modified the earlier
p072soapserver.rb program, as below. We have included the Logger
class.

require 'logger'
require 'soap/rpc/standaloneServer'
class MyServer < SOAP::RPC::StandaloneServer
 def initialize(* args)
 super

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 234

 add_method(self, 'sayhelloto', 'username')
 @log = Logger.new("soapserver.log", 5, 10*1024)
 end
 def sayhelloto(username)
 t = Time.now
 @log.info("#{username} logged on #{t}")
 "Hello, #{username} on #{t}."
 end
end

server =
MyServer.new('PuneRubyServer','urn:mySoapServer','www.puneruby.com
',12321)
trap('INT') {server.shutdown}
server.start

The Logger class helps write log messages to a file or stream. It supports
time- or size-based rolling of log files. Messages can be assigned
severities, and only those messages at or above the logger’s current
reporting level will be logged. Here, we log to a file called
soapserver.log, which is rotated when it gets about 10K bytes and keeps
up to five old files.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 235

Using Ruby/MySQL

MySQL support in Ruby was made possible by Tomita Masahiro. He has
developed a pure Ruby binding called Ruby/MySQL.

We need to install the same on our PC. You need an internet connection
and do remember it does take some time to install. The installation is as
shown below:

C:\>gem install mysql
Bulk updating Gem source index for: http://gems.rubyforge.org
Select which gem to install for your platform (i386-mswin32)
 1. mysql 2.7.1 (mswin32)
 2. mysql 2.7 (ruby)
 3. mysql 2.6 (ruby)
 4. mysql 2.5.1 (ruby)
 5. Cancel installation
> 1
Successfully installed mysql-2.7.1-mswin32
Installing ri documentation for mysql-2.7.1-mswin32...
Installing RDoc documentation for mysql-2.7.1-mswin32...

C:\>

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 236

This installs mysql-2.7.1-mswin32 driver which is faster and supports
MySQL 4.1 and later. The documentation for this driver is here.

I will assume that you’ve already installed mySQL 4.1 or above on your
PC and that you have it running and are familiar with the basics.

Now, run the mysql client program from the command line, as:

C:\>mysql

You should get the mysql prompt. Next, create a database ruby as:

mysql> create database ruby;
Query OK, 1 row affected (0.02 sec)

Next, create a table student in the database ruby as:

mysql> use ruby;
create table student (id VARCHAR(2), name VARCHAR(20), rank
VARCHAR(2));

http://tmtm.org/en/mysql/ruby/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 237

As a first exercise we try to connect to the MySQL server and print all
the names in the table student. Program p078rubymysql.rb

require 'mysql'

#my = Mysql.new(hostname, username, password, databasename)
con = Mysql.new('localhost', '', '', 'ruby')
rs = con.query('select * from student')
rs.each_hash {|h| puts h['name']}
con.close

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 238

Ruby Tools

I have not gone into the details of some of the important tools that Ruby
provides for programmers. Here’s a brief idea:

irb
irb is an interactive interpreter – which means that instead of processing
a file, it processes what you type during a session. irb is a great tool for
testing Ruby code and for learning Ruby. Since I am using SciTE, I have
not gone into the details of irb. You can refer to this and this resource
for details of irb.

The debugger
Debugging – fixing errors – is part of programming. The Ruby debugging
facility (found in the library file debug.rb) helps you debug a program by
letting you run the program one instruction at a time, with pauses in
between. During the pauses, you are presented with a prompt; at this

http://www.rubycentral.com/book/html/irb.html�
http://www.caliban.org/ruby/rubyguide.shtml#irb�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 239

prompt, you can examine the values of variables, see where you are in a
nested series of commands, and resume execution. You can also set
breakpoints – places in your program where the debugger stops
execution and presents you with a prompt. You can refer to this and this
resource for details of the debugger.

Profiling
In programming terms, profiling means measuring how much use is made
of system resources - time, principally - by different parts of your
program. This starts to matter with longer programs, particularly
programs that involve looping through instructions many times (for
example, a program that reads in a long file and examines or modifies
the contents of each line as it’s read in). None of the examples on this
site require profiling, because they’re short and simple.

Profiling pinpoints the spots in a program that are using lots of system
resources and therefore potentially slowing the program. The
information provided by the profiler may lead you to tweak part of a
program to make it run more efficiently; or, if there’s no relatively easy

http://www.rubycentral.com/book/trouble.html�
http://www.caliban.org/ruby/rubyguide.shtml#debug�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 240

way around the resource bottleneck, it may lead you to rewrite part of
the program in C, to make it run faster. You can refer to this resource
for details of profiling Ruby code.

ri and RDoc
ri (Ruby Index) and RDoc (Ruby Documentation) are a closely related
pair of tools for providing documentation about Ruby programs. ri is a
command-line tool; the RDoc system includes the command-line tool
rdoc. ri and rdoc are standalone programs; you run them from the
command line.

RDoc is a documentation system. If you put comments in your program
files (Ruby or C) in the prescribed RDoc format, rdoc scans your files,
extracts the comments, organizes them intelligently (indexed according
to what they comment on), and creates nicely formatted documentation
from them. You can see RDoc markup in many of the C files in the Ruby
source tree and many of the Ruby
files in the Ruby installation.

http://www.caliban.org/ruby/rubyguide.shtml#profiler�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 241

ri dovetails with RDoc: It gives you a way to view the information that
RDoc has extracted and organized. Specifically (although not exclusively,
if you customize it), ri is configured to display the RDoc information
from the Ruby source files. Thus on any system that has Ruby fully
installed, you can get detailed information about Ruby with a simple
command-line invocation of ri. Some more information is available here.

ERb
Ruby provides you with a program called ERb (Embedded Ruby), written
by Seki Masatoshi. ERb allows you to put Ruby code inside an HTML file.

ERb reads a file—an ERb document—and prints it out again. You’re
allowed to insert Ruby programming instructions in the document (using
a special syntax). When ERb hits the Ruby instructions, it executes them.
Depending on what you’ve asked for, it either moves on or prints out the
results of executing the instructions.

http://www.caliban.org/ruby/rubyguide.shtml#ri�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 242

Some more information is available here.

All the details on this page has been adapted from David Black’s very
informative book – Ruby for Rails.

ERb looms very large in the Ruby on Rails framework. Essentially,
what you see on the screen when you connect to a Rails application
is, in many cases, the output from an ERb document.

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/�
http://www.manning.com/black/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 243

Java and Ruby

Similarities

As with Java, in Ruby...

• memory is managed for you via a garbage collector.
• there’s public, private, and protected methods.
• you’ve got embedded doc tools (Ruby’s is called RDoc). The docs

generated by rdoc look very similar to those generated by javadoc.
RDoc can produce fairly good content even if the source contains no
comments.

Differences

Unlike Java, in Ruby...

• you don’t need to compile your code. You just run it directly.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 244

• there’s different GUI toolkits. Ruby users can try WxRuby, FXRuby, or
the bundled-in Ruby Tk for example.

• you use the end keyword after defining things like classes, instead of
having to put braces around blocks of code.

• you have require instead of import.
• all member variables are private. From the outside, you access

everything via methods.
• parentheses in method calls are usually optional and often omitted.
• everything is an object, including numbers like 2 and 3.14159. Classes

are objects! For example, Array is a constant name that is bound to
the Array class object. To create a new object, we call new on the
class object as in a = Array.new

• there are no primitives or data types
• variable names are just labels (not objects). They don’t have a type

associated with them.
• there’s no type declarations. You just assign to new variable names

as-needed and they just “spring up” (i.e. a = [1,2,3] rather than int[]
a = {1,2,3};).

• it’s foo = Foo.new("hi") instead of foo = new Foo("hi").

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 245

• the constructing and initializing phases of an object are separate and
both can be over-ridden. The initialization is done via the initialize
instance method while the construction is done via the new class
method. initialize is not a constructor!

• you have “mixin’s” instead of interfaces. mixins are examples of
implementation inheritance, they are not equivalent to Java
interfaces

• YAML tends to be favoured over XML.
• it’s nil instead of null. Also, nil is a normal object; you can never get

a null pointer error!
• there is no method overloading.
• it's much more common to put many classes in the same file.
• strings are mutable, unless you freeze them

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 246

JRuby Tutorial

Recently, JRuby has been gaining more and more attention in the Java
and Ruby communities. Java is a powerful platform and there are
millions of lines of Java code being written each month, that the world
will have to live with for a long time from now. By leveraging Java the
platform with the power of the Ruby programming language,
programmers get the best from both worlds. You better not ignore JRuby
any more!

What is JRuby?

JRuby is a 100% pure-Java implementation of the Ruby programming
language that runs in the JVM. JRuby's creators, Thomas Enebo and
Charles Nutter, have been hired by Sun to work on JRuby full time. The
current JRuby release 0.9.9 is fully compatible with Ruby 1.8.5.

Ola Bini says that "JRuby is ready for prime time. Application developers
should try their applications on JRuby NOW."

http://jruby.codehaus.org/�
http://www.bloglines.com/blog/ThomasEEnebo�
http://rubylearning.com/blog/2007/04/26/interview-charles-nutter/�
http://www.sun.com/�
http://ola-bini.blogspot.com/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 247

JRuby, as you will realize, is very easy to use. Here's a small JRuby
Tutorial for you.

Download and Setup

• The JRuby distribution comes as a tar.gz file, namely jruby-bin-
0.9.9.tar.gz

• Uncompress the archive; you should end up with a jruby-0.9.9
folder.

• In Windows, set the system environment variable JRUBY_HOME to
C:\jruby-0.9.9 I am assuming that you have uncompressed JRuby
to C:

• Also, set the system environment variable path to C:\jruby-
0.9.9\bin;

• The JRuby distribution's bin directory contains the jruby.bat file
that is used to run the JRuby interpreter. Run the command jruby
-version from the command line to test that the JRuby is working.

http://dist.codehaus.org/jruby/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 248

On my PC, it said:
ruby 1.8.5 (2007-04-23 rev 3539) [x86-jruby0.9.9]

Where to use JRuby?

a. JRuby allows Ruby programs to use Java classes. This is a powerful
concept that JRuby now brings to Ruby users. My Ruby/Tk Tutorial has a
program p075hellotk1.rb that uses Ruby/Tk a graphical user interface.
However, the documentation for Ruby/Tk is extremely poor and I would
be comfortable in using Java Swing instead. The code in JRuby for the
program p075hellotk1.rb can be something like this:

javaSwingHello.rb
require 'java' # Line 2
JFrame = javax.swing.JFrame
JLabel = javax.swing.JLabel
frame = JFrame.new
jlabel = JLabel.new("Hello World")
frame.add(jlabel)
frame.setDefaultCloseOperation(JFrame::EXIT_ON_CLOSE)
frame.pack

http://rubylearning.com/satishtalim/ruby_tk_tutorial.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 249

frame.setVisible(true)

Run the above program from the command line as follows:
jruby javaSwingHello.rb

Note: Line 2: The second line of the above program enables JRuby's Java
support and allows a Ruby program to use Java classes.

b. Calling JRuby from Java. JRuby can just as easily be called from
Java, using either the JSR 223 Scripting for Java 6 or the Apache Bean
Scripting framework. More information on this is available in the JRuby
Wiki

c. Running Rails with JRuby. The advantages are obvious. To quote
the JRuby Wiki

• Gives Rails the power and functionality of Java: Virtual Machine,
application servers, and libraries.

• With future JVM and JRuby improvements, JRuby may be faster
than Matz's Ruby Interpreter in running Rails

http://en.wikipedia.org/wiki/Bean_Scripting_Framework�
http://en.wikipedia.org/wiki/Bean_Scripting_Framework�
http://www.headius.com/jrubywiki/index.php/Main_Page�
http://www.headius.com/jrubywiki/index.php/Main_Page�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 250

• Gets Rails in the door of Java shops by making Rails apps into
Java-platform apps.

I personally feel that if you have a Java background and are now
exploring Ruby, you should definitely explore JRuby further.

Resources:

• JRuby Home page

• JRuby Wiki

• Rails on JRuby

• JRuby Forum

Useful Articles:

• Internationalization in JRuby

• Connect JRuby to MySQL using JDBC

http://jruby.codehaus.org/�
http://www.headius.com/jrubywiki/index.php/Main_Page�
http://www.headius.com/jrubywiki/index.php/JRuby_on_Rails�
http://www.nabble.com/JRuby---User-f14107.html�
http://rubylearning.com/blog/2007/04/30/internationalization-in-jruby/�
http://rubylearning.com/blog/2007/05/05/connect-jruby-to-mysql-using-jdbc/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 251

Ruby Quirks

Ruby Quirks - peculiarity of behavior? I know this topic is debatable and
remember 'one man's meat is another man's poison!

I plan to write down here (in no particular order), all the little Ruby
quirks that I've picked up over time.

1. Peter Cooper, the author of the book 'Beginning Ruby' introduced me
to Real-Time chat using an IRC client. On the #ruby channel at
irc://irc.freenode.net/ I heard of this quirk:
class MotorCycle
 def initialize(make, color)
 @make, @color = make, color
 end
end

m = MotorCycle.new('Honda', 'blue')
m.instance_variable_set(:@make, 'Kawasaki')
m.instance_variable_set(:@gears, 4)
puts m.inspect

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 252

Check the output of the above program. In the code above:
m.instance_variable_set(:@gears, 4)

sets the instance variable names by symbol to object, thereby
frustrating the efforts of the class's author to attempt to provide proper
encapsulation. The variable did not have to exist prior to this call.

Hal Fulton in his excellent book ‘The Ruby Way’ has this to say about
instance_variable_set:

It’s true these methods are powerful and potentially dangerous. They
should be used cautiously, not casually. But it’s impossible to say whether
encapsulation is violated without looking at how these tools are used. If
they are used intentionally as part of a good design, then all is well. If they
are used to violate the design, or to circumvent a bad design, then all is not
well.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 253

2. In 2006, Shashank Date gave the PuneRuby members a presentation
on 'Why Ruby Shines' and three points stood out - 'Expressions
everywhere', 'Active Class Definitions' and 'Everything is an Object'.

Expressions everywhere - In Ruby, everything returns some value.
Therefore a class definition is an expression and one can say something
like:

c = class C
end

The value of c is nil.

Active Class Definitions - Look at the following program:

class C
 puts ‘In class C’
end

When this class is read the first time, it executes puts and the output is -
'In class C'.

http://rubylearning.com/blog/2007/04/11/interview-shashank-date/�
http://tech.groups.yahoo.com/group/puneruby/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 254

Everything is an Object - Classes in Ruby are first-class objects - each is
an instance of class Class. When a new class is defined (typically using
class Name ... end), an object of type Class is created and assigned to a
constant (Name. in this case). Hal Fulton's suggests a mantra to be
recited everyday - "Class is an object, and Object is a class."

3. If I want to swap two variables, I would normally use an additional
temporary variable. In Ruby, this is not necessary:
x, y = y, x

will interchange the values of x and y.

4. Jaaron, a reader of the Learning Ruby Blog has this quirk for us. This
one is well known and is the cause of much frustration.

x = 7
[1,2,3].each do |x|
end

If the name of a block parameter conflicts with the name of a local
variable, the behavior is to assign the local variable to the argument. In

http://rubylearning.com/blog/2007/04/11/ruby-quirks/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 255

this case, the local variable x gets assigned the value 1, then the value
2, then the value 3. The value 7 is lost.

If you refer to Programming Ruby Second Edition eBook (page 99) it says:

The while, until, and for loops are built into the language and do not
introduce new scope; previously existing locals can be used in the
loop, and any new locals created will be available afterward.

The blocks used by iterators (such as loop and each) are a little
different. Normally, the local variables created in these blocks are
not accessible outside the block.

However, if at the time the block executes a local variable already
exists with the same name as that of a variable in the block, the
existing local variable will be used in the block. Its value will
therefore be available after the block finishes.

The whole issue with variable scope and blocks is one that generates
considerable discussion in the Ruby community. The current scheme

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 256

has definite problems (particularly when variables are unexpectedly
aliased inside blocks), but at the same time no one has managed to
come up with something that’s both better and acceptable to the
wider community. Matz is promising changes in Ruby 2.0.

5. Are instance variables inherited by a sub-class? David Black the author
of Ruby for Rails has this to say: Instance variables are per-object, not
per-class, and they're not inherited. But if a method uses one, and that
method is available to subclasses, then it will still use the variable -- but
"the variable" in the sense of one per object. See the following program:

class C
 def initialize
 @n = 100
 end

 def increase_n
 @n *= 20
 end
end

class D < C

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 257

 def show_n
 puts "n is #{@n}"
 end
end

d = D.new
d.increase_n
d.show_n

The output is:

>ruby instvarinherit.rb
n is 2000
>Exit code: 0

6. Morgan Schweers, a reader of the Learning Ruby Blog has this quirk
for us. Imagine for a moment, that you want to be able to set a variable,
but if it's not set, you default to a known value. You'd rather do it on a
single line.

One of my co-workers tried this:

http://rubylearning.com/blog/2007/04/11/ruby-quirks/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 258

expand = defined?(expand) ? expand : true

but 'expand' is *defined* by being on the left hand side, BEFORE the RHS
is evaluated, so defined? returns true, but because expand hasn't got a
value yet, it returns nil.

I tried:

expand = true unless defined?(expand)

and it doesn't help either, which really shocked me. I always believed
that the postfix-conditional was evaluated before even beginning to
evaluate the operation, but I was distinctly disabused of this notion by
testing.

Note that 'expand?' operator returns nil if its argument (which can be an
arbitrary expression) is not defined; otherwise it returns a description of
that argument.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 259

I don't understand the reason for the behavior, and I think it's a bug, but
I'd love to know a good language reason for it.

I am sure that you would have noticed many other Ruby quirks. I'd
definitely like to hear and add them here.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 260

Appendix A

Ruby Resources

Books/eBooks/Magazines

Ruby Code and Style Magazine
Free Ruby Books
O’Reilly’s Ruby Books
The Little Book of Ruby
Learn to Program
Programming Ruby - First Edition
Whys Poignant Guide to Ruby
Ruby Cookbook
ObjectiveView
Ruby Tutorial

http://www.artima.com/rubycs/index.html�
http://freecomputerbooks.com/�
http://www.oreilly.com/pub/topic/ruby�
http://www.sapphiresteel.com/The-Little-Book-Of-Ruby�
http://pine.fm/LearnToProgram/�
http://www.rubycentral.com/book/�
http://poignantguide.net/ruby/whys-poignant-guide-to-ruby.pdf�
http://www.oreilly.com/catalog/rubyckbk/�
http://www.ratio.co.uk/objectiveview.html�
http://glasnost.itcarlow.ie/~barryp/ruby-tut.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 261

Useful Links

About.com on Ruby
Ruby Manual
Ruby Documentation
The Ruby Language FAQ
Ruby Coding Convention
Ruby Quick Reference
Ruby Cookbook
More Cookbook
Ruby Weekly News
The Ruby FAQ
Ruby Language FAQ
Don Craig's Presentation
Ruby News
Ruby Notes
Ruby Jobs
Ruby Quiz
RubyIdioms
Ruby NewComers

http://ruby.about.com/�
http://rubymanual.org/�
http://www.ruby-doc.org/�
http://www.rubycentral.com/faq/rubyfaq.html�
http://pub.cozmixng.org/~the-rwiki/rw-cgi.rb?cmd=view;name=RubyCodingConvention�
http://www.zenspider.com/Languages/Ruby/QuickRef.html#14�
http://www.soyabean.com.au/gavin/ruby-cookbook/ruby-cookbook/html/index.html�
http://glue.umd.edu/~billtj/ruby.html#TTAGTK�
http://www.rubyweeklynews.org/�
http://www.rubygarden.org/faq/dispatch.cgi?controller=main&action=index�
http://dev.rubycentral.com/faq/rubyfaq.html#toc4�
http://www.cs.mun.ca/~donald/slug/2003-10-16/presentation/img0.html�
http://www.infoq.com/ruby/�
http://www.treelight.com/software/ruby/�
http://jobs.rubynow.com/�
http://www.rubyquiz.com/�
http://wiki.rubygarden.org/Ruby/page/show/RubyIdioms�
http://glue.umd.edu/~billtj/ruby.html�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 262

Misc. Ruby Programs
SciTE Text Editor
NotePad2 for Ruby
FreeRIDE Ruby IDE
Ruby jEdit
RubyGarden
Official Ruby Homepage
PuneRuby Homepage
Ruby Window's Installer
Rubyholic
Code Snippets
Java to Ruby
TryRuby
The Unofficial Ruby Usage Guide
Ruby/Tk FAQ
Ruby/Tk Tutorial
Ruby/Tk Documentation
Freelance Ruby Projects
Ruby MySQL Module
Ruby Reports

http://kzk9.net/software/miscprograms/ruby/�
http://www.scintilla.org/SciTE.html�
http://www.hanselman.com/blog/NewNotepad2WithRubySyntaxHighlighting.aspx�
http://rubyforge.org/projects/freeride/�
http://rubyjedit.org/download/�
http://rubygarden.org/�
http://www.ruby-lang.org/en/�
http://groups.yahoo.com/group/puneruby/�
http://rubyinstaller.rubyforge.org/wiki/wiki.pl�
http://www.rubyholic.com/groups/index�
http://www.bigbold.com/snippets/�
http://fhwang.net/blog/40.html�
http://tryruby.hobix.com/�
http://www.caliban.org/ruby/rubyguide.shtml�
http://approximity.com/ruby/rubytk.html�
http://members.chello.nl/k.vangelder/ruby/learntk/index.html�
http://www.jbrowse.com/text/rubytk_en.html�
http://www.ploud.com/projects/ruby�
http://www.kitebird.com/articles/ruby-mysql.html#TOC_1�
http://ruport.infogami.com/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 263

Ruby Internals
Programming Language Comparison
Ruby Cheat Sheet
Ruby mySQL module
Test Driven Development
TIOBE Ruby Index
Ruby API Search

Blogs

PuneRuby blog
ChadFowler.com
Loud Thinking
Bruce Tate's Blog
PragDave
O'Reilly Ruby
Andy Hunt
Mindstorm

http://eigenclass.org/hiki.rb?ruby+internals+guide�
http://www.jvoegele.com/software/langcomp.html�
http://ruby.cenophobie.com/RubyCheat.pdf�
http://www.kitebird.com/articles/ruby-mysql.html�
http://wiki.marklunds.com/index.php?title=Test_Driven_Development_with_Ruby�
http://www.tiobe.com/index.htm?tiobe_index�
http://gotapi.com/�
http://punerb.blogspot.com/�
http://www.chadfowler.com/index.cgi�
http://www.loudthinking.com/�
http://blog.rapidred.com/�
http://blogs.pragprog.com/cgi-bin/pragdave.cgi�
http://www.oreillynet.com/ruby/blog/�
http://toolshed.com/blog/�
http://themindstorms.blogspot.com/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 264

Open Source Initiative

Forums/User Groups

Ruby-Talk Forum
SitePoint's Ruby Forum
Ruby IndiaGroup
TRUG

Companies in India working in Ruby/Rails

Better Labs, Pune
Codewalla, Pune
Chanakya Software Services, Pune
DancingBison, Pune
MangoSpring, Pune
Persistent Systems, Pune

http://dibya.wordpress.com/�
http://aspn.activestate.com/ASPN/Mail/Browse/Threaded/ruby-talk/�
http://www.sitepoint.com/forums/forumdisplay.php?f=227�
http://www.rubygarden.org/ruby?IndiaGroup�
http://www.trug.ca/Main_Page�
http://www.betterlabs.net/�
http://www.codewalla.com/�
http://chanakyasoft.com/�
http://www.dancingbison.com/index.html�
http://corp.mangospring.com/index.php�
http://www.persistentsys.com/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 265

Thoughtworks, Pune
Allerin, Mumbai
Pinstorm, Mumbai
SurgeWorks, Mumbai
Urban Eye, Mumbai
V2Solutions, Mumbai
360 Degree Interactive, Chennai
Viamentis Technologies Pvt. Ltd., Chennai
BroadSpire, Chennai
Accenture Tech Labs, Bangalore
Aditi Technologies, Bangalore
Apptility, Bangalore
CircleSource, Bangalore
Itellix, Bangalore
Subex Azure, Bangalore
Satyam, Hyderabad
WarmlyYours, Hyderabad
Uzanto, New Delhi
Vinayak Solutions Pvt. Ltd., New Delhi
Induslogic, Noida

http://www.thoughtworks.co.in/index.html�
http://www.allerin.com/�
http://www.pinstorm.com/�
http://surgeworks.com/�
http://www.urbaneye.com/�
http://www.v2solutions.com/�
http://www.360in.com/�
http://www.viamentis.com/�
http://www.broadspire.com/�
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/default.htm�
http://www.aditi.com/default.htm�
http://apptility.com/�
http://www.circlesource.com/home.htm�
http://www.itellix.com/�
http://www.subexazure.com/company/index.html�
http://www.satyam.com/index.html�
http://www.warmlyyours.com/�
http://www.uzanto.com/�
http://vinsol.com/�
http://www.induslogic.com/�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 266

Appendix B

Solutions to Assignments

1. Write a Ruby program that tells you how many minutes are there in a

year (do not bother right now about leap years etc.).

puts 365*24*60

2. Write a Ruby program that asks for a numeric value of the

temperature in degrees Fahrenheit. Finally, the program displays the
equivalent value in degrees Centigrade. To format the output to say
2 decimal places, we can use the Kernel's format method. For
example, if x = 45.5678 then format("%.2f", x) will return a string 45.57.
Another way is to use the round function as follows puts
(x*100).round/100.0
Program p006ftoc.rb

ftoc.rb

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 267

puts 'Enter temperature in Fahrenheit: '
STDOUT.flush
temp_in_fahrenheit = gets.chomp
temp_in_celsius = (((temp_in_fahrenheit.to_f - 32.0) / 9.0) *
5.0)
puts 'Temperature ' + temp_in_fahrenheit + ' degree Fahrenheit
= ' + format("%.2f", temp_in_celsius) + ' degree Celsius'

3. Write a Ruby program that asks for a year and then displays to the

user whether the year entered by him/her is a leap year or not.
Program p016leapyear.rb

=begin
Program to determine if a year is a leap year.
To determine if a year is a leap year, follow these steps:
1. If the year is evenly divisible by 4, go to step 2.
Otherwise, go to step 5.
2. If the year is evenly divisible by 100, go to step 3.
Otherwise, go to step 4.
3. If the year is evenly divisible by 400, go to step 4.
Otherwise, go to step 5.
4. The year is a leap year (it has 366 days).
5. The year is not a leap year (it has 365 days).

The above logic is combined into a single if check below
=end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 268

Get the input and determine if it is a leap year
puts "Enter the year: "
STDOUT.flush
input_year = gets.chomp.to_i
if ((input_year % 4 == 0) && (input_year % 100 > 0)) ||
(input_year % 400 == 0)
 puts "Year #{input_year} is a leap year"
else
 puts "Year #{input_year} is not a leap year"
end

4. Write a method leap_year. Accept a year value from the user, check
whether it’s a leap year and then display the number of minutes in
that year. Program p017leapyearmtd.rb

def leap_year(input_year)
 ((input_year % 4 == 0) && (input_year % 100 > 0)) ||
(input_year % 400 == 0)
end

Get the input and determine if it is a leap year
puts "Enter the year"
STDOUT.flush
input_year = gets.chomp.to_i
if leap_year(input_year)
 puts "Year #{input_year} is a leap year and has #{366*60*24}
minutes in the year"

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 269

else
 puts "Year #{input_year} is not a leap year and has
#{365*60*24} minutes in the year"
end

5. Given a string s = ‘key=value’, create two strings s1 and s2 such that s1

contains key and s2 contains value. Hint: Use some of the String
functions. Program p021rangesex.rb
s = 'key=value'
i = s.index('=')
s1 = s[0...i]
puts s1
s2 = s[i+1,s.length]
puts s2

6. This assignment is from Chris Pine’s Book.

a. Write a Deaf Grandma program. Whatever you say to grandma
(whatever you type in), she should respond with HUH?! SPEAK
UP, SONNY!, unless you shout it (type in all capitals). If you
shout, she can hear you (or at least she thinks so) and yells
back, NO, NOT SINCE 1938! To make your program really

http://pine.fm/LearnToProgram/?Chapter=06�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 270

believable, have grandma shout a different year each time;
maybe any year at random between 1930 and 1950. You can't
stop talking to grandma until you shout BYE.

p026zdeafgm1.rb
a = (1930...1951).to_a
puts 'Enter your response: '
STDOUT.flush
until (response = gets.chomp).eql?('BYE')
 if (response.eql?(response.upcase))
 puts 'NO, NOT SINCE ' + a[rand(a.size)].to_s + '
!'
 else
 puts 'HUH?! SPEAK UP, SONNY!'
 end
 puts 'Enter your response: '
 STDOUT.flush
end

b. Extend your Deaf Grandma program: What if grandma doesn't

want you to leave? When you shout BYE, she could pretend not
to hear you. Change your previous program so that you have to
shout BYE three times in a row. Make sure to test your

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 271

program: if you shout BYE three times, but not in a row, you
should still be talking to grandma.

p026zdeafgm2.rb
a = (1930...1951).to_a
puts 'Enter your response: '
STDOUT.flush
until (response = gets.chomp).eql?('BYE BYE BYE')
 if response.eql?('BYE')
 # do nothing
 elsif response.eql?(response.upcase)
 puts 'NO, NOT SINCE ' + a[rand(a.size)].to_s + '
!'
 else
 puts 'HUH?! SPEAK UP, SONNY!'
 end
 puts 'Enter your response: '
 STDOUT.flush
end

7. Write a Ruby program (call it p028swapcontents.rb) to do the
following. Take two text files say A and B. The program should swap

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 272

the contents of A and B ie. after the program is executed, A should
contain B's contents and B should contains A's.

p028swapcontents.rb - Program to swap the contents of 2 text
files
Asuumptions: The two files exist in the same folder as the
program

Function to read contents of one file and write them to
another file
Accepts 2 file names - file1 and file2
Reads from file1 and writes to file2
def filereadwrite(file1, file2)
 f2 = File.open(file2, "w")
 f1 = File.open(file1, "r")
 while line = f1.gets
 f2.puts line
 end
 f1.close
 f2.close
end

filereadwrite("file1", "file1.tmp")
filereadwrite("file2", "file1")
filereadwrite("file1.tmp", "file2")

File.delete('file1.tmp')

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 273

8. Write a Ruby program that, when given an array as collection = [1, 2,

3, 4, 5] it calculates the sum of its elements. Program
p020arraysum.rb

collection = [1, 2, 3, 4, 5]
sum = 0
collection.each {|i| sum += i}
puts sum

9. Write a Ruby program that, when given an array as collection = [12,

23, 456, 123, 4579] it displays for each number, whether it is odd or
even. Program p021oddeven.rb

collection = [12, 23, 456, 123, 4579]
collection.each do |i|
 if i % 2 == 0
 puts "#{i} is even"
 else
 puts "#{i} is odd"
 end
end

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 274

10. Previously you had written a program that swapped the contents of
two text files. Modify that program to include exception handling.

11. Write a test suite for a simple class called Student. This class stores a

first name, a last name, and an age: a person’s full name is available
as a computed value.

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 275

Appendix C

Over a period of time, I spoke to various Ruby / Rails Gurus. Here are
the links.

David Hansson
Bruce Tate
Elliot Temple
Peat Bakke
Phil Tomson
Topher Cyll
James Gray II
Chris Anderson
Peter Cooper
Pat Eyler
Jens-Christian Fischer
Shashank Date
Chang Sau Sheong
Jeremy Voorhis

http://www.indicthreads.com/interviews/390/ruby_on_rails_java_web_application.html�
http://www.puneruby.com/blog/?p=62�
http://www.puneruby.com/blog/?p=74�
http://www.puneruby.com/blog/?p=64�
http://www.puneruby.com/blog/?p=65�
http://www.puneruby.com/blog/?p=66�
http://www.puneruby.com/blog/?p=67�
http://www.puneruby.com/blog/?p=70�
http://www.puneruby.com/blog/?p=69�
http://www.puneruby.com/blog/?p=75�
http://www.puneruby.com/blog/?p=76�
http://www.puneruby.com/blog/?p=77�
http://www.puneruby.com/blog/?p=71�
http://www.puneruby.com/blog/?p=73�

Free Study Notes on Ruby

Copyright 2007 by http://rubystudynotes.com/ - All Rights Reserved 276

Charles Nutter
Rida Al Barazi
Dalibor Sramek
Duncan Beevers
Premshree S. Pillai
Yogi Kulkarni
Olle Jonsson
Roberto Nogueira
Robert Evans
Manik Juneja
Kevin Marshall
Obie Fernandez
Karmen Blake
Francisco Alves Cabrita

http://www.puneruby.com/blog/?p=79�
http://www.puneruby.com/blog/?p=80�
http://www.puneruby.com/blog/?p=81�
http://www.puneruby.com/blog/?p=84�
http://www.puneruby.com/blog/?p=86�
http://www.puneruby.com/blog/?p=87�
http://www.puneruby.com/blog/?p=88�
http://www.puneruby.com/blog/?p=91�
http://www.puneruby.com/blog/?p=94�
http://www.puneruby.com/blog/?p=96�
http://www.puneruby.com/blog/?p=97�
http://www.puneruby.com/blog/?p=98�
http://www.puneruby.com/blog/?p=99�
http://www.puneruby.com/blog/?p=100�

	About
	Learn Ruby with me
	Preamble
	Assumptions
	Using this eBook
	What is Ruby?
	How Ruby can help you, in more detail
	Downloading Ruby and an Editor
	Ruby Programming Environment

	Our First Ruby program
	Observe

	Some Features of Ruby
	Numbers in Ruby
	Operators and Precedence

	Fun with Strings
	Variables and Assignment
	Scope
	Global scope and global variables
	Built-in global variables
	Local scope

	Getting input
	Names in Ruby
	More on methods
	Writing Own Methods in Ruby
	Bang (!) methods

	Ruby Method Missing
	More on the String class
	Listing all methods of a class or object
	Comparing two strings for equality

	Simple Constructs in Ruby
	Case Expressions
	Ruby nil is an Object

	Arrays in Ruby
	Ranges
	Blocks and Procs
	Random Numbers
	Reading from / Writing to text files
	Traversing Directory Trees
	Random Access

	Writing our own Class
	Literal Constructors
	Garbage Collection
	Class Methods

	Including Other Files
	Open classes
	Inheritance
	Duck Typing
	Overloading Methods
	Overriding Methods
	Usage of super
	Redefining methods

	Symbols
	Hashes
	Using Symbols as Hash Keys

	Exploring Time class
	Exceptions
	Raising an Exception
	Handling an Exception

	Access Control
	Top-level methods
	Accessor methods

	Syntactic sugar
	Mutable and Immutable Objects
	Freezing Objects

	Object Serialization
	Constants
	Modules/Mixins
	Self - The current/default object
	Regular Expressions
	Literal characters
	The wildcard character . (dot)
	Character classes
	Special escape sequences for common character classes

	Unit Testing
	Usage of TCPServer and TCPSocket Classes for Date and Time
	Basic Networking
	Port
	Internet Addresses
	Sockets

	Socket classes
	The Date Time Server and Client
	Summary

	A Small Project using SMTP class
	Web Services and Distributed Programming
	Writing a SOAP Client
	Writing a PuneRuby SOAP server and client

	Ruby/Tk
	Simple Tk applications

	Using Ruby/MySQL
	Ruby Tools
	irb
	The debugger
	Profiling
	ri and RDoc
	ERb

	Java and Ruby
	Similarities
	Differences

	JRuby Tutorial
	What is JRuby?
	Download and Setup
	Where to use JRuby?
	Resources:

	Ruby Quirks
	Appendix A
	Ruby Resources
	Books/eBooks/Magazines
	Useful Links
	Blogs
	Forums/User Groups
	Companies in India working in Ruby/Rails

	Appendix B
	Solutions to Assignments

	Appendix C

