
003
SlAM RE\IE\V O 1988 Soclety for Industrial and Applied Mathematics
Vol. 30. No. 4. December 1988

ON THE COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS"

J. M. BORWEINt AND P. B. BORWEINt

Abstract. This paper examines low-complexity approximations to familiar functions and numbers.
The intent is to suggest that it is possible to base a taxonomy of such functions and numbers on their
computational complexity. A central theme is that traditional methods of approximation are often very far
from optimal, while good or optimal methods are often very far from obvious. For most functions, provably
optimal methods are not known; however the gap between what is known and what is possible is often
small. A considerable number of open problems are posed and a number of related examples are presented.

Key words. elementary functions, pi, low-complexity approximation, reduced-complexity approxi-
mation, rational approximation, algebraic approximation, computation of digits, open problems

AMS(M0S) subject classifications. 68C25, 41A30, 10A30

1. Introduction. We examine various methods for evaluating familiar functions
and numbers to high precision. Primarily, we are interested in the asymptotic behavior
of these methods. The kinds of questions we pose are:

(1) How much work (by various types of computational or approximation
measures) is required to evaluate n digits of a given function or number?

(2) How do analytic properties of a function relate to the efficacy with which it
can be approximated?

(3) To what extent are analytically simple numbers or functions also easy to
compute?

(4) To what extent is it easy to compute analytically simple functions?
Even partial answers to these questions are likely to be very difficult. Some,

perhaps easier, specializations of the above are:
(5) Why is the function &easier to compute than exp? Why is it only marginally

easier?
(6) Why is the Taylor series often the wrong way to compute familiar functions?
(7) Why is the number f i easier to compute than e or T? Why is it only

marginally easier?
(8) Why is the number .I23456789101 1 . . . computationally easier than T or e?
(9) Why is computing just the nth digit of exp (x)really no easier than computing

all the first n digits?
(10) Why is computing just the nth digit of T really no easier than computing

all the first n digits?
Answers to (7) and (10) are almost certainly far beyond the scope of current

number-theoretic techniques. Partial answers to some of the remaining questions are
available.

The traditional way to compute elementary functions, such as exp or log, is to
use a partial sum of the Taylor series or a related polynomial or rational approxima-
tion. These are analytically tractable approximations, and over the class of such

* Received by the editors February 2, 1987; accepted for publication (in revised form) September 11,
1987. The second author's research was supported in part by the Natural Sciences and Engineering Research
Council of Canada.

t Department of Mathematics, Statistics, and Computing Science, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 355.

589

590 J. M. BORWEIN AND P. B. BORWEIN

approximations are often optimal or near optimal. For example, the nth partial sums
to exp are asymptotically the best polynomial approximations in the uniform norm
on the unit disc in the complex plane, in the sense that if sn is the nth partial sum of
the Taylor expansion and p, is any polynomial of degree n, then for large n,

Here 1 1 [I D denotes the supremum norm over the unit disc in the complex plane (see
[5]). If the measure of the amount of work is the degree of the approximation, as it
has been from a conventional point of view, then the story for exp might end here.

Questions (1)-(3) above have a very elegant answer for polynomial approximation
in the form of the Bernstein-Jackson theorems [l 11. These, for example, tell us that
a function is entire if and only if the error in best uniform polynomial approximation
of degree n on an interval tends to zero faster than geometrically, with a similar exact
differentiability classification of a function in terms of the rate of polynomial approx-
imation.

If we wish to compute n digits of log (x) using a Taylor polynomial then we
employ a polynomial of degree n and perform O(n) rational operations, while for
exp (x) we require O(n/log n) rational operations to compute n digits. The slight
improvement for exp reflects the faster convergence rate of the Taylor series. Pad6
approximants, best rational approximants and best polynomial approximants all
behave in roughly the same fashion, except that the constants implicit in the order
symbol change [5], [8].

A startling observation is that there exist rational functions that give n digits of
log, exp, or any elementary function but require only O((1og n)k) rational operations
to evaluate. These approximants are of degree O(n) but can be evaluated in O((1og n)l')
infinite-precision arithmetic operations. The simplest example of such a function is
xnwhich can be evaluated in O(1og n) arithmetic operations by repeated squaring.
While we cannot very explicitly construct these low-rational-complexity approxima-
tions to exp or log, it is clear that much of their simplicity results from squaring of
intermediate terms. The moral is that it is appropriate and useful to view x n as having
the complexity of a general polynomial of degree log n, not of degree n.

The existence of such approximants is a consequence of the construction of low-
bit-complexity algorithms for log and .rr resting on the Arithmetic-Geometric Mean
(AGM) iteration of Gauss, Lagrange, and Legendre (see $2 for definitions). These
algorithms were discovered and examined by Beeler, Gosper, and Schroeppel [3],
Brent [9], and Salamin [21] in the 1970s. A complete exposition is available in [5].
These remarkable algorithms are both theoretically and practically faster than any of
the traditional methods for extended precision evaluation of elementary functions.
The exact point at which they start to outperform the usual series expansions depends
critically on implementation; the switchover comes somewhere in the 100- to 1000-
digit range.

The main purpose of this paper is to catalogue the known results on complexity
of familiar functions. We now appear to know enough structure to at least speculate
on the existence of a reasonable taxonomy of functions based on their computational
complexity. Here we have in mind something that relates computational properties
of functions to their analytic or algebraic properties, something vaguely resembling
the Bernstein-Jackson theorems in the polynomial case.

Likewise we would like to suggest the possibility of a taxonomy of numbers based
on their computational nature. Here, we are looking for something that resembles

COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS 59 1

Mahler's classification of transcendendentals in terms of their rate of algebraic
approximation [151.

It is not our intention to provide a taxonomy; this must await further progress in
the field. We do hope, however, to present enough examples and pose enough
interesting questions to persuade the reader that it is fruitful to pursue such an end.

2. Definitions. We consider four notions of complexity.
(1) Rational complexity. We say that a function f has rational complexity

Or,, (s(n)) on a set A if there exists a sequence of rational functions R, so that
(a) IR,(x)- f(x)l < 10-"forallxEA;
(b) asymptotically, R, can be evaluated using no more than O(s(n)) rational

operations (i.e., infinite-precision additions, subtractions, multiplications, and divi-
sions).

That exp has rational complexity Or,, (log' n) means that there is a sequence of
rational functions, the nth being evaluable in roughly log3 n arithmetic operations,
giving an n-digit approximation to exp. The subscript on the order symbol is for
emphasis.

We will sometimes use D and antas the lower bound order symbols. Whenever
we talk about "n-digit precision" or "computing n digits" we mean computing to an
accuracy of lo-".

(2) Algebraic complexity. We say that a function f has algebraic complexity
O,,, (s(n)) on a set A if there exists a sequence of algebraic functions A, so that

(a) IA,(x)- f(x)l < 10-"forallxEA;
(b) asymptotically, all the A,, can be evaluated using no more than O(s(n))

algebraic operations (i.e., infinite-precision solutions of a fixed number of prespecified
algebraic equations).

This algebraic complexity measure allows us, for example, to use square root
extractions in the calculation of the approximants and to count them on an equal
footing with the rational operations. This is often appropriate because, from a bit-
complexity point of view, root extraction is equivalent to multiplication (see $4). Note
that we allow only a finite number of additional algebraic operations-so while we
might allow for computing square roots, cube roots, and seventeenth roots, we would
not allow an infinite number of different orders of roots.

Neither of the above measures takes account of the fact that low-precision
operations are easier than high-precision operations.

(3) Bit complexity. We say that a function f has bit complexity Obit (~ (n))on a
set A if there exists a sequence of approximations B, so that

(a) IB,(x) -f(x)l < lo-" f o r a l l x ~ A ;
(b) B, is the output of an algorithm (given input n and x) that evaluates the B,

to n-digit accuracy using O(s(n)) single-digit operations (+, -, x).
This is the appropriate measure of time complexity on a serial machine. (See [I]

for more formal definitions.)
We wish to capture in the next definition the notion of how complex it is to

compute only the nth digit of a function.
(4) Digit compl~xity. We say that a function fhas digit complexity Odlg (s(n)) on

a set A if there exists a sequence of approximations D, so that
(a) D,(x) gives the nth digit off (x). By this we mean that D,(x) differs from the

n through (n + k)th digits off (x) by at most lo-' for any preassigned fixed k;
(b) D,is the output of an algorithm (given input n and x) that evaluates the D ,

to k digits using O(s(n)) single-digit operations.

592 J. M. BORWEIN AND P. B. BORWEIN

This definition of agreement of nth digits takes account of the fact that sequences
of repeated nines can occur. We really want to say that .19999. . . and .2000. . . agree
in the first digit. As it stands, the definition above exactly computes only the nth digit
to a probability dependent on k.

It is also assumed that accessing the kth through nth digit of input of x is an
Obit(max (n - k, log k)) operation, so that accessing the first n digits is Obit(n) while
accessing just the nth bit is Ohit(log n).

Addition is Orat(I), O,,, (I), Oblt(n), and Odlg(log n). Here we take the set A,
where we seek a uniform algorithm, to be the unit square in R'. The usual addition
algorithm gives the upper bounds shown above. Addition is one of the very few cases
where we know the exact result. Trivial uniqueness considerations show that addition
is Qbit (n), and hence all the above orders are exact.

It comes as a major surprise of this side of theoretical computer science that the
usual way of m'ultiplying is far from optimal from a bit-complexity point of view.
The usual multiplication algorithm has bit complexity Qblt (n2). However, it is possible
to construct a multiplication which is Obit (n log n log log n). This is based on the Fast
Fourier Transform and is due to Schonhage and Strassen (see [I], [16]). The extent
to which the log terms are necessary is not known. Given a standard model of
computation the best known lower bound is the trivial one, Qbit (n). We will denote
the bit complexity of multiplication by M(n).

3. A table of results. The state of our current knowledge is contained in
Table 1. The orders of the various measures of complexities for computing n digits
(or in the final case the nth digt) compose the columns. In each case, except addition,
the only upper bound we know for the digit complexity is the same as the bit-
complexity bound. When we deal with functions, we assume that we are on a compact
region of the domain of the given function that is bounded away from any singularities
and that contains an interval. Numbers may be considered as functions whose domain
is a singleton.

For our purposes hypergeometric functions are functions of the form

f (x) := a,xN where a,/a,-, =R(n)

and R is a fixed rational function (with coefficients in 9).

Type o f function or,, oak oh, o d ~ r

(1) Addition 1 1 log n
(2) Multiplication 1 1 n log n log log n n
(3) Algebraic (nonlinear) log n 1 M(n) n
(4) log (complete elliptic log'n log n (1% n)M(n) n

integrals)
(5) exp log' n (log n)M(n) n
(6) Elementary (nonlinear) logh n (1% n)M(n) n
(7) Hypergeometric (over Q) 112' (log' n)M(n) n
(8) Gamma and zeta I / ' + n112+M(n) n
(9) Gamma and zeta on Q n l / 2 + (log2 n)M(n) log n

(10) pi, 1% (21, F(4) log n (1% n)M(n) log n
(1 1) Euler's constant l/2+ (log' n)M(n) log n

(Catalan's constant)

COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS 593

Elementary functions are functions built from rational functions (with rational
coefficients) exp and log by any number of additions, multiplications, compositions,
and solutions of algebraic equations.

A number of techniques are employed in deriving Table 1. Our intention is to
indicate the most useful of these without going into too much detail. The next four
sections outline the derivations of most of the bounds.

4. Newton's method. The calculation of algebraic functions, given that we have
algorithms for addition and multiplication, is entirely an exercise in applying Newton's
method to solving equations of the form f(x) - y = 0. Newton's method for
l/x - y = 0 gives the iteration

(a) X,+I :=2x, - yxi,
while for x 2 - y = 0 the iteration is

(b) Xn+ I := (xn + y/~n)/2.
These two iterations converge quadratically. Thus O(1og n) iterations give n digits

of l/y and 6 , respectively, and we have given an Orat (log n) algorithm for square
root extraction.

The quadratic rate of convergence is only half the story. Because Newton's
method is self-correcting, in the sense that a small perturbation in x, does not change
the limit, it is possible to start with a single-digit estimate and double the precision
with each iteration. Thus the bit complexity of root extraction is

O(M(1)+M(2)+M(4)+ . . . +M(n))=O(M(n)).

This leads to Obit (M(n)) algorithms for root extraction and division, and a similar
analysis works for any algebraic function. This explains most of (1)-(3) in Table 1.
We also have the interesting result that the computation of digits of any algebraic
number is asymptotically no more complicated than multiplication. (These results on
the complexity of algebraic functions may be found in [5] and [9].)

The approximation in (a), x,, is in fact the (2" - 1)st Taylor polynomial to l/y
at 1. In (b), x, is in fact the (2", 2" - 1)st Pad6 approximant to 6at 1. (See [5] or
[I I] for further material on Pad6 approximants.) This is one of the very few cases
where Newton's method generates familiar approximants.

Newton's method is also useful for inverting functions. The inverse o f f is
computed from the iteration

For any reasonable f this gives the same bit complexity estimate for f-' as for f:
Inverting by Newton's method multiplies the rational and algebraic complexities by
log n.

5. The AGM. The two-term iteration with starting values a. :=X E (0, I] and
bo := 1 given by

converges quadratically to m (1, x), where

This is the arithmetic-geometric mean iteration of Gauss, Lagrange, and
Legendre. This latter complete elliptic integral is 2Kf(x) / r and is a nonelementary

594 J. M. BORWEIN A N D P. B. BORWEIN

transcendental function with complexity

O,I, (log (n)), Orat (log2 (n)), Obit (log (n)M(n)).

It is also essentially the only identifiable nonelementary limit of a quadratically
converging fixed iteration and as such is of central importance [5].

One way to get a low complexity algorithm for log is to use the logarithmic
asymptote of K' at 0. This gives the estimate

1(2/n-) logx- l /m(l , lo-")+ l/m(l,xlO-")I < n l O n n>3, x€[.5, 11.

Up to computing n-, this allows for the derivation of algorithms with the
complexity of entry (4) in Table 1. Algorithms for n- can be derived from the same
kinds of considerations (see [4], [5], [9], [18], [21]). Probably the fastest known
algorithm for n- is the quartic example given below [5], [2].

ALGORITHM.Let a. := 6 - 4 f i and yo := fi- 1. Let

yn+l := [i - (I -~2)~/41/[1 + (I - ~ 2) ~ / ~ 1

and

an+l:=(I +yn+l)4an-22n+3~r>+~(l +,v:+I).+yn+~

Then l /an tends to n- quartically and

The exponential function may be derived from log by inverting using Newton's
method. This continues to work for appropriate complex values. The elementary
functions are now built from log and exp and the solution of algebraic equations in
these quantities. The constant k in the rational- and bit-complexity estimates depends
on the number of these equations that require solution. This explains entries (3 , (6),
and (1 0) in Table 1, except for I'(f). (This and a few other values of r arise as algebraic
combinations of complete elliptic integrals and pi.) (Substantial additional material
on this section is to be found in [5].)

6 . FFT methods. The Fast Fourier Transform (FFT) is a way of solving the
following two problems:

(a) Given the coefficients of a polynomial of degree n - 1, evaluate the polyno-
mial at all n of the nth roots of unity.

(b) Given the values of a polynomial of degree n - 1 at the nth roots of unity,
compute the coefficients of the polynomial.

These two problems are actually equivalent (see [I], [5], [16]). The important
observation made by Cooley and Tukey in the 1960s is that both of these problems
are solvable with rational complexity Or,, (n log n), rather than the complexity of
a,,,(n2) that the usual methods require (i.e., Horner's method). This is an enormously
useful algorithm.

We can multiply two polynomials of degree n with complexity Orat (n log n) by
using the FFT three times. First we compute the values of the two polynomials at
2n + 1 roots of unity. Then we work out the coefficients of the polynomial of degree
2n that agrees with the product at these roots.

Variations on this technique allow for the evaluation of a rational function of
degree n at n points in Or,, (n log' n) and Obit (n log' n M(k)), where k is the precision
to which we are working [5].

595 COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS

Fast multiplications are constructed by observing that multiplication of numbers
is much like multiplication of polynomials whose coefficients are the digits, the
additional complication being the "carries."

How does this give reduced-complexity algorithms? We illustrate with log (1 -x).
Let

n' ,A

and write

Now evaluate p(O), p(n), . . . , pn(n - 1) using FFT methods, and then evaluate sn2.

This gives an Orat(n '/'(log n)') and Ohit(n I/'(log n) 2 ~ (n)) algorithm for log. At any
fixed rational value r, we get an Ohit((log n)2M(n)) for log r. For this final estimate
we must take advantage of the reduced precision possible for intermediate calculations.

This is not as good an estimate as the AGM estimates for log. It is, however, a
much more generally applicable method. We can orchestrate the calculation, much
as above, for any hypergeometric function. This is how the estimates in line (7) in
Table 1 are deduced. Schroeppel [3], [22] shows how a similar circle of ideas can be
used to give Obit(logk n M(n)) algorithms for the solutions of linear differential
equations whose coefficients are rational functions with coefficients in Q.'

The gamma function, r , can be computed from the estimate

(see [5] for details). The zeta function, (, is then computable from Riemann's integral
[24]:

We truncate both the integral and the sum. These two formulae explain lines (8) and
(9) of Table 1.

Catalan's constant

can be computed from Ramanujan's sum

while Euler's constant, y, can be computed from the asymptotic expansion

y=-logx- c " -(-XI" + 0(exp (-x)), x> 1.
k = l k ' k !

Chudnovsky and Chudnovsky [26] provide a low-bit complexity approach to solutions of linear
differential equations in [26].

I

596 J. M. BORWEIN AND P. B. BORWEIN

This gives line (1 1) of Table 1. Some of the details may be found in [5] and [6].
A variation of the above method for computing y has been used by Brent and

McMillan [lo] to compute over 29,000 partial quotients of the continued fraction of
y.From this computation it follows that if y is rational its denominator exceeds
10'5.000.

7. Digit complexity. The aim of this section is to explain the last column in
Table 1. The main observation is that the digit complexity of computing the mth
digit (m 5 n) of the product of two n-digit numbers is a,,, (m). This is essentially just
a uniqueness argument the details of which may be pursued in [7].

Now suppose that f is analytic around zero (C3 suffices). Then

or equivalently

Iff is of low-digit complexity then, as above, truncating after one term gives a low-
complexity algorithm for a + bx. Recall that addition is O,,, (log n). This in turn gives
a low-digit complexity evaluation of cx2 in a neighborhood of zero, but evaluation of
cx2 is essentially equivalent to multiplication. Once again, the details are available in
[7]. Thus, iff is any nonlinear C3 function it is Qdi, (n), or we would have too good
an algorithm for calculating the mth digit of multiplication.

We now have the following type of theorem.
THEOREM.Iff is a nonlinear elementary function (on an interval) then f is

Obit (n(1og n)') and ad,, (n).

This is now close to an exact result. Actually we can say considerably more. For
example, we have the following theorem.

THEOREM.Iff is a nonlinear C3 function (on an interval) then the set of x for
which the digit complexity off (x) is o(n) by any algorithm is of thefirst Baire category.

A set of first Baire category is small in a topological sense (see [25]).
We define the class of sublinear numbers by calling a number x sublinear if the

digit complexity of x is Odig (n ' -) Call a a sublinear multiplier if the function ax is
sublinear for all x E [O, 11 (given both a and x as input).

THEOREM.The set of sublinear multipliers is a nonempty set of the first Baire
category.

Two more definitions are useful in relation to numbers of very low digit
complexity. We say that x is sparse if x has digit complexity Odig (n6) for all 6 >0,
and we say that a is a sparse multiplier if a x is sparse for all x € [0, 11. Sparse
multipliers have sparse digits. Indeed, let S := (x I #(nonzero digits of x among the
first n digits) = O(n" for all 6 >0).

THEOREM.The set of sparse multipliers is exactly the set S.
Thus there are uncountably many sparse multipliers and hence also uncountably

many sublinear multipliers.
These are base-dependent notions. The previous theorem shows that is a sparse

multiplier base 2 but not base 3. We can prove directly that irrational sparse multipliers
must be transcendental. Various questions concerning these matters will be raised in
the next sections.

8. Questions on the complexity of functions. The hardest problems associated
with Table 1 of 93 concern the almost complete lack of nontrivial lower bound

597 COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS

estimates. This reflects the current state of affairs in theoretical computer science. Not
only is the question of whether P = NP still open, it is still not resolved that any NP
problems are nonlinear. Friedman [13], for example, shows that we can take maxima
over the class of polynomially computable functions if and only if P =NP and that
we can integrate over this class if and only if P = #P.While these notions are somewhat
tangential to our concerns they do indicate that some of our problems are likely to
be hard.

One of the reasons for looking at the rational complexity is that it is likely to be
a little more amenable to analysis. We can show that exp and log cannot have rational
complexity o(1og n). This is a consequence of the known estimates in approximating
exp and log by rational functions of degree n [5], [8]. Note that n rational operations
can generate a rational function of at most degree 2". Thus there is only a small gap
between the known and best possible rational complexity estimates for log.

Question 1. Does log have rational complexity Orat(log n)?
The extra power of log in the rational complexity of exp over that of log is almost

certainly an artifact of the method. So at least one power of log ought to be removable.
Quesrion 2. Show that exp has rational complexity Onr(log' n). Does exp have

rational complexity Orat(log n)?
The low-complexity approximants to exp and log are constructed indirectly. It

would be valuable to have a direct construction.
Question 3. Construct, as explicitly as possible, approximants to exp and log

with complexity O,, (log").
There is a big difference in the rational complexity of exp and of F. It is tempting

to speculate that this is artificial.
Question 4. Does F have rational complexity Orat(logk n)?
Ideally we would like to identify those functions with this complexity.
Question 5. Classify (analytic) functions with rational complexity Orat(log").
This last question is almost certainly very hard.
We would expect there to be little difference between rational complexity and

algebraic complexity.
Question 6. Does any of exp, log, or K have rational complexity essentially

slower than its algebraic complexity?
In the case of bit complexity, there are no nontrivial lower bounds. At best we

can say that the bit complexity is always at least that of multiplication. Thus a crucial
first step is the content of the next question.

Question 7. Show that exp, log, or any of the functions we have considered is
not Obit (M(n)).

It is easy to construct entire functions with very low bit complexity; we simply
use very rapidly converging power series. Thus there exist nonalgebraic analytic
functions with bit complexity Obit(a,M(n)), where a, is any sequence tending to
infinity. However, the following question appears to be open.

Question 8. Does there exist a nonalgebraic analytic function with bit complexity
Obit (M(n))?

A negative answer to this question would also resolve the question preceding it.
A very natural class to examine is the class of functions that satisfy algebraic

differential equations (not necessarily linear). Almost all familiar functions arise in
this context. Even an unlikely example like the theta function

03(4):= C qnZ,
w s z

satisfies a nonlinear algebraic differential equation, as Jacobi showed (see [20]).

598 J. M. BORWEIN AND P. B. BORWEIN

Question 9. How do solutions of algebraic differential equations fit into the
complexity table?

We end with a question on digit complexity.
Question 10. Does there exist an analytic function whose digit complexity is

essentially faster than its bit complexity? Does there exist an analytic function with
digit complexity Odlg(n)?

There exist functions of the form

with low-digit complexity, where a, and b, are low-digit complexity numbers. Possibly
we can construct nowhere differentiable functions that are sublinear, in the sense of
digit complexity.

9. Questions on the complexity of numbers. Questions concerning the transcend-
ence of functions tend to be easier than questions on the transcendence of individual
numbers. In much the same way, questions on the complexity of functions tend to
be easier than those on the complexity of specific numbers. The intent of this section
is to pose various problems that suggest the link between complexity and transcend-
ence. Such questions, while raised before, tend to have been concerned just with the
notion of computability rather than also considering the rate of the combutation (see
[141).. .

The class of sublinear numbers, defined in 97, contains all rational numbers; it
also contains known transcendents such as

However, while the rationals are in this class in a base-independent fashion, it is not
at all clear that the above number cu is sublinear in bases relatively prime to 10. The
10 loth digit, base 10, is 1. What is it in base 2?

Question 1 1. Are there any irrational numbers that are sublinear in every base?
It is easy to generate numbers that are sublinear in particular bases. Numbers

such as

dl:= 1 if i is a 	square,a:=.d ldz . ..
dl:=0 otherwise,

b:=.d,dz. . . 	 dl:=1 if i is a power of 2,
d,:=0 otherwise,

are sublinear in whatever base is specified. It is tempting to conjecture that the next
question has a positive answer.

Question 12. Must an irrational number that is sublinear (in all bases) be
transcendental?

Loxton and van der Poorten [17] show that a particular very special class of
sublinear numbers, namely those generated by finite automata, are either rational or
transcendental. These are numbers for which computation of the nth digit essentially
requires no memory of the preceding digits. The base dependence of these numbers
is discussed in [1 21.

Question 13. Is either of .rr or e sublinear (in any base)?

599 COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS

Almost certainly the answer to this question is no. There is an interesting
observation relating to this. Consider the series

This series due to Ramanujan [5], [19] has numerators that grow roughly, e.g., 26n,
while the denominators are powers of 2. Thus, as has been observed, we can compute
the second length n block of binary digits of 1 / without computing the first block. ~

Likewise, in base 10, we can compute the second block of length n of decimal digits
of 4)from the series

In neither case, however, is there any reduction in the order of complexity.
It seems likely that computing the nth digit of T is an ad,,(n) calculation. Thus,

we might make the strong conjecture that no one will ever compute the 101OOOth digit
of T.This number arises from an (0ver)estimate of the number of electrons in the
known universe and as such almost certainly overestimates the amount of storage
that will ever be available for such a calculation.

The set of sparse multipliers is a subset of the sublinear numbers that can be
shown directly to contain no irrational algebraics. We do not know this about sparse
numbers, though we strongly suspect it to be true.

Recall that a sparse multiplier has mostly zero digits and observe that a nonin-
tegral rational cannot possess a terminating expansion in two relatively prime bases.
This suggests the following question.

Question 14. Do there exist irrationals that are sparse multipliers in two relatively
prime bases? Do there exist irrationals whose digits are asymptotically mostly zeros
in two relatively prime bases?

Many of these questions are at least partly related to questions on normality [23].
Virtually nothing is known about the normality of familiar numbers. The following
is a somewhat related question by Mahler.

Question 15 (Mahler [151). Does there exist a nonrational function

where the a, are a bounded sequence of positive integers, that maps algebraic numbers
in the unit disc to algebraic numbers?

Suppose that such an example exists, and suppose the a, are bounded by 9. Then

is a thoroughly nonnormal irrational algebraic. Thus, in some sense, Mahler's question
is a very weak conjecture concerning normality. Note also that, if in such an example
the a, were sublinearly computable, we would have produced sublinearly computable
algebraic irrationalities.

Perhaps we will be able to distinguish rational numbers by their digit complexity.
What can we hope to say about algebraic numbers? A natural class to look at is the
class of numbers that are linear (in multiplication), that is, numbers with bit com-
plexity Obit(M(n)). This class contains all algebraic numbers in a base-independent

600 J. M. BORWEIN AND P. B. BORWEIN

fashion. It also contains numbers such as

" 1 rn

a:= 2 -5;; and b:= f l(1+3-3"),
n=o 3 n=O

also in a base-independent fashion.
Question 16. Can we identify the class of numbers that are linear in multiplica-

tion?
This is almost certainly hard. As is the following question.
Question 17. Are either e or ir linear in multiplication?
A negative answer to the above would include a proof of the transcendence of ir.

The place to start might be with the following.
Question 18. Can we construct any natural nonlinear number?
Our current state of knowledge is that y and G have bit complexity

Obit (log2 nM(n)).
Question 19. Are y and G both Obit (log nM(n))?
We might expect that elementary functions cannot take sublinear numbers to

sublinear numbers.
Question 20. Does there exist a number a # 0 so that both a and exp (a) are

sublinear (in some base)? Can a and exp (a) both be linear in multiplication?
It seems likely that the answer is no. Question 20 should also be asked about

other elementary transcendental functions.
For simple nonelementary functions Question 20 has a positive answer. Consider

the function F := (2/ir)K, where K is the complete elliptic integral of the first kind.
Then F satisfies a linear differential equation of order 2 and is a nonelementary
transcendental function. However, if

then

and when q := 1/102' both F(k(q)) and k(q) are linear in multiplication, at least in
base 10. (This is because the series above have particularly low complexity for q :=
1/102")

Note also that the function

which satisfies a nonlinear algebraic differential equation, takes sublinear numbers of
the form q := 1/10" to sublinear numbers (base 10).

10. Conclusion. Many issues have not been touched upon at all. One such issue
is the overhead costs of these low-complexity algorithms. This amounts to a discussion
of the constants buried in the asymptotic estimates. Sometimes the theoretically low-
complexity algorithms are also of low complexity practically. This is the case for
AGM-related algorithms for complete elliptic integrals. These are probably the algo-
rithms of choice in any precision. The AGM-related algorithms for log and exp will
certainly not outperform more traditional methods in the usual ranges in which we
compute (less than 100 digits). Some of the FFT-related algorithms are probably of

COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS 601

only theoretical interest, even for computing millions of digits, because the overhead
constants are so large. In other cases, such as multiplication or the computation of
T,an FFT-related method is vital for very high precision computations.

We have not succeeded in completely answering any of the questions in the
Introduction. In large part, this is because we have virtually no methods for handling
lower bounds for such problems. The questions raised in this paper seem to be
fundamental. The partial answers have provided a number of substantial surprises.
For these reasons we believe these questions are deserving of study.

REFERENCES

[I] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis ofcomputer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] D. H. BAILEY, The computation of a to 29,360,000 decimal digits using Borweins' quartically
convergent algorithm, Math. Comp., 50 (1988), pp. 283-296.

[3] M. BEELER, R. W. GOSPER, Hakmem, MIT Artificial Intelligence Lab, Massa- AND R. SCHROEPPEL,

chusetts Institute of Technology, Cambridge, MA, 1972.

[4] J. M. BORWEIN AND P. B. BORWEIN, The arithmetic-geometric mean and fast computation of
elementaryfunctions, SIAM Rev., 26 (1984), pp. 351-365.

[51 -,Pi and the AGM-A Study in Analytic Number Theory and Computational Complexity, John
Wiley, New York, 1987.

[6] P. B. BORWEIN, Reduced complexity evaluation of hypergeometricfunctions, J. Approx. Theory, 50
(1987), pp. 193-199.

[71 -,Digit complexity, in preparation.

[8] D. BRAESS, Nonlinear Approximation Theory, Springer-Verlag, Berlin, 1986.
[9] R. P. BRENT, Fast multiple-precision evaluation of elementary functions, J . Assoc. Comput. Mach., 23

(1976), pp. 242-25 1.
[lo] R. P. BRENT AND E. M. MCMILLAN, Some new algorithmsfor high-precision calculation of Euler's

constant, Math. Comput., 34 (1980), pp. 305-312.
[l 11 E. W. CHENEY, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
[12] A. COBHAM, On the base-dependence of sets of numbers recognizable by Jinite automata, Math.

Systems Theory, 3 (1969), pp. 186-192.
[13] H. FRIEDMAN, The computational complexity of maximization and integration, Adv. in Math., 53

(1984), pp. 80-98.
[14] J. HARTMANIS On the computational complexity ofalgorithms, Trans. Amer. AND R. E. STEARNS,

Math. Soc., 117 (1965), pp. 265-306.
[I51 K. MAHLER, Lectures on Transcendental Numbers, Lecture Notes in Math. 546, Springer-Verlag,

Berlin, New York, 1976.
[16] D. KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley,

Reading, MA, 198 1.
[17] J. H. LOXTON AND A. J. VAN DER POORTEN,Arithmeticproperties ofthe solution ofa class offunctional

equations, J . Reine Angew. Math., 330 (1982), pp. 159-172.
[18] D. J. NEWMAN,Rational approximation versus fast computer methods, in Lectures on Approximation

and Value Distribution, Presses de 1'Universittt de Montreal, Montreal, Canada, 1982, pp.
149- 174.

[19] S. RAMANUJAN, Modular equations and approximations to a, Quart. J . Math., 45 (1914), 350-372.
[20] L. A. RUBEL, Some research problems about algebraic dlfferential equations, Trans. Amer. Math.

Soc., 280 (1983), pp. 43-52.
[21] E. SALAMIN, Computation of a using arithmetic-geometric mean, Math. Comput. 30 (1976), pp.

565-570.
[22] R. SCHROEPPEL, unpublished manuscript.
[23] S. WAGON, IS a normal? Math. Intelligencer, 7 (1985), pp. 65-67.
[24] E. T. WHITTAKER A Course of Modern Analysis, Fourth edition, Cambridge AND G. N. WATSON,

University Press, London, 1927.

[25] A. WILANSKY, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.
[26] D. V. CHUDNOVSKY Approximations and complex multiplication according AND G. V. CHUDNOVSKY,

to Ramanujan, in Ramanujan Revisited, G. Andrews, R. Ashey, B. Berndt, K. Ramanathan,
R. Rankin, eds., Academic Press, San Diego, CA, 1988.

