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The irrationality of .ir was first proved by J. H. Lambert in 1761 in his paper [3] 
(reprinted in [4, pp. 112-1591). Lambert's argument is the following. First he 
proves the formula 

X 
tanx = 

x 
1 -

x 2  
3 -

x 
5 - - .  

Then Lambert shows, by an argument of infinite descent, that if x # 0 is rational 
then the right hand side of (1) is irrational. Since tan(.ir/4) = 1 is rational, this 
implies that .ir is irrational. 

Lambert's proof is seldom reproduced in books on number theory. The reason is 
clear: a rigorous proof of (1) cannot avoid questions of convergence of continued 
fractions, and if our aim is just to prove the irrationality of .ir then this digression 
is not worth the effort. (The last monograph that gives Lambert's argument in 
detail seems to be Chrystal's Algebra [I].) The "usual" proofs avoid continued 
fractions and use variants of Hermite's idea: if .ir were rational then certain sums 
or integrals would be integers, contradicting estimates showing that the actual 
values lie in (0,l); see Niven's book [5]. In the notes on Chapter 2, Niven also gives 
a list of papers following this line. J. Popken published several papers on the 
subject that contain variants of Hermite's argument [6], [7], [S]. The paper [9] is 
different; here Popken reproduces Lambert's computation and infers, in a particu- 
larly simple way, Lambert's theorem: if x # 0 is rational then tanx is irrational. 

In this paper we further simplify [9] by replacing its computations with Gauss' 
functional equation. This gives a very simple proof of the irrationality of tanx (and 
also of f(x)  for a wide class of other functions) whenever x # 0 is rational. The 
irrationality of .ir follows. We also give a self-contained proof of (1) using the same 
device. 

Lambert's original computation leading to (1) was somewhat tedious; he divided 
the power series of sinx by that of cosx using a version of Euclid's algorithm, and 
determined the quotients and the remainders. This computation was simplified by 
Gauss [21, who determined the continued fraction expansions of the hypergeomet- 
ric series using their functional equations. If we want to prove only (11, then, 
following Gauss' argument, we may restrict our attention to the one-parameter 
family 

It is easy to see that the series defining fk converges for every x and for every 
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k # 0, -1, -2 ,. . . . A simple computation shows that 

if k = 1/2 then k ( k  + 1) ... ( k  + n - 1) .n! = (2n)!/4,, 

and 

if k = 3/2 then k ( k  + 1) ... ( k  + n - 1) .n! = (2n + 1) !/4". 

Therefore we have 

for every x. It is also easy to check, by comparing the coefficients of x2", that 

for every x and for every k # 0, -1 , -2,. . . . In the proof of the following 
theorem we combine (2) with the argument of [9]. 

Theorem 1. If x # 0 and x2 is rational, then fk(x) # 0 and fk+,(x)/fk(x) is 
irrationalfor every k E Q, k # 0, -1, -2, . . . . 

Proof: First we show that 

lim f i(x)  = 1. 
r + m  

Indeed, since x2"/n! -+0 as n -t m, there is some K > 0 such that 1x2"/n!l 5 K 
for every n. Therefore, if r > 1, then I f,(x) - I I r C;=, K/rn = K/(r - 11, from 
which (3) follows. 

Let x be a nonzero real number such that x2  is rational, let k E Q, k # 

0, -1, -2,.  . . be fixed, and suppose that fk(x) = 0 or fk+,(x)/fk(x) is rational. 
Then fk(x) and fk+,(x) are both integer multiples of the same quantity: say 
fk(x) = ay and fk+,(x) = by for integers a and b. We allow a or b to be zero. But 
y cannot be zero, since it would then follow from (2) that fk+,(x) = 0 for every 
n = 1,2, .  . ., which would contradict (3). 

Let q be a positive integer such that (bq/k), (kq/x2), and (q/x2) are all 
integers. Now let Go = fk(x) and 

for each n = 1,2,.  . . . Then Go = ay, G, = (bq/k)y, and from (2) we can calcu-
late that 

for every n = 0,1, .. . . The coefficients in (4) are integers, so G, is an integer 
multiple of y for every n. Since fk+,(x) -t 1 by (3) and qn/[k(k + 1) ... (k + n -
I)] -+ 0, we have G, -+ 0. But fk+,(x) -+ 1 also implies that G, is positive for all 
sufficiently large n. Positive integer multiples of y cannot converge to zero. The 
contradiction means that fk(x) and fk+,(x) cannot both be integer multiples of the 
same quantity. 
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Corollary 2. .i.r2 is irrational. 

Proof f1 / , (~ /4)  = cos(.i.r/2) = 0. rn 

Corollary 3. Ifx # 0 is rational, then tanx is irrational. 

Proof Since (x/2), is nonzero and rational, f3/,(x/2)/fl/,(x/2) = (tanx)/x is 
irrational, and then so is tanx. rn 

Although we eliminated (1) from the proof, for the sake of completeness we give 
a simple and self-contained proof of (1) using (2). We prove that (1) holds for every 
complex number x. The continued fraction 

bl 

1+ b2 

I + .  
bn 1

I + -
-

1+ 4 7  

will be denoted by [b,, . . . ,b,]. Since occasionally we may have to divide by zero, 
we add to the set C of complex numbers an infinite element rn, and adopt the 
following conventions: (i) a/O = (a E C, a # 0); (ii) a/w = 0, (a E C); and (iii) 
a + rn = a - rn = rn (a E C). It is easy to see, using induction on n, that 

if I bi I I 1/4 for every i = 1 , .  . . ,n - 1and if Ib, I I 1/2, 

then I[b ,,...,bn]l 11/2. (5) 

We show next that if lbil I 1/4 for every i = 1, .  . . ,n and if 16 1 I 1/4, then 

This is clearly true for n = 1. Let n > 1, and suppose (6) is true for n - 1. Let 
lb,111/4 ( i = l ,  ...,n) and 16111/4. Denoting u = [ b ,  ,...,b,] and u =  
[b,, . . . ,bn-,, b, + 61, we have lul, lul I 1/2 by (51, and Iu - ul I 161 by the 
induction hypothesis. Then 

which completes the proof. 
Now let x # 0 be fixed. Let k = 1/2, and put a, = fn+(,/,,(x)/fn+(,/,)(x) 

(n = 0,1,.  . . ). By (2) we have 
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Since a, = tan(2x)/(2x), this implies 

for every n. Replacing x by x/2, and multiplying by x, we obtain 

Let N > 1 be such that x2/((2n - 1)(2n + 1)) < 1/4 and a, E (0,2) for every 
n 2 N (recall that limn, ,a, = 1by (3)). Let 

and 

for every n > N. Then (6) ensures that IP, - Qnl I la, - 11 for every n > N. Let 

It is easy to check that FN(as a function of y )  is a homeomorphism of C = C U {w) 
onto itself; in fact, FNis a fractional linear transformation. Since tanx = FN(Q,) 
by (7), we have Qn = F i '(tanx) for every n > N. Since I P, - Q, 1 Ila, - 11+ 0 
as n + w, this implies limn ,,Pa = Fil( tanx),  and hence, by the continuity of FN, 
we obtain tanx = lim, ,,FN(P,). However, 

X def 

FN(Pn) = = R,.x 

Since the right hand side of (1) is defined as lim, ,,R,, this proves (1). w 

Note that (1) is valid for every x E C, even for x = (.rr/2) + k ~ ,when tanx is 
to be interpreted as m . The conventions concerning may be needed for other 
values of x, too, in order to compute some of the "convergents" R,. (Take, for 
example, x = 6 . 1  However, for every given x, R, can be computed using finite 
numbers only, if n is large enough. Indeed, it is easy to see that there is a finite set 
S (depending on x)  such that for every y P S, the computation of FN(y) does not 
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involve m. Since lim,, ,,a, = 1, it follows from (2) that a, # 1 if n > no.From this 
one can prove that P, # Q, for n > no,  and hence every number occurs in the 
sequence P, only a finite number of times. This implies that for n > n,  we have 
P, P S ,  and then the computation of R, = FN(P,) needs finite numbers only. 
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. . . he talked of a learned monk of many centuries ago, who did hit 
upon a way of multiplying numbers. That in itself I might 
understand, for it was simple, but the adding of each last two 
figures to  make thc next. T o  wit, one, two, three, five, eight, 
thirtecn, onc and twenty, and thus forward as you may will. Mr B. 
averred that hc himself did belicvc thesc numbers appeared, 
though secretly, in many places in nature, as it were a divine cipher 
that all living things must copy, for that the ratio between its 
successive n ~ ~ n l b c r s  was that also of a secret of the Greeks, who did 
discover a perkcct proportion, I believc he said it to be of one to 
onc and six tcnths. He pointed to  all that chanced about us, and 
said that thesc numbers might be read thcrein; and cited othcr 
examples, that I forgct now except that marly accorded with the 
order ol petals and lcavcs in trees and herbs, I know not what. 

John Fowlcs, A Maggot, New American Library. 1985 
Contributed by Irving Adlcr, North Rennington, VT 
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