We could have required that (2) holds for all $f_{i}<g_{i}$ (this relation defined by (3) and (4)), dropping the assumption that f_{i}, g_{i} are decreasing. This gives, as in Theorem 1, (a), the relation (11) with the h_{j} now of arbitrary sign. It follows that $\Phi\left(u_{i}+h_{i}\right)-\Phi\left(u_{i}\right)$ and therefore also $\partial \Phi / \partial u_{i}$ does not depend on the u_{j} with $j \neq i$. Integrating we get $\Phi=\phi\left(t, u_{i}\right)+\psi\left(t, U_{J}\right)$. In this way we obtain

Theorem 2. A function Φ satisfies (2) with f_{i}, g_{i} not necessarily decreasing if and only if Φ is of the form

$$
\Phi\left(t, u_{1}, \cdots, u_{n}\right)=\sum_{i=1}^{n} \Phi_{i}\left(t, u_{i}\right),
$$

where each Φ_{i} is a function of two variables which satisfies (6) and (7).

References

1. L. Fuchs, A new proof of an inequality of Hardy, Littlewood and Pólya, Mat. Tidsskr., B, 1947, pp. 53-54.
2. G. H. Hardy, J. E. Littlewood and G. Pólya, Some simple inequalities satisfied by convex functions, Messenger Math., vol. 58, 1929, pp. 145-152.
3. - Inequalities, Cambridge, 1934.
4. G. G. Lorentz, An inequality for rearrangements, this Monthly, vol. 60, 1953, pp. 176-179.
5. H. D. Ruderman, Two new inequalities, this Monthly, vol. 59, 1952, pp. 29-32.

A PROOF OF THE IRRATIONALITY OF π

Robert Breusch, Amherst College
Assume $\pi=a / b, a$ and b integers. Then, with $N=2 a, \sin N=0, \cos N=1$, and $\cos (N / 2)= \pm 1$.

If m is zero or a positive integer, then

$$
A_{m}(x) \equiv \sum_{k=0}^{\infty}(-1)^{k}(2 k+1)^{m} \frac{x^{2 k+1}}{(2 k+1)!}=P_{m}(x) \cos x+Q_{m}(x) \sin x
$$

where $P_{m}(x)$ and $Q_{m}(x)$ are polynomials in x with integral coefficients. (Proof by induction on $m: A_{m+1}=x d A_{m} / d x$, and $A_{0}=\sin x$.)

Thus $A_{m}(N)$ is an integer for every positive integer m.
If t is any positive integer, then

$$
\begin{aligned}
B_{t}(N) & \equiv \sum_{k=0}^{\infty}(-1)^{k} \frac{(2 k+1-t-1)(2 k+1-t-2) \cdots(2 k+1-2 t)}{(2 k+1)!} N^{2 k+1} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{(2 k+1)^{t}-b_{1}(2 k+1)^{t-1}+\cdots \pm b_{t}}{(2 k+1)!} N^{2 k+1} \\
& =A_{t}(N)-b_{1} A_{t-1}(N)+\cdots \pm b_{t} A_{0}(N)
\end{aligned}
$$

Since all the b_{i} are integers, $B_{t}(N)$ must be an integer too.

Now

$$
B_{t}(N)=\sum_{k=0}^{[(t-1) / 2]}+\sum_{k=[(t+1) / 2]}^{t-1}+\sum_{k=t}^{\infty}
$$

In the first sum, the numerator of each fraction is a product of t consecutive integers, therefore it is divisible by t !, and therefore by $(2 k+1)!$ since $2 k+1 \leqq t$. Thus each term of the first sum is an integer. Each term of the second sum is zero. Thus the third sum must be an integer, for every positive integer t.

This third sum is

$$
\begin{aligned}
\sum_{k=t}^{\infty}(-1)^{k} \frac{(2 k-t)!}{(2 k+1)!(2 k-2 t)!} & N^{2 k+1} \\
=(-1)^{t} \frac{t!}{(2 t+1)!} & N^{2 t+1}\left(1-\frac{(t+1)(t+2)}{(2 t+2)(2 t+3)} \frac{N^{2}}{2!}\right. \\
& \left.+\frac{(t+1)(t+2)(t+3)(t+4)}{(2 t+2)(2 t+3)(2 t+4)(2 t+5)} \frac{N^{4}}{4!}-\cdots\right)
\end{aligned}
$$

Let $S(t)$ stand for the sum in the parenthesis. Certainly

$$
|S(t)|<1+N+\frac{N^{2}}{2!}+\cdots=e^{N}
$$

Thus the whole expression is absolutely less than

$$
\frac{t!}{(2 t+1)!} N^{2 t+1} e^{N}<\frac{N^{2 t+1}}{t^{t+1}} e^{N}<\left(N^{2} / t\right)^{t+1} e^{N}
$$

for $t>t_{0}$, this is certainly less than 1 .
Therefore necessarily $S(t)=0$ for every integer $t>t_{0}$. But this is impossible, because

$$
\lim _{t \rightarrow \infty} S(t)=1-\frac{1}{2^{2}} \cdot \frac{N^{2}}{2!}+\frac{1}{2^{4}} \cdot \frac{N^{4}}{4!}-\cdots=\cos (N / 2)= \pm 1
$$

It can be proved similarly that the natural logarithm of a rational number must be irrational: From $\log (a / b)=c / d$ would follow $e^{c}=a^{d} / b^{d}=A / B$. Then

$$
B \cdot \sum_{k=0}^{\infty} \frac{(k-t-1)(k-t-2) \cdots(k-2 t)}{k!} c^{k}
$$

would have to be an integer for every positive integer t, and a contradiction results, as before.

