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In this note we will discuss the limit inferior and limit superior of a sequence in a bit more detail than in
the text. Both the limit inferior and the limit superior may be viewed as a replacement for the limit in
many situations. They have the advantage that they always exist. Thus we may separate the question
of existence of a potential limit and its estimation. However, their usefulness is much greater than that.

The limit inferior and the limit superior do not replace the notion of limit however, because they fail to
have the crucial additive and multiplicative properties of limits.

We will make use of the affine notions of infinity, +∞ and −∞, throughout this note (as opposed to the
projective notion of infinity∞ popular in dealing with complex numbers). We make the usual conventions
regarding order (if α ∈ R then α < +∞) and arithmetic (if α ∈ R the α + ∞ = +∞). Some care is
needed of course since some expressions are not defined (for example +∞−∞). Following tradition I
may be careless and write ∞ for +∞ and I may neglect to mention special cases that need to be checked.

The word number will mean real number throughout (unless qualified). In particular +∞ and −∞ are
not numbers. We will use the term extended real number to indicate a real number, +∞ or −∞.

1. Sup and Inf

The completeness property of the real numbers may be formulated as each nonempty set A of real
numbers which has an upper bound, has a least upper bound, lub A. An equivalent statement is each
nonempty set A of real numbers which has a lower bound, has a greatest lower bound, glbA.

It is convenient to extend the lubA and glbA notions. Hence for any set of real numbers A we define
the supremum of A by

(1) sup A =

8><
>:
−∞ if A = ∅

+∞ if A has no upper bound

lub A elsewise.

We define the infemum of A in like manner:

(2) inf A =

8><
>:

+∞ if A = ∅

−∞ if A has no lower bound

glbA elsewise.

The peculiar definitions for the empty set keep things consistent, but sometimes are a nuisance. Note
for example inf A ≤ sup A if and only if A �= ∅.
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2. Limits of Sequences

Let (an)n≥1 be a sequence of real numbers. Recall the sequence converges to the real number L if

(3) ∀ ε > 0 ∃N such that n > N implies | an − L | < ε.

We also say that (an)n≥1 has limit L and we write limn→∞ an = L.

A sequence can diverge in many way. We single out two: divergence to +∞ and divergence to −∞. We
can include these two cases in our notion of limit by rephrasing the definition above.

Let (an)n≥1 be a sequence of real numbers. We say the sequence has limit the extended real number L
if

(4) ∀s ∈ R such that s < L, ∀t ∈ R such that L < t, {n | an < s or t < an } is a finite set.

Note if L is infinite, then the condition on s or the condition on t is not satisfied by any real number, and
the corresponding condition on an is taken to be vacuous. Write out the two possible cases and make
sure you understand them.

Recall that another way to formulate the completeness of the real numbers is by the assertion that each
bounded monotone sequence converges. With our extended notion of limit we can now assert each
monotone sequence has a limit. The limit is finite if and only if the monotone sequence is bounded (in
which case it converges to the limit).

Note for a monotone increasing sequence (an)n≥1

(5) lim
n→∞

an = sup { an | n ≥ 1 } = sup
n≥1

an

and for a monotone decreasing sequence (bn)n≥1

(6) lim
n→∞

bn = inf { an | n ≥ 1 } = inf
n≥1

bn

Here is an important variation on the definition (4) – we say that the extended real number W is an
accumulation point of the sequence (an)n≥1 if

(7) ∀s ∈ R so s < W, ∀t ∈ R so W < t, {n | s < an and an < t } is an infinite set.

Note as before if either s or t does not exist then the corresponding condition on an is vacuous. Thus
+∞ is an accumulation point if and only if for each real number s we have {n | s < an } is an infinite
set.

Exercise 1. Show that W is an accumulation point of the sequence (an)n≥1 if and only if there is a

subsequence (ank
)k≥1 with limit W .
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3. Limit Superior and Limit Inferior

Let (an)n≥1 be a sequence of real numbers. Define

An = inf
k≥n

ak(8)

Bn = sup
k≥n

ak.(9)

Then −∞ ≤ An < +∞ and the An form an increasing sequence of real numbers or An = −∞ for
each n. Also, −∞ < Bn ≤ +∞ and the Bn form a decreasing sequence of real numbres or Bn = +∞
for each n. Thus either (An)n≥1 and (Bn)n≥1 are monotone sequences of real numbers, and so have a
limit, or are constant sequences of −∞ or +∞, to which we assign the obvious limit. Thus the following
definitions make sense:

lim inf
n→∞

an = lim
n→∞

An = lim
n→∞

inf
k≥n

an = sup
n≥1

inf
k≥n

ak(10)

lim sup
n→∞

an = lim
n→∞

Bn = lim
n→∞

sup
k≥n

an = inf
n≥1

sup
k≥n

ak.(11)

Clearly

−∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ +∞

and these quantities always exist.

Proposition 1. Let (an)n≥1 be a sequence of real numbers and let A be an extended real number. Then

lim inf
n→∞

an ≤ A

if and only if for each real number t with A < t the set {n | an < t } is infinite.

Proof. If A = +∞ then there is no t with A < t and so for each such t anything is true. We may now
assume −∞ ≤ A < +∞.

Suppose lim infn→∞ an ≤ A. Let t ∈ R and suppose A < t. Since supn≥1 infk≥n ak ≤ A < t we have

inf
k≥n

ak ≤ A < t

for each n ≥ 1. It follows for each n ≥ 1 there exists kn ≥ n such that

akn < t,

(since otherwise t would be a lower bound for {an, an+1, · · ·} and so t ≤ infk≥n ak). Since kn ≥ n for
each n we see that the set {n | an < t } is infinite.

Conversely suppose A < t implies {n | an < t } is infinite. Let A < t. Then for each n ≥ 1 there is
kn ≥ n such that akn < t. Thus for each n ≥ 1 we have infk≥n ak ≤ t. The least upper bound of this
monotone increasing sequence is therefore bounded by t. Thus lim supn→∞ an ≤ t. But this inequality
has been shown to hold for each t with A < t. It must follow that lim supn→∞ an ≤ A (since for any
number s if A < s then t < s for some t with A < t). �

Proposition 2. Let (an)n≥1 be a sequence of real numbers and let A be an extended real number. Then

A ≤ lim inf
n→∞

an

if and only if for each real number s with s < A the set {n | an < s } is finite.
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Proof. If A = −∞ then there is no s with s < A and so for each such s anything is true. We may now
assume −∞ < A ≤ +∞.

Suppose A ≤ lim infn→∞ an. Let s ∈ R and suppose s < A. Then s < supn≥1 infk≥n ak implies s is
not an upper bound for the numbers infk≥n ak (since the sup is the least upper bound). It follows there
exists N such that s < infk≥N ak. But then {n | an < s } ⊆ {1, 2, · · · , N}.

Conversely suppose s ∈ R and s < A imply {n | an < s } is finite. Let s < A. Then there exists n such
that k ≥ n implies ak ≥ s, that is, s is a lower bound for {an, an+1, · · ·}. It follows that infk≥n ak ≥ s.
This certainly implies that lim infn→∞ an ≥ s. Since we proved this assertion for each s with s < A we
must have lim infn→∞ an ≥ A. �
Theorem 3. Let (an)n≥1 be a sequence of real numbers and let A be an extended real number. Then

A = lim inf
n→∞

an

if and only if whenever s ∈ R, s < A and t ∈ R, A < t then

{n | an < s } is finite and {n | an < t } is infinite.

In particular lim infn→∞ an is an accumulation point of (an)n≥1.

Proof. The first part follows by proposition 1 and 2. The last part follows by exercise 1. �
Proposition 4. Let (an)n≥1 be a sequence of real numbers and let B be an extended real number. Then

B ≤ lim sup
n→∞

an

if and only if for each real number s with s < B the set {n | an > s } is infinite.

Proof. Indeed lim supn→∞ an = − lim infn→∞ −an. Now use proposition 1 �
Proposition 5. Let (an)n≥1 be a sequence of real numbers and let B be an extended real number. Then

lim sup
n→∞

an ≤ B

if and only if for each real number t with B < t the set {n | an < t } is finite.

Proof. Indeed lim supn→∞ an = − lim infn→∞ −an. Now use proposition 2. �
Theorem 6. Let (an)n≥1 be a sequence of real numbers and let B be an extended real number. Then

B = lim sup
n→∞

an

if and only if whenever s ∈ R, s < B and t ∈ R, B < t then

{n | an > s } is infinite and {n | an > t } is finite.

In particular lim supn→∞ an is an accumulation point of (an)n≥1.

Proof. Indeed lim supn→∞ an = − lim infn→∞ −an. Now use theorem 3. �

Corollary 7. The sequence (an)n≥1 of real numbers has a limit if and only if lim supn→∞ an =
lim infn→∞ an. Moreover, in this case

lim
n→∞

an = lim sup
n→∞

an = lim inf
n→∞

an.

If we let L = lim infn→∞ an and U = lim supn→∞ an then the following table summarizes the properties
of L and U :
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finite – || L — — U || – finite
infinite – – – – – — — – – – – – infinite

Exercise 2. Let (an)n≥1 be a sequence of real numbers and let S be the set of accumulation points of

(an)n≥1. Prove

lim sup
n→∞

an = sup S and lim inf
n→∞

an = inf S.

Exercise 3. Let (an)n≥1 and (bn)n≥1 be sequences of real numbers. Prove

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

provided right side is not +∞−∞.

Exercise 4. Let (an)n≥1 and (bn)n≥1 be sequences of real numbers. Prove

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn.

provided right side is not +∞−∞.

Exercise 5. Let (an)n≥1 and (bn)n≥1 be bounded sequences of real numbers. Suppose an ≥ 0 and
bn ≥ 0 for each n ≥ 1. Prove

lim sup
n→∞

(anbn) ≤
�

lim sup
n→∞

an

��
lim sup

n→∞
bn

�
.

Exercise 6. Show the result of the previous exercise is true for unbounded sequences provided we assume
the individual limit superiors are strictly positive.

Here is a useful result related to the results of the exercises above.

Proposition 8. Let (an)n≥1 and (bn)n≥1 be sequences of real numbers. Suppose an > 0 and bn ≥ 0
for each n ≥ 1. Suppose moreover that a = limn→∞ an exists and suppose 0 < a < ∞. Then

lim sup
n→∞

(anbn) =
�

lim
n→∞

an

��
lim sup

n→∞
bn

�
.

Proof. From the exercises we have

lim sup
n→∞

(anbn) ≤
�

lim
n→∞

an

��
lim sup

n→∞
bn

�
.

Now since bn = 1
an

(anbn) and limn→∞
1

an
= 1

a we also have

lim sup
n→∞

bn ≤ 1
a

lim sup
n→∞

(anbn).

�

As an important special case we have if c > 0 and bn ≥ 0 then

(12) lim sup
n→∞

c1/nbn = lim sup
n→∞

bn.

Here is an interesting result which will be important to us later in our study of convergence of series.

Theorem 9. Let (an)n≥1 be a sequence of real numbers with an > 0 for each n ≥ 1. Then

(13) lim inf
n→∞

an+1

an
≤ lim inf

n→∞
a1/n

n ≤ lim sup
n→∞

a1/n
n ≤ lim sup

n→∞

an+1

an
.
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Proof. It suffices to prove

(14) lim sup
n→∞

a1/n
n ≤ lim sup

n→∞

an+1

an
.

Let

L = lim sup
n→∞

an+1

an
.

If L = +∞ there is nothing to prove. Thus we may assume 0 ≤ L < +∞. Let t > L. Then the set
{n | an+1/an > t } is finite. It follows there exists N such that an+1 ≤ tan for n ≥ N . By induction

aN+k ≤ tkaN for k ≥ 1.

We can rewritr this as

an ≤ tn
�
t−NaN

�
for n ≥ N.

Now let c be the maximum of the finite set�
t−1a1, t−2a2, · · · , t−NaN

	
.

Then by the estimate above we have

an ≤ tnc for n ≥ 1.

It follows

lim sup
n→∞

a1/n
n ≤ lim sup

n→∞
tc1/n = t.

Since we proved this inequality for each t > L it follows that lim supn→∞ a
1/n
n ≤ L. �

Exercise 7. Let

an = 2(−1)n−n.

Prove

lim inf
n→∞

an+1

an
=

1
8
, lim sup

n→∞

an+1

an
= 2, lim

n→∞
a1/n

n =
1
2
.

Exercise 8. Without making use of Stirling’s prove

lim
n→∞

 
(2n)!
(n!)2

! 1
n

= 4.

Exercise 9. Let (an)n≥1 be a sequence of real numbers with an > 0 for each n ≥ 1. Consider the
Cesaro means of the sequence

σn =
1
n

nX
k=1

ak.

Prove

lim inf
n→∞

an ≤ lim inf
n→∞

σn ≤ lim sup
n→∞

σn ≤ lim sup
n→∞

an.

Conclude if limn→∞ an exists then the Cesaro limit limn→∞ σn exists and

lim
n→∞

σn = lim
n→∞

an.

Exercise 10. Compute the Cesaro limit of the sequence (an)n≥1 defined by

an = 2 + (−1)n.

Remark. These notes were thrown together very quickly and may contain some errors. I would be very
pleased to receive corrections (and suggestions).
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