

Introduction To The FileConnection API

F O R U M N O K I A

Version 1.1; November 26, 2004

Java™

Forum.Nokia.com

Copyright © 2004 Nokia Corporation. All rights reserved.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation. Java and all Java-based
marks are trademarks or registered trademarks of Sun Microsystems, Inc. Other product and company names
mentioned herein may be trademarks or trade names of their respective owners.

Disclaimer

The information in this document is provided “as is,” with no warranties whatsoever, including any warranty of
merchantability, fitness for any particular purpose, or any warranty otherwise arising out of any proposal,
specification, or sample. Furthermore, information provided in this document is preliminary, and may be changed
substantially prior to final release. This document is provided for informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to
implementation of information presented in this document. Nokia Corporation does not warrant or represent
that such use will not infringe such rights.

Nokia Corporation retains the right to make changes to this specification at any time, without notice.

License

A license is hereby granted to download and print a copy of this specification for personal use only. No other
license to any other intellectual property rights is granted herein.

Introduction To The FileConnection API 2

Forum.Nokia.com

Contents

1 Introduction.. 5
2 FileConnection API... 6

2.1 Introduction...6
2.2 Security ..7
2.3 Nokia-Specific Directories..9

3 Image Viewer ...10
3.1 ImageViewerMIDlet ..11
3.2 FileSelector ..14
3.3 OperationsQueue and Operation ...22
3.4 ImageCanvas...23
3.5 InputScreen ...25
3.6 ErrorScreen ..26

4 Terms and Abbreviations ..27
5 References ...28
6 Evaluate This Document ..29

Introduction To The FileConnection API 3

Forum.Nokia.com

Change History

November 2, 2004 Version 1.0 Initial document release

November 26, 2004 Version 1.1 Document and example application package updated

Introduction To The FileConnection API 4

Forum.Nokia.com

1 Introduction

This document describes the FileConnection API [JSR-075]. It also includes a brief description of the
example MIDlet that is included in this package and some Nokia-specific implementation details. The
document assumes familiarity with Java™ programming and the basics of Mobile Information Device
Profile (MIDP) programming, as described in the Forum Nokia document MIDP 1.0: Introduction to
MIDlet Programming [MIDPPROG]. The FileConnection API is a restricted API and as such it is subject to
security restrictions. Therefore, you should also be familiar with the MIDP 2.0 security framework
concepts; the Forum Nokia document MIDP 2.0: Tutorial On Signed MIDlets [SIGNMID] provides insight
into the security model and signing procedures.

The FileConnection API was specified in JSR-75: PDA Optional Packages for the J2ME™ Platform, which
includes two Java™ 2 Platform, Micro Edition (J2ME™) optional packages oriented to support features
typical of PDA-like devices. The optional packages give access to personal information management
(PIM API) databases and local file systems (FileConnection API). These two packages are completely
independent of each other, and thus devices may contain either one or both.

Introduction To The FileConnection API 5

Forum.Nokia.com

2 FileConnection API

2.1 Introduction

I/O operations in J2ME devices are handled using the Generic Connection Framework (GCF), by means
of Connection interface implementations specific to each connection type. The different
Connection extensions are built using a URL adequate to the different connection types such as
http://, sockets://, and so on. In principle, the GCF is general enough to support connections to files but
this has never been a mandatory part of J2ME or MIDP and in general it has been left out of most
implementations. Even if such kind of connection would be built, there is a lack of support for file-
specific operations such as rename or delete. In addition, access to local files has important
implications with respect to security, privacy, and system stability that have to be taken into account.

The FileConnection API [JSR-075] fills the above-mentioned gap by giving access to file systems and
support for file-oriented operations. The API assumes the existence of a file system in the device that
can be located, for example, in removable memory cards, flash memory, or other types of persistent
storage. This API is not meant to be a replacement for the Record Management System (RMS) but
rather a complement to it allowing MIDlets to interact with native applications. For example, a MIDlet
could access and manipulate images previously captured by a native application using a built-in
digital camera. Those images are commonly stored in the device’s memory and with the
FileConnection API they are made accessible to CLDC/CDC1 applications.

The API’s minimum requirement is CLDC 1.0 so that basic J2ME devices, which may not even have a
user interface, can implement it. However, this document and the example MIDlet will assume that the
FileConnection API is implemented on a MIDP 2.0 device. The security implications of this API are also
studied in the context of the MIDP 2.0 security framework [SIGNMIDP].

Since the FileConnection API is an optional extension, a system property has been added to indicate
the API’s presence. The microedition.io.file.FileConnection.version system property
contains the implemented version of the API. Currently this property should have the value 1.0 to
indicate the current status of the API or null if the API is not present. Another useful system property is
file.separator, which contains the character used to separate directories, typically with the value
“/”.

The API is very simple containing just one class, two interfaces, and two exceptions. The most
important part is the FileConnection interface, which extends the Connection interface and
gives access to directories and individual files. Implementations of FileConnection are created
using the Connector.open() method. The argument of the open() method is a URL with the
format file://<host>/<path>, as defined in RFC 1738 [RFC 1738] and RFC 2396 [RFC 2396], where
host is normally left empty and path starts with the root of the file system down to a particular file
or directory. An example of a typical file URL in a Symbian device looks like the following:

file:///C:/Nokia/Images/Image(001).jpg

The roots of the file system are device-specific and they don’t necessarily correspond to physical
memory units since they are logically defined by the device’s operating system. Furthermore, some
Nokia devices support virtual roots that are basically links pointing to certain denoted directories. For
instance, the location of captured images in a memory card could be located in the
file:///e:/Nokia/Images path under the e: root, but additionally there is an Images/ virtual
root which points to the actual physical location. This makes it easier to find such locations and also
eases the security permissions, given that a MIDlet may have access rights to the Images/ root but
not necessarily to the e:/ root.

1 Connected Limited Device Configuration / Connected Device Configuration

Introduction To The FileConnection API 6

Forum.Nokia.com

The FileSystemRegistry class provides the listRoots() utility method that returns an
enumeration of the roots on the file system. This includes both logical and virtual roots. The API also
takes into account that certain devices have the ability of having file systems added or removed at run
time. The FileSystemRegistry class provides methods for registering FileSystemListener
listeners that are called when the roots on the device are modified. It is recommended that every
application register a FileSystemListener listener to be informed about these changes and act
accordingly.

While the FileConnection interface extends Connection and objects are created using the GFC,
there are some important differences with respect to other commonly used Connection
implementations. One of the most important differences is that a call to Connector.open() can be
successful even if the file doesn’t currently exist. This is necessary when creating new files or
directories. Nevertheless, it is illegal to open an InputStream to a non-existing file.

Another difference is that a FileConnection can remain open after the input or output streams are
closed. Hence, it is important to call the FileConnction.close() method after the file has been
accessed and thus ensure that it is available for other applications. In a related matter, modifications
to a file using the OutputStream are not necessarily visible immediately by the file system. This
depends on the actual implementation and the device’s operating system. The flush() method
ensures that any buffer is cleared and its contents written to the actual file.

An extra disparity with other Connection objects is that a FileConnection object can be reused
using the setFileConnection() method. This method is mainly meant for doing directory
traversal. The idea is that having built a FileConnection on a particular directory, the list()
method can be called to obtain an enumeration of the children files and directories. The members of
this enumeration can be passed to setFileConnection() as an argument and then the original
FileConnection points to this particular children file or directory. Basically, the argument of
setFileConnection() is a relative path to another children file or directory already existing or
the “..” argument for the upper directory.

One general consideration that has been highlighted for all kinds of I/O operations is that they should
be performed in a different thread than the GUI thread. The same recommendation applies when
using the FileConnection API. This is highlighted when considered that due to the security framework,
file-related operations could generate user prompts to authorize them. If an I/O operation is executed
in the GUI thread and a user prompt is needed, the MIDlet may deadlock.

2.2 Security

When developing an application using the FileConnection API, it is important to take into account the
security implications of the API. File operations are restricted with the aim of protecting the user’s
private data and the overall system security. File operations can be executed only if the needed
permission has been acquired before; otherwise a SecurityException will be thrown. It is
important to be aware of this and include a catch SecurityExceptions statement when
appropriate.

MIDP 2.0 MIDlets are either untrusted or trusted [SIGNMID]. In the first case the device cannot assure
the MIDlet’s origin and integrity, and therefore calling restricted APIs is not allowed without explicit
user permission. This means that whenever you need to access a file or a directory, a user prompt will
appear and the user must explicitly authorize the operation.

In the case of trusted MIDlets, the device can determine their origin and integrity by means of X.509
certificates. These MIDlets may acquire permissions automatically depending on the security domain
settings they were installed with. In addition, the MIDlet needs to include the requested file
permissions in its Java Application Descriptor (JAD) file under the MIDlet-Permission property.

Introduction To The FileConnection API 7

Forum.Nokia.com

Two permissions have been defined in relation to the FileConnection API:

javax.microedition.io.Connector.file.read
javax.microedition.io.Connector.file.write

The first permission is necessary for opening files in READ mode and to obtain input streams to those
files. It is also required when registering listeners with the FileSystemRegistry class. The second
permission is required to open files in WRITE mode and for opening output streams to those files. In
addition, operations such as delete, mkdir, and others need the write permission. If you open a file
in READ_WRITE mode, you need both permissions. These permissions are contained in the Read
User Data Access and Write User Data Access function groups.

Permissions are granted or denied depending on which security domain the MIDlet was installed in.
Some domains may fully grant those permissions and others may allow them only with explicit user
approval. The definition of what permissions are allowed for each domain is implementation-specific.
Nevertheless, it is expected that for the third-party and untrusted domain the permissions mode will
be as shown in Table 1:

Trusted third-party domain Untrusted domain Function group

Default setting Allowed
settings

Default setting Allowed
settings

Read User Data
Access

Oneshot Session, Blanket,
Oneshot, No

Oneshot Oneshot, No

Write User Data
Access

Oneshot Session, Blanket,
Oneshot, No

No Oneshot, No

Table 1: Allowed and default permission modes

In practical terms, Table 1 tells that an untrusted MIDlet will pop a user prompt every time a
connection to a file or directory is created. Furthermore, if the connection is open in READ_WRITE
mode, there will be two prompts, one for both permissions. In the case of trusted third-party MIDlets
the situation is the same but the user has the option of manually changing this setting to session and
therefore be asked only once while running the MIDlet. It is also important to notice that the
permissions are given in a file-to-file basis. This means that the user may be prompted for each file or
directory that is being accessed. This situation is particularly noteworthy for MIDlets such as the one in
this example, which traverses the file system and thus gets multiple user prompts. This situation
makes a strong point for why MIDlets should be signed when using restricted APIs.

In addition, there is an extra layer of restrictions with respect to file access. Depending on the security
domain the MIDlet has been assigned during installation, it will have access to a subset of the file
system. This is designed to protect the user data and prevent damage to the operating system. In
particular, MIDlets located in the trusted third-party and untrusted domains have access only to a set of
designated public directories including those for images, videos, public files, and a private directory
assigned to each MIDlet for its own usage. This is one reason why using virtual roots is recommended
since access to the Images/ root may be allowed but doing traversal from e:/ to
e:/Nokia/Images/ may not allowed, because e: could not be accessible by a MIDlet.

Several file-related operations check if the appropriate security permissions have been acquired, but
the developer needs to take care in particular when the Connector.open() method is called. After
a FileConnection has been created and the appropriate permission has been granted, it could be
assumed that the permissions will hold for other operations requiring the same permission. For
instance, once a FileConnection has been created for writing, invoking delete should also have
been authorized. If the FileConnection has been created with a read permission and the

Introduction To The FileConnection API 8

Forum.Nokia.com

delete() method is called, the write permission will be needed and the user will be prompted if
necessary.

The setFileConnection() method will also check for permissions to those files depending on
which mode the original FileConnection was created. This is quite logical since
setFileConnection changes the current connection to point to a different file or directory.

2.3 Nokia-Specific Directories

In many Nokia devices a number of directories are designated for specific tasks. For instance, a camera
device stores captured photos in a specific “images” directory. To make it easier for developers to
access those directories, Nokia devices implementing the FileConnection API contain additional system
properties to locate them.

The existence of these properties cannot be taken for granted since not all devices have the need for
them. The developer should take care of noting when the property is null and find an alternative.

Table 2 shows the system properties. The first column contains the property name that points to a
particular directory in URL format. This URL can be passed directly to Connection.open(). The
second column is an extra property containing the localized name for that directory. It is strongly
recommended that instead of using a generic non-localized name for a directory, the property in the
second column be used to make the MIDlet look consistent with the rest of the device UI.

Property Localized property Description

fileconn.dir.photos fileconn.dir.photos.name This points to the directory where
photos captured with an integrated
camera or other images are stored.

fileconn.dir.videos fileconn.dir.videos.name The same as the previous entry but with
reference to videos. Downloaded videos
are also stored here by default.

fileconn.dir.tones fileconn.dir.tones.name Ring tones and other similar audio files
are stored in this directory.

fileconn.dir.memorycard fileconn.dir.memorycard.name Root directory of a memory card in case
it is available.

fileconn.dir.private fileconn.dir.private.name Private work directory of MIDlet suite.

Table 2: Nokia’s denoted directories

Introduction To The FileConnection API 9

Forum.Nokia.com

3 Image Viewer

The example developed for the purpose of this document using the FileConnection API is a simple
Image Viewer. The MIDlet has a file browser to move around the file system and images can be
selected and displayed on the screen. The purpose is to demonstrate how to access files and navigate
the file system. The file browser includes some basic file management operations. Note that this
example will not be signed, and consequently user prompts will often be displayed.

Figure 1 is a class diagram of the Image Viewer MIDlet.

ImageViewerMIDlet

MIDlet

ErrorScreen

ImageCanvas

FileSelector

«interface»
Runnable

«interface»
Operation

CreateDirOperation

uses

uses

display

InputScreen
uses

OperationsQueue

uses

«interface»
FileSystemListener

Figure 1: ImageViewerMIDlet class diagram

ImageViewerMIDlet is the starting point of the application. It controls the display and handles the
transitions between the different screens.

The FileSelector class contains the bulk of the application. It contains the user interface and
navigates the device’s file system. It also contains support for file-oriented operations such as delete,
rename, and directory creation. FileSelector will check whether the fileconn.dir.photos
system property is available and will start navigating the file system on that directory if available.
Otherwise, it will display a list of all the available roots.

The ImageCanvas class displays a selected image on the screen and upon detecting a key being
pressed returns to the FileSelector. InputScreen is a simple form that is used to prompt the
user to enter some text. This is used when creating a new directory and when renaming a file.

One important consideration when designing the Image Viewer MIDlet is that I/O operations are to be
executed in a separate thread. The OperationsQueue class accomplishes this by executing
commands serially in a separate thread.

The GUI consists of a simple file browser displaying the current directories and allowing navigation up
and down the directory tree. Figure 2 shows two screenshots of the file browser.

Introduction To The FileConnection API 10

Forum.Nokia.com

Figure 2: File Browser user interface in Nokia 6630

Once an image is selected, it is displayed in a simple canvas with a black background as shown Figure
3.

Figure 3: ImageViewer user interface

3.1 ImageViewerMIDlet

This is the MIDlet class implementation of the example. It has control over the Display and makes
transitions between screens. On the first startApp call it will check that the FileConnection API is
effectively present, otherwise it will inform the user. If it is available, it will create a FileSelector
and assign it to the display.

The requestInput() and input() methods are used to show the InputScreen and to indicate
the result of it respectively. The displayImage() method is invoked to show ImageCanvas
displaying a particular image.

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

// Main class which inits the MIDlet and creates the screens
public class ImageViewerMIDlet
 extends MIDlet
{
 private final Image logo;
 private final ImageCanvas imageCanvas;
 private FileSelector fileSelector;
 private final InputScreen inputScreen;
 private int operationCode = -1;

Introduction To The FileConnection API 11

Forum.Nokia.com

 public ImageViewerMIDlet()
 {
 // init basic parameters
 logo = makeImage("/logo.png");
 ErrorScreen.init(logo, Display.getDisplay(this));
 imageCanvas = new ImageCanvas(this);
 fileSelector = new FileSelector(this);
 inputScreen = new InputScreen(this);
 }

 public void startApp()
 {
 Displayable current = Display.getDisplay(this).getCurrent();

 if (current == null)
 {
 // Checks whether the API is available
 boolean isAPIAvailable = System.getProperty(
 "microedition.io.file.FileConnection.version") != null;
 // shows splash screen
 String text = getAppProperty("MIDlet-Name")
 + "\n"
 + getAppProperty("MIDlet-Vendor");
 if (!isAPIAvailable)
 {
 text += "\nFile Connection API is not available";
 }
 Alert splashScreen = new Alert(null,
 text,
 logo,
 AlertType.INFO);
 if (isAPIAvailable)
 {
 splashScreen.setTimeout(30);
 Display.getDisplay(this).setCurrent(splashScreen,
 fileSelector);
 }
 else
 {
 Display.getDisplay(this).setCurrent(splashScreen);
 }
 }
 else
 {
 Display.getDisplay(this).setCurrent(current);
 }
 }

 public void pauseApp()
 {
 }

 public void destroyApp(boolean unconditional)
 {
 // stop the commands queue thread
 fileSelector.stop();
 notifyDestroyed();
 }

 void fileSelectorExit()
 {
 destroyApp(false);
 }

Introduction To The FileConnection API 12

Forum.Nokia.com

 void requestInput(String text, String label, int operationCode)
 {
 inputScreen.setQuestion(text, label);
 this.operationCode = operationCode;
 Display.getDisplay(this).setCurrent(inputScreen);
 }

 void cancelInput()
 {
 Display.getDisplay(this).setCurrent(fileSelector);
 }

 void input(String input)
 {
 fileSelector.inputReceived(input, operationCode);
 Display.getDisplay(this).setCurrent(fileSelector);
 }

 void displayImage(String imageName)
 {
 imageCanvas.displayImage(imageName);
 Display.getDisplay(this).setCurrent(imageCanvas);
 }

 void displayFileBrowser()
 {
 Display.getDisplay(this).setCurrent(fileSelector);
 }

 void showError(Exception e)
 {
 ErrorScreen.showError(e.getMessage(), fileSelector);
 }

 void showMsg(String text)
 {
 Alert infoScreen = new Alert("Image Viewer",
 text,
 logo,
 AlertType.INFO);
 infoScreen.setTimeout(3000);
 Display.getDisplay(this).setCurrent(infoScreen, fileSelector);
 }

 // loads a given image by name
 static Image makeImage(String filename)
 {
 Image image = null;

 try
 {
 image = Image.createImage(filename);
 }
 catch (Exception e)
 {
 // use a null image instead
 }
 return image;
 }

}

Introduction To The FileConnection API 13

Forum.Nokia.com

3.2 FileSelector

This is the main class of the application. It consists of the file browser user interface, and it
additionally invokes all the file operations using the FileConnection API. FileSelector includes a
list that is filled by the contents of the current directory being explored. The content is presented
using icons to denote directories and files. When starting, the class checks whether the Nokia’s images
directory is available and starts navigating from there. Otherwise it will present a list of all available
roots. The current directory is stored in the currentRoot field, and a null value indicates pointing to
the roots set. On opening a directory, its contents are searched for other directories, and png and jpg
files that are displayed as the directory’s content.

The class also registers itself in the FileSystemRegistry to listen for new file systems being
added or removed, and in that case it will restart itself.

The file selector contains an inner class implementing the Operation interface. In most cases this
class will just invoke private methods of FileSelector. Methods of interest are createDir(),
which creates a new directory under the current directory, deleteCurrent(), which deletes the
currently selected file or directory, renameCurrent(), which changes the name of the currently
selected file, and openSelected(), which updates the list of files displayed.
displayCurrentRoot() takes care of reading the contents of the directory and displaying them
on the screen, whereas displayAllRoots() will show the list of all roots available.

File-related operations are enclosed in try/catch blocks to detect both IOExceptions and
SecurityExceptions.

import java.io.*;
import java.util.*;
import javax.microedition.io.*;
import javax.microedition.io.file.*;
import javax.microedition.lcdui.*;

// Simple file selector class.
// It navigates the file system and shows images currently available
class FileSelector
 extends List
 implements CommandListener, FileSystemListener
{
 private final static Image ROOT_IMAGE =
 ImageViewerMIDlet.makeImage("/root.png");
 private final static Image FOLDER_IMAGE =
 ImageViewerMIDlet.makeImage("/folder.png");
 private final static Image FILE_IMAGE =
 ImageViewerMIDlet.makeImage("/file.png");
 private final OperationsQueue queue = new OperationsQueue();

 private final static String FILE_SEPARATOR =
 (System.getProperty("file.separator")!=null)?
 System.getProperty("file.separator"):
 "/";
 private final static String UPPER_DIR = "..";

 private final ImageViewerMIDlet midlet;
 private final Command openCommand =
 new Command("Open", Command.ITEM, 1);
 private final Command createDirCommand =
 new Command("Create new directory", Command.ITEM, 2);
 private final Command deleteCommand =
 new Command("Delete", Command.ITEM, 3);
 private final Command renameCommand =
 new Command("Rename", Command.ITEM, 4);
 private final Command exitCommand =
 new Command("Exit", Command.EXIT, 1);

Introduction To The FileConnection API 14

Forum.Nokia.com

 private final static int RENAME_OP = 0;
 private final static int MKDIR_OP = 1;
 private final static int INIT_OP = 2;
 private final static int OPEN_OP = 3;
 private final static int DELETE_OP = 4;

 private Vector rootsList = new Vector();
 // Stores the current root, if null we are showing all the roots
 private FileConnection currentRoot = null;
 // Stores a suggested title in case it is available
 private String suggestedTitle = null;

 FileSelector(ImageViewerMIDlet midlet)
 {
 super("Image Viewer", List.IMPLICIT);
 this.midlet = midlet;
 addCommand(openCommand);
 addCommand(createDirCommand);
 addCommand(deleteCommand);
 addCommand(renameCommand);
 addCommand(exitCommand);
 setSelectCommand(openCommand);
 setCommandListener(this);
 queue.enqueueOperation(new ImageViewerOperations(INIT_OP));
 FileSystemRegistry.addFileSystemListener(FileSelector.this);
 }

 void stop()
 {
 if (currentRoot != null)
 {
 try
 {
 currentRoot.close();
 }
 catch (IOException e)
 {
 }
 }
 queue.abort();
 FileSystemRegistry.removeFileSystemListener(this);
 }

 void inputReceived(String input, int code)
 {
 switch (code)
 {
 case RENAME_OP:
 queue.enqueueOperation(new ImageViewerOperations(
 input,
 RENAME_OP));
 break;
 case MKDIR_OP:
 queue.enqueueOperation(new ImageViewerOperations(
 input,
 MKDIR_OP));
 break;
 }
 }

 public void commandAction(Command c, Displayable d)
 {
 if (c == openCommand)
 {
 queue.enqueueOperation(new ImageViewerOperations(OPEN_OP));

Introduction To The FileConnection API 15

Forum.Nokia.com

 }
 else if (c == renameCommand)
 {
 queue.enqueueOperation(new ImageViewerOperations(RENAME_OP));
 }
 else if (c == deleteCommand)
 {
 queue.enqueueOperation(new ImageViewerOperations(DELETE_OP));
 }
 else if (c == createDirCommand)
 {
 queue.enqueueOperation(new ImageViewerOperations(MKDIR_OP));
 }
 else if (c == exitCommand)
 {
 midlet.fileSelectorExit();
 }
 }

 // Listen for changes in the roots
 public void rootChanged(int state, String rootName)
 {
 queue.enqueueOperation(new ImageViewerOperations(INIT_OP));
 }

 private void displayAllRoots()
 {
 setTitle("Image Viewer - [Roots]");
 deleteAll();
 Enumeration roots = rootsList.elements();
 while (roots.hasMoreElements())
 {
 String root = (String) roots.nextElement();
 append(root.substring(1), ROOT_IMAGE);
 }
 currentRoot = null;
 }

 private void createNewDir()
 {
 if (currentRoot == null)
 {
 midlet.showMsg("Is not possible to create a new root");
 }
 else
 {
 midlet.requestInput("New dir name", "", MKDIR_OP);
 }
 }

 private void createNewDir(String newDirURL)
 {
 if (currentRoot != null)
 {
 try
 {
 FileConnection newDir =
 (FileConnection) Connector.open(
 currentRoot.getURL() + newDirURL,
 Connector.WRITE);
 newDir.mkdir();
 newDir.close();
 }
 catch (IOException e)
 {

Introduction To The FileConnection API 16

Forum.Nokia.com

 midlet.showError(e);
 }
 catch (SecurityException e)
 {
 midlet.showMsg(e.getMessage());
 }
 displayCurrentRoot();
 }
 }

 private void loadRoots()
 {
 if (!rootsList.isEmpty())
 {
 rootsList.removeAllElements();
 }
 try
 {
 Enumeration roots = FileSystemRegistry.listRoots();
 while (roots.hasMoreElements())
 {
 rootsList.addElement(FILE_SEPARATOR +
 (String) roots.nextElement());
 }
 }
 catch (SecurityException e)
 {
 midlet.showMsg(e.getMessage());
 }
 }

 private void deleteCurrent()
 {
 if (currentRoot == null)
 {
 midlet.showMsg("Is not possible to delete a root");
 }
 else
 {
 int selectedIndex = getSelectedIndex();
 if (selectedIndex >= 0)
 {
 String selectedFile = getString(selectedIndex);
 if (selectedFile.equals(UPPER_DIR))
 {
 midlet.showMsg("Is not possible to delete an upper dir");
 }
 else
 {
 try
 {
 FileConnection fileToDelete =
 (FileConnection) Connector.open(
 currentRoot.getURL() + selectedFile,
 Connector.WRITE);
 if (fileToDelete.exists())
 {
 fileToDelete.delete();
 }
 else
 {
 midlet.showMsg("File "
 + fileToDelete.getName() + " does not exists");
 }
 fileToDelete.close();
 }
 catch (IOException e)

Introduction To The FileConnection API 17

Forum.Nokia.com

 {
 midlet.showError(e);
 }
 catch (SecurityException e)
 {
 midlet.showError(e);
 }
 displayCurrentRoot();
 }
 }
 }
 }

 private void renameCurrent()
 {
 if (currentRoot == null)
 {
 midlet.showMsg("Is not possible to rename a root");
 }
 else
 {
 int selectedIndex = getSelectedIndex();
 if (selectedIndex >= 0)
 {
 String selectedFile = getString(selectedIndex);
 if (selectedFile.equals(UPPER_DIR))
 {
 midlet.showMsg("Is not possible to rename the upper dir");
 }
 else
 {
 midlet.requestInput("New name", selectedFile, RENAME_OP);
 }
 }
 }
 }

 private void renameCurrent(String newName)
 {
 if (currentRoot == null)
 {
 midlet.showMsg("Is not possible to rename a root");
 }
 else
 {
 int selectedIndex = getSelectedIndex();
 if (selectedIndex >= 0)
 {
 String selectedFile = getString(selectedIndex);
 if (selectedFile.equals(UPPER_DIR))
 {
 midlet.showMsg("Is not possible to rename the upper dir");
 }
 else
 {
 try
 {
 FileConnection fileToRename =
 (FileConnection) Connector.open(
 currentRoot.getURL() + selectedFile,
 Connector.WRITE);
 if (fileToRename.exists())
 {
 fileToRename.rename(newName);
 }
 else
 {

Introduction To The FileConnection API 18

Forum.Nokia.com

 midlet.showMsg("File "
 + fileToRename.getName() + " does not exists");
 }
 fileToRename.close();
 }
 catch (IOException e)
 {
 midlet.showError(e);
 }
 catch (SecurityException e)
 {
 midlet.showError(e);
 }
 displayCurrentRoot();
 }
 }
 }
 }

 private void openSelected()
 {

 int selectedIndex = getSelectedIndex();
 if (selectedIndex >= 0)
 {
 String selectedFile = getString(selectedIndex);
 if (selectedFile.endsWith(FILE_SEPARATOR))
 {
 try
 {
 if (currentRoot == null)
 {
 currentRoot = (FileConnection) Connector.open(
 "file:///" + selectedFile, Connector.READ);
 }
 else
 {
 currentRoot.setFileConnection(selectedFile);
 }
 displayCurrentRoot();
 }
 catch (IOException e)
 {
 midlet.showError(e);
 }
 catch (SecurityException e)
 {
 midlet.showError(e);
 }
 }
 else if (selectedFile.equals(UPPER_DIR))
 {
 if(rootsList.contains(currentRoot.getPath()
 +currentRoot.getName()))
 {
 displayAllRoots();
 }
 else
 {
 try
 {
 currentRoot.setFileConnection(UPPER_DIR);
 displayCurrentRoot();
 }
 catch (IOException e)
 {
 midlet.showError(e);
 }

Introduction To The FileConnection API 19

Forum.Nokia.com

 catch (SecurityException e)
 {
 midlet.showMsg(e.getMessage());
 }
 }
 }
 else
 {
 String url = currentRoot.getURL() + selectedFile;
 midlet.displayImage(url);
 }
 }
 }

 private void displayCurrentRoot()
 {
 try
 {
 setTitle("Image Viewer - ["
 + ((suggestedTitle!=null)?suggestedTitle:currentRoot.getURL())
 + "]");
 // open the root
 deleteAll();
 append(UPPER_DIR, FOLDER_IMAGE);
 // list all dirs
 Enumeration listOfDirs = currentRoot.list("*", false);
 while (listOfDirs.hasMoreElements())
 {
 String currentDir = (String) listOfDirs.nextElement();
 if (currentDir.endsWith(FILE_SEPARATOR))
 {
 append(currentDir, FOLDER_IMAGE);
 }
 }
 // list all png files and don’t show hidden files
 Enumeration listOfFiles = currentRoot.list("*.png", false);
 while (listOfFiles.hasMoreElements())
 {
 String currentFile = (String) listOfFiles.nextElement();
 if (currentFile.endsWith(FILE_SEPARATOR))
 {
 append(currentFile, FOLDER_IMAGE);
 }
 else
 {
 append(currentFile, FILE_IMAGE);
 }
 }
 // also list the jpg files
 listOfFiles = currentRoot.list("*.jpg", false);
 while (listOfFiles.hasMoreElements())
 {
 String currentFile = (String) listOfFiles.nextElement();
 if (currentFile.endsWith(FILE_SEPARATOR))
 {
 append(currentFile, FOLDER_IMAGE);
 }
 else
 {
 append(currentFile, FILE_IMAGE);
 }
 }
 }
 catch (IOException e)
 {
 midlet.showError(e);
 }
 catch (SecurityException e)

Introduction To The FileConnection API 20

Forum.Nokia.com

 {
 midlet.showError(e);
 }
 }

 private class ImageViewerOperations implements Operation
 {
 private final String parameter;
 private final int operationCode;

 ImageViewerOperations(int operationCode)
 {
 this.parameter = null;
 this.operationCode = operationCode;
 }

 ImageViewerOperations(String parameter, int operationCode)
 {
 this.parameter = parameter;
 this.operationCode = operationCode;
 }

 public void execute()
 {
 switch (operationCode)
 {
 case INIT_OP:
 String initDir = System.getProperty("fileconn.dir.photos");
 suggestedTitle =
 System.getProperty("fileconn.dir.photos.name");
 loadRoots();
 if (initDir != null)
 {
 try
 {
 currentRoot =
 (FileConnection) Connector.open(
 initDir,
 Connector.READ);
 displayCurrentRoot();
 }
 catch (IOException e)
 {
 midlet.showError(e);
 displayAllRoots();
 }
 catch (SecurityException e)
 {
 midlet.showError(e);
 }
 }
 else
 {
 displayAllRoots();
 }
 break;
 case OPEN_OP:
 openSelected();
 break;
 case DELETE_OP:
 deleteCurrent();
 break;
 case RENAME_OP:
 if (parameter != null)
 {

Introduction To The FileConnection API 21

Forum.Nokia.com

 renameCurrent(parameter);
 }
 else
 {
 renameCurrent();
 }
 break;
 case MKDIR_OP:
 if (parameter != null)
 {
 createNewDir(parameter);
 }
 else
 {
 createNewDir();
 }
 }
 }
 }
}

3.3 OperationsQueue and Operation

The operations queue is a simple utility class that runs in a separate thread executing operations
serially. The OperationsQueue class takes objects implementing the Operation interface, making
it independent of the kind of operations executed. Operation implementers are expected to handle
their exceptions locally since OperationsQueue will discard any Exceptions thrown.

// Defines the interface for a single operation executed by
// the commands queue
interface Operation
{
 // Implement here the operation to be executed
 void execute();
}

import java.util.*;

// Simple Operations Queue
// It runs in an independent thread and executes Operations serially
class OperationsQueue implements Runnable
{

 private volatile boolean running = true;
 private final Vector operations = new Vector();

 OperationsQueue()
 {
 // Notice that all operations will be done in another
 // thread to avoid deadlocks with GUI thread
 new Thread(this).start();
 }

 void enqueueOperation(Operation nextOperation)
 {
 operations.addElement(nextOperation);
 synchronized (this)
 {
 notify();
 }
 }

 // stop the thread

Introduction To The FileConnection API 22

Forum.Nokia.com

 void abort()
 {
 running = false;
 synchronized (this)
 {
 notify();
 }
 }

 public void run()
 {
 while (running)
 {
 while (operations.size() > 0)
 {
 try
 {
 // execute the first operation on the queue
 ((Operation) operations.firstElement()).execute();
 }
 catch (Exception e)
 {
 // Nothing to do. It is expected that each operation handles
 // its own exception locally but this block is to ensure
 // that the queue continues to operate
 }
 operations.removeElementAt(0);
 }
 synchronized (this)
 {
 try
 {
 wait();
 }
 catch (InterruptedException e)
 {
 // it doesn't matter
 }
 }
 }
 }

}

3.4 ImageCanvas

This class is used to display an image on the screen. The background has previously been set to black
and the image is displayed in the center. The image is drawn with its original dimensions and no
attempt is made to scale it if it is bigger than the screen. ImageCanvas listens for any key presses
and returns the control to the MIDlet.

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.io.file.*;
import javax.microedition.lcdui.*;

// This class displays a selected image centered on the screen
class ImageCanvas
 extends Canvas
{
 private final ImageViewerMIDlet midlet;
 private static final int CHUNK_SIZE = 1024;
 private Image currentImage = null;

 ImageCanvas(ImageViewerMIDlet midlet)

Introduction To The FileConnection API 23

Forum.Nokia.com

 {
 this.midlet = midlet;
 }

 public void displayImage(String imgName)
 {
 try
 {
 FileConnection fileConn =
 (FileConnection)Connector.open(imgName, Connector.READ);
 // load the image data in memory
 // Read data in CHUNK_SIZE chunks
 InputStream fis = fileConn.openInputStream();
 long overallSize = fileConn.fileSize();

 int length = 0;
 byte[] imageData = new byte[0];
 while (length < overallSize)
 {
 byte[] data = new byte[CHUNK_SIZE];
 int readAmount = fis.read(data, 0, CHUNK_SIZE);
 byte[] newImageData = new byte[imageData.length + CHUNK_SIZE];
 System.arraycopy(imageData, 0, newImageData, 0, length);
 System.arraycopy(data, 0, newImageData, length, readAmount);
 imageData = newImageData;
 length += readAmount;
 }

 fis.close();
 fileConn.close();
 if (length > 0)
 {
 currentImage = Image.createImage(imageData, 0, length);
 }
 repaint();
 }
 catch (IOException e)
 {
 midlet.showError(e);
 }
 catch (SecurityException e)
 {
 midlet.showError(e);
 }
 catch (IllegalArgumentException e)
 {
 // thrown in case the file format is not understood
 midlet.showError(e);
 }

 }

 protected void paint(Graphics g)
 {
 int w = getWidth();
 int h = getHeight();

 // Set background color to black
 g.setColor(0x00000000);
 g.fillRect(0, 0, w, h);

 if (currentImage != null)
 {
 g.drawImage(currentImage,
 w / 2,
 h / 2,
 Graphics.HCENTER | Graphics.VCENTER);

Introduction To The FileConnection API 24

Forum.Nokia.com

 }
 else
 {
 // If no image is available, display a message
 g.setColor(0x00FFFFFF);
 g.drawString("No image",
 w / 2,
 h / 2,
 Graphics.HCENTER | Graphics.BASELINE);
 }
 }

 protected void keyReleased(int keyCode)
 {
 // Exit with any key
 midlet.displayFileBrowser();
 }
}

3.5 InputScreen

InputScreen is a simple screen used to enter text. It is used in this application to enter text for
creating new directories and renaming files. The screen sets an input text field and returns the results
to the MIDlet.

import javax.microedition.lcdui.*;

// This class displays an input field on the screen
// and returns the value entered to the MIDlet
class InputScreen
 extends Form
 implements CommandListener
{
 private final ImageViewerMIDlet midlet;
 private final TextField inputField =
 new TextField("Input", "", 32, TextField.ANY);
 private final Command okCommand =
 new Command("OK", Command.OK, 1);
 private final Command cancelCommand =
 new Command("Cancel", Command.OK, 1);

 InputScreen(ImageViewerMIDlet midlet)
 {
 super("Input");
 this.midlet = midlet;
 append(inputField);
 addCommand(okCommand);
 addCommand(cancelCommand);
 setCommandListener(this);
 }

 public void setQuestion(String question, String text)
 {
 inputField.setLabel(question);
 inputField.setString(text);
 }

 public String getInputText()
 {
 return inputField.getString();
 }

 public void commandAction(Command command, Displayable d)

Introduction To The FileConnection API 25

Forum.Nokia.com

 {
 if (command == okCommand)
 {
 midlet.input(inputField.getString());
 }
 else if (command == cancelCommand)
 {
 midlet.cancelInput();
 }
 }

}

3.6 ErrorScreen

ErrorScreen is a simple class used for reporting errors to the end user.

import javax.microedition.lcdui.*;

class ErrorScreen
 extends Alert
{
 private static Image image;
 private static Display display;
 private static ErrorScreen instance = null;

 private ErrorScreen()
 {
 super("Error");
 setType(AlertType.ERROR);
 setTimeout(5000);
 setImage(image);
 }

 static void init(Image img, Display disp)
 {
 image = img;
 display = disp;
 }

 static void showError(String message, Displayable next)
 {
 if (instance == null)
 {
 instance = new ErrorScreen();
 }
 instance.setTitle("Error");
 instance.setString(message);
 display.setCurrent(instance, next);
 }

}

Introduction To The FileConnection API 26

Forum.Nokia.com

4 Terms and Abbreviations

Term or abbreviation Meaning

CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

GCF Generic Connection Framework

J2ME™ Java™ 2 Platform, Micro Edition

MIDP Mobile Information Device Profile

PIM API Personal Information Management API

RMS Record Management System

Introduction To The FileConnection API 27

Forum.Nokia.com

5 References

[JSR-075] JSR 75: PDA Optional Packages for the J2ME™ Platform, Java Community Process, 2004,
http://jcp.org/aboutJava/communityprocess/final/jsr075/index.html

[MIDPPROG] MIDP 1.0: Introduction to MIDlet Programming, Forum Nokia, 2004,
http://www.forum.nokia.com | Technologies | Java | Code and Examples

[SIGNMID] MIDP 2.0: Tutorial On Signed MIDlets, Forum Nokia, 2004,
http://www.forum.nokia.com/documents

[RFC 1738] Uniform Resource Locators (URL), IETF, December 1994,
http://www.ietf.org/rfc/rfc1738.txt

[RFC 2396] Uniform Resource Identifiers (URI): Generic Syntax, IETF, August 1998,
http://www.ietf.org/rfc/rfc2396.txt

[MIDP 2.0] Mobile Information Device Profile 2.0, Java Community Process, 2002,
http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html

Introduction To The FileConnection API 28

http://jcp.org/aboutJava/communityprocess/final/jsr075/index.html
http://www.forum.nokia.com/
http://www.forum.nokia.com/documents
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2396.txt
http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html

Introduction To The FileConnection API 29

Forum.Nokia.com

6 Evaluate This Document

In order to improve the quality of documentation, we kindly ask you to fill in the document survey.

http://www.forum.nokia.com/main/1%2C%2C90%2C00.html?surveyId=16e34aae-29e7-407b-88be-e1848d110182/Introduction_To_The_FileConnection_API_v1_1.zip

	Introduction
	FileConnection API
	Introduction
	Security
	Nokia-Specific Directories

	Image Viewer
	ImageViewerMIDlet
	FileSelector
	OperationsQueue and Operation
	ImageCanvas
	InputScreen
	ErrorScreen

	Terms and Abbreviations
	References
	Evaluate This Document

