
TurboDelphi for Win32
 Titel: How to install and use components in Turbo Delphi (Win32)

How to install and use components in Turbo Delphi

(Win32)

A few days ago, Borland/DTG published TurboDelphi, and just like me, many people

downloaded and installed it. The biggest deficiency of the free Explorer version is that it

does now allow to install design time packages (which integrate into the IDE and can be

dragged onto a form). However, it is possible to integrate design time packages into the

IDE, and this tutorial shows how to do it. Special thanks to Elvis, without his statements

the second part of the tutorial would not be possible.

I'm using the components "TScrollingCredits" (which you can find in the rar archive too)

and TGauge, which is already included in TurboDelphi.

1. How to use components non-visual

In general we can't integrate components into the IDE and work with them. But who cares?
We can still create the components at run-time directly in the code.

1. Most components are in directly pascal sourcecode, which means we have the *.pas-file,
like in our example TScrollingCredits. Copy the unit credits.pas to the TurboDelphi-library
folder (for example X:\Program Files\Borland\BDS\4.0\lib) or just create a new library path
in the Delphi options.

2. In the next step start Delphi and create a new VCL-Forms-Application. Delphi doesn't
know in which unit our component is, thus we have to take the unit credits.pas into the
uses-list. Here's an example:

Delphi-Quellcode: markieren

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics,
Controls, Forms,
 Dialogs, Credits;

3. Every component is just an instance of a class, in our example it's the class
"TScrollingCredits", which you can find in the unit credits.pas. So we have to - in case we
want to create a new component - derive a new instance from the TScrollingCredits - class.
For that go to the OnCreate event of the main form, so that our component will be created
after the mainform was created. To derive a new component just handle them like a

http://www.delphipraxis.net/user16335.html
http://www.delphipraxis.net/user16335.html

variable, that means just create a new instance of the class TScrollingCredits.
Delphi-Quellcode: markieren

procedure TForm1.FormCreate(Sender: TObject);
var
 MyCredits : TScrollingCredits; //Componentname & the class
/ type
begin

end;

4. Every component has the .Create method, which we have to call. It must be considered
that we don't call the .Create method of our component MyCredits, because MyCredits
doesn't exists in this time. We have to call the .Create method of the class
TScrollingCredits, only this will create the component. Possibly some component expects
types as parameter a AOwner as delivery value. This isn't important in this short tutorial,
just use the parameter self or another control of TComponent.

Delphi-Quellcode: markieren

MyCredits := TScrollingCredits.Create(self);

5. When you compile and build the project, you won't see our component. Thats because
Delphi doesn't know how and where it has to show the component. Quick & Dirty solution:

Delphi-Quellcode: markieren

with MyCredits do
 begin
 Parent := Form1; //Set parent
 Height := 100; //Set other important properties
 Width := 200;
 Top := 20;
 Left := 20;
 end;

6. By creating and compiling the project we're almost at the end, our component is lying
good on the form and works perfect. Of course, more adjustments are possible via source,
options can be done and everything should be like normally in the designer. "Everything is
possible", comes to my mind. All in all, you can say that we replaced the objectinspector
by the codeeditor.
Here the complete sourcecode of the project, for all of you being too lazy to write or read.

Delphi-Quellcode: aufklappen | markieren

1
·
·
·

unit Unit1;

interface

5
·
·
·
·

10
·
·
·
·

15
·
·
·
·

20
·
·
·
·

25
·
·
·
·

30
·
·
·
·

35
·
·
·
·

40

uses
 Windows, Messages, SysUtils, Variants, Classes,
Graphics, Controls, Forms,
 Dialogs, Credits;

type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 private
 { Private-Deklarationen }
 public
 { Public-Deklarationen }
 end;

var
 Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender: TObject);
var
 MyCredits : TScrollingCredits;
begin
 MyCredits := TScrollingCredits.Create(self);
 with MyCredits do
 begin
 Parent := Form1;
 Height := 100;
 Width := 200;
 Top := 20;
 Left := 20;
 end;
end;

end.

2. Integrate Components with the IDE

The headline already suggests it - though it should not be possible in the free version of
Turbo Delphi, it is possible.
I do not know if Elvis found it himself, but I am thankful he notified us today.

1. So let's go: As I had this problem myself, we'll care for the component TGauge to be

added into the IDE, which gets shipped with Turbo Delphi, but strangely does not get
integrated with the IDE. Fact is: Turbo Delphi does not accept 3rd party design packages
and will deny their installation. But there is a package - which has been there going along
with us since the old days - which we are (technically) allowed to edit and install. It is the
package dclusr.dpk, which you will find in X:\Program Files\Borland\BDS\4.0\lib per
default. So let's fire up TurboDelphi and open said dclusr.dpk.

2. Now we focus the "project management" window, where we have to add the respective
unit to the package. In order to accomplish this, we right-click dclusr100.bpl and choose
"Add...". In the window opening subsequently we click "Browse...", choose the respective
unit (for our behalves gauges.pas, located in X:\Program
Files\Borland\BDS\4.0\source\Win32\Samples\Source) and click "Ok". The unit will be
added to the Package and we can see it in the "Contains" key.

3. Click through the folders in the "Contains" key until you can see the unit and open it with
a double click. It will open into the code editor and we can see the source code. In our
example there is no register-procedure, if you have one, skip this step! As there is none in
gauges.pas, we have to create our own. In order to do so, we declare the procedure

Delphi-Quellcode: markieren

procedure Register;

after all other declarations in the interface section. In the implementation section we add
this:

Delphi-Quellcode: markieren

procedure Register;
begin
RegisterComponents('Samples', [TGauge]);
end;

The string "Samples" passes the name of the tab/section the compoent will be placed later-
on. If it does not exist just yet, it will be added autmatically. In the array ([TGauge]) you
have to pass the classes of all components in the units you want to register. Another
example: [TScrollingCredits].
The head of gauges.pas should look like this by now:

Delphi-Quellcode: aufklappen | markieren

1
·
·
·
5
·
·
·
·

10
·
·
·
·

15

unit Gauges;

interface

uses SysUtils, Windows, Messages, Classes, Graphics,
Controls, Forms, StdCtrls;

type

 TGaugeKind = (gkText, gkHorizontalBar, gkVerticalBar,
gkPie, gkNeedle);

 TGauge = class(TGraphicControl)
 private
 FMinValue: Longint;

·
·
·
·

20
·
·
·
·

25
·
·
·
·

30
·
·
·
·

35
·
·
·
·

40
·
·
·
·

45
·
·
·
·

50
·
·
·
·

55
·
·
·
·

60
·

 FMaxValue: Longint;
 FCurValue: Longint;
 FKind: TGaugeKind;
 FShowText: Boolean;
 FBorderStyle: TBorderStyle;
 FForeColor: TColor;
 FBackColor: TColor;
 procedure PaintBackground(AnImage: TBitmap);
 procedure PaintAsText(AnImage: TBitmap; PaintRect:
TRect);
 procedure PaintAsNothing(AnImage: TBitmap;
PaintRect: TRect);
 procedure PaintAsBar(AnImage: TBitmap; PaintRect:
TRect);
 procedure PaintAsPie(AnImage: TBitmap; PaintRect:
TRect);
 procedure PaintAsNeedle(AnImage: TBitmap; PaintRect:
TRect);
 procedure SetGaugeKind(Value: TGaugeKind);
 procedure SetShowText(Value: Boolean);
 procedure SetBorderStyle(Value: TBorderStyle);
 procedure SetForeColor(Value: TColor);
 procedure SetBackColor(Value: TColor);
 procedure SetMinValue(Value: Longint);
 procedure SetMaxValue(Value: Longint);
 procedure SetProgress(Value: Longint);
 function GetPercentDone: Longint;
 protected
 procedure Paint; override;
 public
 constructor Create(AOwner: TComponent); override;
 procedure AddProgress(Value: Longint);
 property PercentDone: Longint read GetPercentDone;
 published
 property Align;
 property Anchors;
 property BackColor: TColor read FBackColor write
SetBackColor default clWhite;
 property BorderStyle: TBorderStyle read FBorderStyle
write SetBorderStyle default bsSingle;
 property Color;
 property Constraints;
 property Enabled;
 property ForeColor: TColor read FForeColor write
SetForeColor default clBlack;
 property Font;

·
·
·

65
·
·
·
·

70
·
·
·
·

75
·
·
·
·

80
·
·
·
·

85
·
·
·
·

90
91

 property Kind: TGaugeKind read FKind write
SetGaugeKind default gkHorizontalBar;
 property MinValue: Longint read FMinValue write
SetMinValue default 0;
 property MaxValue: Longint read FMaxValue write
SetMaxValue default 100;
 property ParentColor;
 property ParentFont;
 property ParentShowHint;
 property PopupMenu;
 property Progress: Longint read FCurValue write
SetProgress;
 property ShowHint;
 property ShowText: Boolean read FShowText write
SetShowText default True;
 property Visible;
 end;

procedure Register; //Create!

implementation

uses Consts;

//Create!
procedure Register;
begin
RegisterComponents('Samples', [TGauge]);
end;

type
 TBltBitmap = class(TBitmap)
 procedure MakeLike(ATemplate: TBitmap);
 end;

{ TBltBitmap }

procedure TBltBitmap.MakeLike(ATemplate: TBitmap);
begin
 Width := ATemplate.Width;
 Height := ATemplate.Height;
 Canvas.Brush.Color := clWindowFrame;
 Canvas.Brush.Style := bsSolid;
 Canvas.FillRect(Rect(0, 0, Width, Height));
end;

4. Via the Ctrl+S shortcut we save the changes we made. We're not far from the goal
anymore, just change back into the project management window and right-click
dclusr100.bpl. Now we choose "Compile" and then, after successful compilation, "Install".
A messagebox should now appear notifying us of all the new components installed. After
restarting Turbo Delphi you should now find the "3rd party component" inside your IDE,
patiently waiting for its deployment.

Important Notes:
- It has not yet been tested how Delphi will behave if there are a lot of components
installed into dclusr.dpk, so issues may arise. The author has been integrating 7
Components so far for testing purposes and nothing went wrong up until now. If you have
any experience about how the package does when there are a lot of components installed,
please contact the author.
- If you get messages like "the package could not be deinstalled" dont be worry, just ignore
them and after a restart of TurboDelphi the component would be installed successfull to the
IDE

I hope this tutorial is helpful for you in any way.

Please note: Against all denying voices the second part of this tutorial does not -
according to the author's opinion - in any way violate the license agreements of
Turbo Delphi, as a) no protection mechanisms get disabled, broken, or
circumvented and b) no packages are installed, as this is forbidden. The author
does not do this but install the compoenents into an existing package.

Tutorial: How to install and use components in Turbo Delphi (Win32)
Author: Pierre (alias "Balu der Bär")
Version: 1.0b (10.09.2006)
Contact: turbodelphi@list.ru
Special thanks to Daniel G(ilbert)
Translation of 2nd part: Lukas Erlacher

mailto:turbodelphi@list.ru

