Chapter 1

Introduction

1.1 Motivation for Elimination Theory

To give a flavor of elimination theory and motivate its study, we start by discussing
the following problem which involves geometric reasoning. Heymann in [25] posed
the question of whether a triangle can be drawn using only a compass and a ruler,
given the lengths of any three of its angle bisectors. One specific case of this problem

can be mathematically formulated as follows.

Let ABC (see Figure 1.1) be the triangle in question, in which a, b and ¢ are the
lengths of the three sides, a; the internal bisector of angle A, and a. and b, be the
external bisectors of angles A and B, respectively. Heymann’s question translates to

whether ABC can be drawn, given a;, a. and b..

Equations (1.1) express the bisectors in terms of the sides and can be easily
derived using high-school mathematics. To construct the triangle, one must be able
to construct line segments of length a,b and ¢. From Corollary' 2 of Theorem 5.4.1

in [24], it follows that if the relationship between the three bisectors and a is an irre-

IThe corollary says that if a real number « satisfies an irreducible polynomial over the field of
rational of degree k, and if & is not a power of two, then a line segment of length « cannot be
constructed using a compass and a ruler.



Figure 1.1: Triangle for Heymann’s Problem
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Figure 1.2: Equations for Heymann’s Problem




B 0 0 0 3600 + 13642 —128 —136
0 0 0 0 0 0
—136a? — 3600 0 25642 1664a° — 3600 + 68a* —64a? + 128 136 — 52a°
0 —136a2 — 3600 0 0 0 0
0 0 0 —7200 + 62842 + 34a* —32a? + 256 —34a2 + 272
0 128a2 —256a + 32a° —104a® 4 1088a — 4a® 0 4a° 4 36a
0 13647 628q + 68a’ —32a% 4 2564 —8a® — 36a —32a
0 136a? —1172a —256a + 32a° 68a 0
136 0 0 136 — 68a? 0 0
0 0 3600 — 166442 — 68a* —256a2 240a2 — 544 + 8a*  —128 + 6447
136 0 0 136 — 84a? 0 0
128 0 1647 —64a? + 128 —8a? + 16 0
L 0 0 0 4a® — 32a 0 —da
0 0 0 0 —136 0 0 ]
0 0 0 —34a2? — 900 0 34 32
—628a? 4+ 7200 — 34a*  344® — 2724 —256a + 324° —1172a 136 — 68a? 34q 32q
0 128 16a2 + 544 —128 0 0 —16
3600 + 13647 —136a —128a —136a —34a2 + 272 0 0
—544q — 16a° 136 — 52a2 0 188a2 — 408 + 8a* —68a — 4a’ 0 0
—128a 0 136 — 8447 —128 + 6442 0 0 842 — 16
128a 0 136 — 68a? —64a? 4 128 32a 0 0
34a? — 272 —34q 0 34a 0 0 0
0 0 1800a + 68a° 512a — 64a° —128 + 64a® —32a —104a — 8a®
34a? — 272 34a —64a 134a — 4a° 8a? — 16 —4a 0
—256 + 3242 0 —168a 64a 0 0 8a
16a 0 0 —8a? + 16 4a 0 0 i

Figure 1.3: Resultant Matrix for Heymann’s Problem

ducible polynomial whose degree in a is not 2™ for some integral m, then the answer
to Heymann’s question is in the negative. In other words, we can solve Heymann’s

problem if we can:
Derive the relationship purely between a, a;, a. and b..

A straight-forward way of accomplishing this derivation is by eliminating b and
¢ from Equations (1.2) (which follow from Equations (1.1)). Computationally, this is
not an easy task and may require quite a bit of computational resources as well as
innovative techniques. It is such techniques that are the object of study under the
general subject of Elimination Theory. Elimination theory studies and develops ef-

ficient techniques for symbolically solving systems of non-linear polynomial equations.



To give a flavor of the contributions of this thesis, we give a solution to Hey-
mann’s problem using a technique developed in this thesis. It can be shown using
the results of this thesis that the polynomial in a,a;,a. and b. which is the result
of eliminating b and ¢ from the three equations (1.2) is in fact the determinant of a
13 x 13 matrix (whose entries are polynomials in @, a;, a. and b.). Since this matrix is
very large and we are anyway interested only in knowing the degree of its determinant
in a, we give the matrix after substituting a; = 3,a. = 5 and b. = 2 in Figure 1.3. Its
determinant has degree 20 in a. Since 20 is not an integral power of 2, the answer
to Heymann’s problem is in the negative. Thus, in general, it is impossible to draw
a triangle using just a compass and a ruler, if the lengths of any three of its angle

bisectors are given.

1.1.1 Elimination Theory

Elimination theory is the study of techniques and algorithms for eliminating vari-
ables from a set of polynomial equations. In the previous section we demonstrated
how one problem involving geometric reasoning can be solved using elimination the-
ory. In fact, elimination of variables is a fundamental problem which often comes up
in many areas of mathematics, engineering, physical and computer sciences. Many
practical problems in robotics, computer vision, computational biology, solid mod-
eling, mechanical and chemical engineering, thermodynamics, physics etc. can be
reformulated as a problem of eliminating a subset of variables from a set of poly-
nomial equations. For example, Hoffman in [26] posed the challenging problem of
deriving the implicit equation (in ,y and z coordinates) of a bicubic surface (which
is plotted in Figure 1.4) from its parameterization. The problem of deriving implicit
equations from parameterizations is known as the implicitization problem, and can be
reformulated as an elimination problem. The bicubic implicitization problem posed

by Hoffman translates to the problem of eliminating variables s and ¢ from the fol-



Figure 1.4: A Bicubic Surface

lowing three polynomials:

G = 3t(t—1)2—|—(5—1)3—|—33—x
G2 = 3s(s—1)+1°+3t—y
g5 = —3s(s"—5545) 1" =3 (s +65>—95+1) 1

+ (657 +957 —185+3) —3s(s—1) — =.

The problem of eliminating variables from polynomial equations is inherently
hard in terms of computational resources. Nevertheless, as computer technology and
symbolic manipulation techniques have drastically improved over the last few decades,

elimination problems in many real applications have come within the grasp of state-

5



of-the-art computational power. For instance, the bicubic implicitization problem
stated above had proven to be a computationally challenging problem when Hoffman
[26] posed it in his 1990 paper. He reported that even the state of the art elimi-
nation methods in 1990 required time of the order of 10° seconds to implicitize the
surface, which is quite unacceptable for real life applications. However, today, with
the development of fast variable elimination techniques such as those in this thesis,
this problem can easily be solved within a few (< 10') seconds on desktop work-
stations (the bicubic surface represented by the above equations is plotted in Figure
1.4). Already, the fastest solution to problems such as real-time inverse kinematics
for a general 6R serial robot arm manipulator [33] use specialized techniques from
elimination theory. Such successes have inspired a renewed interest in developing
efficient methods for eliminating variables and solving nonlinear equations. Evidence
to this is provided by recent breakthroughs in elimination theory such as the develop-
ment of fast algorithms for solving polynomial systems with finitely many solutions
[18], resurrection and variations of classical constructive techniques for eliminating
variables [5, 33], development of elimination methods which exploit the structure of
polynomial systems to solve them efficiently [14, 7, 40], and the development of effi-

cient techniques for numerically solving non-linear systems [35, 42].

Three major techniques for eliminating variables symbolically are:

1. Grobner basis computations proposed by Buchberger [4],

2. Characteristic set computations proposed by Ritt [37] and

3. Resultant computations based on methods developed early this century by re-

searchers such as Macaulay [32], Cayley [8], Bezout, Dixon [12], Hurwitz etc.



A Grobner basis of a polynomial ideal is a basis with many useful properties
and provides answers to most ideal-theoretic questions about the ideal. The first al-
gorithm to compute Grobner basis of ideals was given by Buchberger in [4] and since
then, many efficient variations have appeared [2]. Among other things, Grobner bases
can be used to find solutions to a set of polynomials, compute projections of their
variety, eliminate variables and test polynomials for ideal membership. A variation
on the Grobner basis algorithm for 0-dimensional ideals is what was used by Hoffman

to solve the bicubic implicitization problem in 10° seconds in 1990 [26].

A characteristic set [10, 44] of a set of polynomials is a triangular set of poly-
nomials with almost the same set of common solutions as the original. The first
algorithm to compute characteristic sets was given by Ritt, and recently Wu [44]
resurrected it. Characteristic sets are typically computed by eliminating variables
sequentially in some predetermined order using successive pseudo-division of polyno-
mials. Characteristic sets can be used, among other things, to compute projections of
varieties, eliminate variables and derive conditions under which a polynomial equa-
tion follows from another set of polynomial equations. Their effectiveness in proving
geometry theorems is well established. In his book ([10]), Chou details many theorem
proving procedures using characteristic sets, and lists hundreds of theorems he was
able to automatically prove using his implementation of these procedures. Gao and
Wang [20] used specialized characteristic set algorithms to solve Heymann’s problem

in 19 hours on a SUN 4 workstation.

Resultant is a characterization of the projection of the variety of a given set
of polynomials into a smaller set of variables. Methods which compute the resul-

tant can thus be used to eliminate a subset of variables from a set of polynomials.



The interesting property of multivariate resultant methods is that they eliminate n
variables together, instead of sequentially, from n + 1 polynomials. The fundamental
principle by which multivariate resultant methods work is by reducing a non-linear
elimination problem to a linear one. That is why the derivation in Heymann’s prob-
lem was reduced to computing the determinant in Figure 1.3. Such linearization of
nonlinear problems enables the applicability of a vast array of linear algebra and lin-
ear equation solving techniques that have been developed in the last two centuries, to
non-linear variable elimination. The effectiveness of multivariate resultant methods
has been demonstrated in a variety of applications [9, 14, 28, 29, 33, 34, 39], and
for some applications only the methods involving resultants offer an acceptable real-
time solution [33]. For example, the implicit equation of the bicubic surface can be
derived within 50 seconds (compared to 10° seconds using Grébner bases), and Hey-
mann’s question can be resolved within 300 seconds using resultant based methods

on a SPARC station 10 (compared to 19 hours using Characteristic set type methods).

This thesis proposes, analyzes, evaluates and applies a new method for comput-
ing resultants based on a classical formulation by Dixon [12]. Before discussing the
contributions of this thesis, we outline the different algorithms available for comput-
ing the resultant and some desirable qualities in resultant methods. Here we give an
informal perspective on multivariate resultant methods so as to create a setting in
which the contributions of this thesis and their importance can be understood. We
will formally review the various multivariate resultant methods in detail later in this

thesis.

1.1.2 Resultants: An Informal Perspective

There are three major formulations which can be used to compute multivariate resul-

tants — (i) The Macaulay formulation, (ii) The Sparse resultant formulation and (iii)
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